首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to improve the removal of heavy metals from sewage sludge ash by a thermochemical process. The resulting detoxified ash was intended for use as a raw material rich in phosphorus (P) for inorganic fertiliser production. The thermochemical treatment was performed in a rotary kiln where the evaporation of relevant heavy metals was enhanced by additives. The four variables investigated for process optimisation were treatment temperature, type of additive (KCl, MgCl(2)) and its amount, as well as type of reactor (directly or indirectly heated rotary kiln). The removal rates of Cd, Cr, Cu, Ni, Pb, Zn and of Ca, P and Cl were investigated. The best overall removal efficiency for Cd, Cu, Pb and Zn could be found for the indirectly heated system. The type of additive was critical, since MgCl(2) favours Zn- over Cu-removal, while KCl acts conversely. The use of MgCl(2) caused less particle abrasion from the pellets in the kiln than KCl. In the case of the additive KCl, liquid KCl - temporarily formed in the pellets - acted as a barrier to heavy metal evaporation as long as treatment temperatures were not sufficiently high to enhance its reaction or evaporation.  相似文献   

2.
Phosphorus (P) is an essential element for all living organisms and cannot be replaced. Municipal sewage sludge is a carrier of phosphorus, but also contains organic pollutants and heavy metals. A two-step thermal treatment is suggested, including mono-incineration of sewage sludge and subsequent thermochemical treatment of the ashes. Organic pollutants are completely destroyed by mono-incineration. The resulting sewage sludge ashes contain P, but also heavy metals. P in the ashes exhibits low bioavailability, a disadvantage in farming. Therefore, in a second thermochemical step, P is transferred into mineral phases available for plants, and heavy metals are removed as well. The thermochemical treatment was investigated in a laboratory-scale rotary furnace by treating seven different sewage sludge ashes under systematic variation of operational parameters. Heavy metal removal and the increase of the P-bioavailability were the focus of the investigation. The present experimental study shows that these objectives have been achieved with the proposed process. The P-bioavailability was significantly increased due to the formation of new mineral phases such as chlorapatite, farringtonite and stanfieldite during thermochemical treatment.  相似文献   

3.
Phosphate recycling from sewage sludge can be achieved by heavy metal removal from sewage sludge ash (SSA) producing a fertilizer product: mixing SSA with chloride and treating this mixture (eventually after granulation) in a rotary kiln at 1000 ± 100 °C leads to the formation of volatile heavy metal compounds that evaporate and to P-phases with high bio-availability. Due to economical and ecological reasons, it is necessary to reduce the energy consumption of this technology. Generally, fluidized bed reactors are characterized by high heat and mass transfer and thus promise the saving of energy. Therefore, a rotary reactor and a fluidized bed reactor (both laboratory-scale and operated in batch mode) are used for the treatment of granulates containing SSA and CaCl2. Treatment temperature, residence time and - in case of the fluidized bed reactor - superficial velocity are varied between 800 and 900 °C, 10 and 30 min and 3.4 and 4.6 m s−1. Cd and Pb can be removed well (>95 %) in all experiments. Cu removal ranges from 25% to 84%, for Zn 75-90% are realized. The amount of heavy metals removed increases with increasing temperature and residence time which is most pronounced for Cu.In the pellet, three major reactions occur: formation of HCl and Cl2 from CaCl2; diffusion and reaction of these gases with heavy metal compounds; side reactions from heavy metal compounds with matrix material. Although, heat and mass transfer are higher in the fluidized bed reactor, Pb and Zn removal is slightly better in the rotary reactor. This is due the accelerated migration of formed HCl and Cl2 out of the pellets into the reactor atmosphere. Cu is apparently limited by the diffusion of its chloride thus the removal is higher in the fluidized bed unit.  相似文献   

4.
A hazardous waste assessment has been completed on ash samples obtained from seven sewage sludge incinerators operating in the UK, using the methods recommended in the EU Hazardous Waste Directive. Using these methods, the assumed speciation of zinc (Zn) ultimately determines if the samples are hazardous due to ecotoxicity hazard. Leaching test results showed that two of the seven sewage sludge ash samples would require disposal in a hazardous waste landfill because they exceed EU landfill waste acceptance criteria for stabilised non-reactive hazardous waste cells for soluble selenium (Se). Because Zn cannot be proven to exist predominantly as a phosphate or oxide in the ashes, it is recommended they be considered as non-hazardous waste. However leaching test results demonstrate that these ashes cannot be considered as inert waste, and this has significant implications for the management, disposal and re-use of sewage sludge ash.  相似文献   

5.
Research and experimental studies were carried out in relation to reduction of hazardous elements contained in sewage sludge incineration ash. A questionnaire survey was conducted in 69 Japanese municipalities with sewage sludge incineration facilities. Selenium content in bag filter ash and ceramic filter ash was relatively higher than that in ash of cyclone and electrostatic precipitators. It was assumed that selenium vaporized in the furnace was due to adsorb in the fly ash on filter when passing through the low-temperature filter. To reduce high boiling point heavy metals in the ash, sewage sludge and incineration ash were heated up using a small muffle furnace. As the result, the chrome and nickel contents were reduced. A decrease in the surface area of ash and the reduction of elements occurred at the same time in sewage sludge and incineration ashes tested in this study.  相似文献   

6.
Desulfurization adsorbents were prepared from the mixtures of various compositions of New York City sewage sludge and fly ashes from SASOL, South Africa, by pyrolysis at 950 degrees C. The resulting materials were used as adsorbents of hydrogen sulfide from simulated dry digester gas mixture or moist air. The adsorbents before and after H(2)S removal were characterized using adsorption of nitrogen, elemental analysis, pH measurements, XRF, XRD, and thermal analysis. It was found that the addition of fly ash decreases the desulfurization capacity in comparison with the sewage sludge-based materials. The extent of this decrease depends on the type of ash, its content and the composition of challenging gas. Although the presence of CO(2) deactivates some adsorption sites to various degrees depending on the sample composition, the addition of ashes has a more detrimental effect when the adsorbents are used to remove hydrogen sulfide from air. This is likely the result of hydrophobicity of ashes since the H(2)S removal capacity was found to be strongly dependent on the reactivity towards water/water adsorption. On the other hand, the addition of ashes strongly decreases the porosity of materials where sulfur, as a product of hydrogen sulfide oxidation, can be stored.  相似文献   

7.
The electrodialytic separation process (ED) was applied to sewage sludge ash (SSA) aiming at phosphorus (P) recovery. As the SSA may have high heavy metals contents, their removal was also assessed. Two SSA were sampled, one immediately after incineration (SA) and the other from an open deposit (SB). Both samples were ED treated as stirred suspensions in sulphuric acid for 3, 7 and 14 days. After 14 days, phosphorus was mainly mobilized towards the anode end (approx. 60% in the SA and 70% in the SB), whereas heavy metals mainly electromigrated towards the cathode end. The anolyte presented a composition of 98% of P, mainly as orthophosphate, and 2% of heavy metals. The highest heavy metal removal was achieved for Cu (ca. 80%) and the lowest for Pb and Fe (between 4% and 6%). The ED showed to be a viable method for phosphorus recovery from SSA, as it promotes the separation of P from the heavy metals.  相似文献   

8.
Variations of metal distribution in sewage sludge composting   总被引:4,自引:0,他引:4  
In the study, the variations of heavy metal distributions (of Cu, Mn, Pb, and Zn) during the sewage sludge composting process were investigated by sequential extraction procedures. The total content of Cu and Zn in the composted mixture increased after the composting process. Mn and Zn were mainly found in mobile fractions (exchangeable fraction (F1), carbonate fraction (F2), and Fe/Mn oxide fraction (F3)). Cu and Pb were strongly associated with the stable fractions (organic matter/sulfides fraction (F4) and residual fraction (F5)). These five metal fractions were used to calculate the metal mobility (bioavailability) in the sewage sludge and composted mixture. The mobility (bioavailability) of Mn, Pb, and Zn (but not Cu) increased during the composting process. The metal mobility in the composted mixture ranked in the following order: Mn>Zn>Pb>Cu.  相似文献   

9.
Mixtures of wastes were prepared to improve on the characteristics of the individual ingredients as Technosols, with special attention given to heavy metal extractability. An anaerobic digested sewage sludge and a CaO-treated aerobic sludge were used. A mixture of the two sludges (50:50 DW basis) was also prepared to provide a third type of sludge. The residues were mixed with other types of waste, such as fly ash, Linz-Donowitz slag, foundry sand, shot blasting machine scrap, fettling and barley straw. Extractability of Cu, Cr, Ni, and Zn by 0.01 M CaCl(2) extraction (Me(CACI(2)) was carried out, and leachability of these elements was estimated by acidification of an aqueous suspension of the mixtures with 0.5 N acetic acid (Me(acetic)). The total concentrations of the metals were also determined (Me(T)). The Me(CACI(2)/Me(T) ratios for Cu and Ni (means: 4.0% and 3.1%) were higher than those for Cr and Zn (means: 0.07% each). The mean Me(acetic)/Me(T) ratios followed the order Ni, Zn, Cu, and Cr (19.5%, 4.1%, 3.7%, and 0.09%, respectively). The results highlight the existence of complex interactions among organic matter solubility, pH and heavy metal extractability.  相似文献   

10.
Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling.The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification.The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives.One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to increased hardness of the vitrificates and reduced leaching of some heavy metals.  相似文献   

11.
The aim of this research was to study the accumulation and removal of heavy metals (Cd, Cu, Pb, Zn) by a biological wastewater treatment system. Heavy metal contents in the influent and effluent wastewater were compared. Also, the heavy metal contents in the sludge before and after anaerobic digestion were compared. The results showed: (1) more pronounced variations in the contents of Cu and Zn than that of Cd and Pb, which showed that at 0.02 for Cd and 0.05 mg/l for Pb, the reduction in their contents was insignificant; (2) that removal of heavy metals was directly proportional to their initial contents in the influent wastewater. Corresponding to the influent contents, in increasing order, the reduction in heavy metal contents was: Cd相似文献   

12.
For the economy of any co-firing process, it is important that the common waste management options of ash remain practical. Ash from bituminous coal combustion is typically handed to the construction industry. This paper describes the current European legislation on use of ash for construction purposes. Also, it presents an experimental study on the suitability of fly ash from combustion of mixtures of bituminous coal and municipal sewage sludge as additive to cement and concrete, and for use in open-air construction works, based on the ash chemical composition and the characteristics of the extract of the ash. Presently, two European standards forbid the use of ash from co-firing as additive to cement or concrete. This study shows that ash derived from coal and sewage sludge co-firing contains generally less unburned carbon, alkali, magnesium oxide, chlorine, and sulfate than coal ash. Only the concentration of free lime in mixed ash is higher than in coal, even though, at least up to 25% of the thermal input, still below the requirements of the standards. This ash also meets the requirements for the use of fly ash in open-air construction works--concentration and mobility of few elements--although this management option is forbidden to ash from co-firing. The leaching of Cd, Cr, Cu, Ni, Pb and Zn was investigated with three leaching tests. The concentration of these metals in the extracts was below the detection limit in most cases. The concentration of Cu and Zn in the extract from fly ash was found to increase with increasing share of sewage sludge in the fuel mixture. However, the concentration of these two metals in the extract is not regulated. This study indicates that excluding a priori the use of ash from co-firing as a suitable additive for construction material could cause an unnecessary burden on the environment, since probably ash would have to be disposed of in landfill. However, allowing this requires the modification of current European standards to include limitations on all elements and compounds, absent in coal but which might be present in other fuels, that are deleterious for the quality of construction materials.  相似文献   

13.
The influence of the co-combustion of household waste with either sewage sludge, shredder fluff, electronic and electrical waste (WEEE) or PVC on the bottom ash quality and content was investigated under controlled laboratory conditions using a pot furnace. This laboratory approach avoids the interpretation problems related to large variations in input waste composition and combustion conditions that are observed in large scale MSW incinerators. The data for metals content, transfer coefficients and leaching values are presented relative to data for a base household waste composition that did not contain any of the added special wastes. The small WEEE invited direct measurement of precious metals content in the ashes, where measurement accuracy is facilitated by using only mobile phone scrap for small WEEE. The analyses were carried out for different particle size ranges that are of relevance to the recyclability of metals and minerals in the ashes. Positive correlations were found between elements content of the input waste and the bottom ashes, and also between increased levels of Cl, Mo and Cu in the input waste and their leaching in the bottom ashes. These correlations indicate that addition of PVC, small WEEE and shredder fluff in input waste can have a negative influence on the quality of the bottom ashes. Enrichment of Au and Ag occurred in the fractions between 0.15 and 6 mm. The precious metals content represents an economically interesting intrinsic value, even when the observed peak values are properly averaged over a larger volume of ashes. Overall, it has been shown that changes in quality and content of bottom ashes may be traced back to the varied input waste composition.  相似文献   

14.
Waste thermal treatment in Europe is moving towards the utilisation of the combustible output of mechanical, biological treatment (MBT) plants. The standardisation of solid recovered fuels (SRF) is expected to support this trend and increase the amount of the generated combustion residues. In this work, the residues and especially the fly ashes from the fluidised bed combustion (FBC) of East London’s NCV 3, Cl 2, and Hg 1 class SRF, are characterised. The following toxicity indicators have been studied: leachable chlorine, organochlorides expressed as pentachlorobenzene and hexachlorobenzene, and the heavy metals Cu, Cr, Cd, Zn, Ni, and Pb. Furthermore the mineralogical pattern of the ashes has been studied by means of XRD and SEM–EDS. The results suggest that these SRF derived ashes have significantly lower quantities of Cu, Cd, Pb, Zn, leachable Cl, and organochlorides when compared to other literature values from traditional waste thermal treatment applications. This fact highlights the importance of modern separation technologies employed in MBT plants for the removal of components rich in metals and chlorine from the combustible output fraction of SRF resulting to less hazardous residues.  相似文献   

15.
In the process of metal separation by ash-melting, Fe and Cu in the incineration residue remain in the melting furnace as molten metal, whereas Pb and Zn in the residue are volatilized. This study investigated the effects of the chemical composition of incineration fly ash on the metal-separation efficiency of the ash-melting process. Incineration fly ash with different chemical compositions was melted with bottom ash in a lab-scale reactor, and the efficiency with which Pb and Zn were volatilized preventing the volatilization of Fe and Cu was evaluated. In addition, the behavior of these metals was simulated by thermodynamic equilibrium calculations. Depending on the exhaust gas treatment system used in the incinerator, the relationships among Na, K, and Cl concentrations in the incineration fly ash differed, which affected the efficiency of the metal separation. The amounts of Fe and Cu volatilized decreased by the decrease in the molar ratio of Cl to Na and K in the ash, promoting metal separation. The thermodynamic simulation predicted that the chlorination volatilization of Fe and Cu was prevented by the decrease in the molar ratio, as mentioned before. By melting incineration fly ash with the low molar ratio in a non-oxidative atmosphere, most of the Pb and Zn in the ash were volatilized leaving behind Fe and Cu.  相似文献   

16.
In order to separate and reuse heavy and alkali metals from flue gas during sewage sludge incineration, experiments were carried out in a pilot incinerator. The experimental results show that most of the heavy and alkali metals form condensed phase at temperature above 600 degrees C. With the addition of 5% calcium chloride into sewage sludge, the gas/solid transformation temperature of part of the metals (As, Cu, Mg and Na) is evidently decreased due to the formation of chloride, while calcium chloride seems to have no significant influence on Zn and P. Moreover, the mass fractions of some heavy and alkali metals in the collected fly ash are relatively high. For example, the mass fractions for Pb and Cu in the fly ash collected by the filter are 1.19% and 19.7%, respectively, which are well above those in lead and copper ores. In the case of adding 5% calcium chloride, the heavy and alkali metals can be divided into three groups based on their conversion temperature: Group A that includes Na, Zn, K, Mg and P, which are converted into condensed phase above 600 degrees C; Group B that includes Pb and Cu which solidify when the temperature is above 400 degrees C; and Group C that includes As, whose condensation temperature is as low as 300 degrees C.  相似文献   

17.
Heavy metal removal from contaminated sludge for land application: a review   总被引:17,自引:0,他引:17  
In recent years, various methods for heavy metal removal from sewage sludge have been extensively studied in order to minimize the prospective health risks of sludge during land application. In this paper, a comparative review and critical analysis of the application of chemical extraction, bioleaching, electroreclamation, and supercritical fluid extraction (SFE), in removing heavy metals from contaminated sludges is presented. Moreover, speciation studies, which can indicate ease of leachability of the different forms of heavy metals in sludge, are also presented. Experimental studies revealed a broad range in metal extraction efficiencies of the different extraction technologies. Acid treatment seemed to effectively remove Cd, attaining as much as 100% removal for some studies, as compared to bioleaching. SFE also gave higher removal efficiency than bioleaching. Cr, Pb and Ni seemed to be also effectively removed by the acid treatment. For the removal of Cu, Mn and Zn, the bioleaching process seemed to be appropriate with maximum removal efficiencies of 91%, 93% and 96% for the three metals, respectively, and as high as 64% minimum removal efficiency for Zn. The SFE process also gave good results for Cu, Mn and Zn removal. Electroreclamation exhibited better removal efficiency for Mn, but is still inferior to acid treatment and bioleaching processes. For chemical extraction, because of the adverse impacts that can result from the use of inorganic acids and complexing agents, interest can be directed more toward utilizing organic acids as extracting agents because of their biodegradability and capability to remove metals at mildly acidic condition, hence requiring less acid. The bioleaching process, although it seems to give a higher yield of metal extraction with lower chemical cost than chemical extraction, may be limited by the inability of the system to cope with the natural environmental conditions, requires strict monitoring of aeration rate and temperature and has applicability to only low sludge solids concentration. A full-scale study would be useful to better assess the efficiency of the process. The electroreclamation technology is limited by its relatively higher energy consumption and limited applicability to sludge. The SFE method, on the other hand, is limited by the complexity of the process and the cost of ligands suitable for effective metal extraction. Both of these technologies are still in their early stage of application and hence there is a need for further basic and applied studies. Finally, the common advantage for almost all treatment technologies studied is that the extraction efficiencies for some metals are high enough to remove metals from sludge to levels suitable for land application.  相似文献   

18.
Thermal treatment is a promising technology for the fast disposal of hazardous municipal solid waste incineration (MSWI) fly ash in China. However, fly ash produced in grate incinerator (GFA) is rich in CaO and chlorides, which promote the formation of toxic hexavalent chromium [Cr(VI)] and ash agglomeration during the thermal process, inhibiting the thermal disposal of GFA. In this study, sintering characteristics of CaO-rich GFA were improved by adding Si/Al-rich MSWI ash residues. According to the results, ash agglomeration was well suppressed during thermal treatment of the mixed ash. Si/Al/Fe-compounds competed with un-oxidized Cr-compounds to react with CaO and suppressed Cr(VI) formation. Meanwhile, chlorides in GFA facilitated heavy metal volatilization from added ashes to the secondary fly ash, favoring the recovery of these metals. Ca-aluminosilicates was found as the main mineral phase in the thermally treated mixed ash, which has attractive potential for applications. The formation of the aluminosilicates made the heavy metals that remained in the treated mixed ash more stable than the thermally treated single ash.  相似文献   

19.
In Japan the volume of municipal solid waste is reduced by incineration, with fly ash and bottom ash disposed in controlled landfills. The leachability of anions and heavy metal cations, Zn, Cu and Pb, from MSW fly ash and bottom ash at different pHs was examined using batch- and column-leaching tests. The MSW ashes had a high capacity for neutralizing acids. Behaviour during leaching depended on the pH of the solution. For the volumes applied, the leachabilities of MSW fly ash were very similar at pHs from 3 to 6. Due to its amphoteric nature, Pb is leachable at pHs of approximately 10 or more, with leachate concentrations of about 3 and 3-10mg/L for the fly ash and bottom ash, respectively, much higher than for Zn and Cu. Pb concentrations for most leaching solutions were 1 and 3mg/L for the fly ash and bottom ash, respectively. Zn, and Cu leached at low concentrations for solutions of pH 3-6. Na and K ions leached at high concentrations of approximately 5000 mg/L in the first batch leaching test, decreasing to 10mg/L by the fourth leach. Ca and Mg ions leached more gradually than Na and K. Cl(-) and SO(4)(2+) ions were the major anions in the MSW ash. The high pH and cation leaching are expected to have negative impacts on the performance of clay liners.  相似文献   

20.
Co-combustion tests of dry sewage sludges with coal were performed in a pilot bubbling FBC aiming at the characterization of ashes and determining the behaviour of heavy metals in the process. The tests showed compliance with the regulatory levels as far as heavy metal emissions were concerned. The bottom ashes, which accounted for about 70% of the total ash production, were obtained in a granular form, with diameters ranging from 0.5 to 4 mm. The heavy metals were distributed in ashes obtained from different locations of the installation and their concentrations were found to vary depending on the location of capture. The increase in heavy metals content in bottom ashes was not found to lead to higher leachability and ecotoxicity compared to sewage sludges, suggesting that there could be opportunities for their further use. Mercury suffered vaporisation inside the reactor, thus leaving bottom ashes free of contamination by it. However, there was observed a strong retention of mercury in cyclone ashes due to the presence of unburned carbon which probably acted as an adsorbent. The effluent mercury was also found to be mostly associated with the particulate fraction, being less than 20% emitted in gaseous forms. The results suggested that the combustion of the sewage sludge could successfully be carried out and the amount of unburned carbon leaving the combustor but captured in cyclone was large enough to ensure substantial retention of mercury at low temperatures, hence could contribute to an improvement of the mercury release which still remains an issue of great concern to resolve during combustion of waste materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号