首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Construction and demolition waste has been dramatically increased in the last decade, and social and environmental concerns on the recycling have consequently been increased. Recent technology has greatly improved the recycling process for waste concrete. This study investigates the fundamental characteristics of concrete using recycled concrete aggregate (RCA) for its application to structural concrete members. The specimens used 100% coarse RCA, various replacement levels of natural aggregate with fine RCA, and several levels of fly ash addition. Compressive strength of mortar and concrete which used RCA gradually decreased as the amount of the recycled materials increased. Regardless of curing conditions and fly ash addition, the 28 days strength of the recycled aggregate concrete was greater than the design strength, 40 MPa, with a complete replacement of coarse aggregate and a replacement level of natural fine aggregate by fine RCA up to 60%. The recycled aggregate concrete achieved sufficient resistance to the chloride ion penetration. The measured carbonation depth did not indicate a clear relationship to the fine RCA replacement ratio but the recycled aggregate concrete could also attain adequate carbonation resistance. Based on the results from the experimental investigations, it is believed that the recycled aggregate concrete can be successfully applied to structural concrete members.  相似文献   

2.
废玻璃是一种载能节能、低碳环保、可重复利用和再生利用的再生资源,广州市通过补贴政策、两网融合等手段,促进废玻璃回收利用,随着生活垃圾分类纵深推进,为了进一步提高废玻璃回收利用,从废玻璃回收利用现状入手,对比了北京、上海生活垃圾中废弃玻璃的占比情况,针对目前存在问题,提出废玻璃回收利用分析与建议.  相似文献   

3.
This study focuses on determining the engineering characteristics of asphalt concrete using mineral fillers with recycled waste lime, which is a by-product of the production of soda ash (Na(2)CO(3)). The materials tested in this study were made using a 25%, 50%, 75%, and 100% mixing ratio based on the conventional mineral filler ratio to analyze the possibility of using recycled waste lime. The asphalt concretes, made of recycled waste lime, hydrated lime, and conventional asphalt concrete, were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility, and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete at the wide range of temperatures. It was also determined that the mixtures with recycled waste lime showed higher resistance against stripping than conventional asphalt concrete. It was concluded from various test results that a waste lime can be used as mineral filler and, especially, can greatly improve the resistance of asphalt concrete to permanent deformation at high temperatures.  相似文献   

4.
Use of recycled plastic in concrete: a review   总被引:4,自引:1,他引:3  
Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.  相似文献   

5.
Information on food waste disposal and on recycling methods and recycled amounts is reported. Data were obtained from a mail and phone survey of all licensed food establishments in Hawaii conducted in 2004 and 2005. Of 8253 licensed food establishments, 5033 completed surveys. It was found that relationships exist between food establishment size (measured by the number of meals served per day or the number of employees) and the amount of food an establishment recycled; establishment type and recycling behavior; and establishment type and amount recycled. The amount of food waste recycled in the state of Hawaii was estimated to be 264,000 L/day and annual food waste generation was estimated to be 336,000 tonnes.  相似文献   

6.
Packaging waste is a contributing factor to the large quantity of waste that is sent to landfill in the UK. This research focuses on waste from the secondary packaging sector in the UK. In particular, supermarkets were investigated as they supply a large section of consumers with their grocery and other requirements and generate high quantities of packaging waste due to the high turnover within the store. In general, supermarkets use either metal cages or wooden pallets to transport products from depot to store. Investigation shows that packaging waste produced when using the wooden pallets is greater than for metal cages but the use of wooden pallets allows for greater versatility when in the store. The type of transit packaging used depends on what the products are initially packaged in and how the supermarket supply chain works. All cardboard and high-grade plastic is recycled but, depending on the facilities at the stores, the low-grade plastic can be recycled as well. This paper details types of packaging used within the supermarket secondary packaging sector and how waste can be reduced. To reduce the amount of packaging waste produced by the supermarkets, the products will have to be wrapped differently by the producers so that less packaging is needed in transit.  相似文献   

7.
通过试验研究再生骨料混凝土中粉煤灰和再生骨料对混凝土强度的影响。采用粉煤灰替代部分水泥、再生骨料替代部分天然粗骨料的方法,通过正交试验测定混凝土立方体抗压强度的方法,来研究粉煤灰对再生骨料混凝土强度的影响。试验得出:当再生骨料掺量为20%~30%时,粉煤灰的最佳掺量为20%左右;当再生骨料掺量高于40%、粉煤灰掺量高于20%时,其混凝土拌合物搅拌时间不小于240 s,且当粉煤灰在20%~30%时,可获得较理想的混凝土抗压强度;当粉煤灰的掺入量分布在20%~30%、再生骨料的最佳掺量为50%时,可获得较理想的混凝土抗压强度。由此得出,合理的再生骨料、粉煤灰掺量对混凝土的抗压强度影响并不明显且有提高的趋势,对降低混凝土成本,提高建筑垃圾的再生利用,有一定的经济效益和社会效益。  相似文献   

8.
Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.  相似文献   

9.
In previous studies, we focused on a mechanochemical process for recycling fly ash for use in cement; this process was expected to immobilize heavy metals in the fly ash, a desirable outcome in light of the fact that recycled fly ash is commonly used in the synthesis of inorganic materials. Here, we investigated the leaching of lead (Pb) from fly ash treated by a mechanochemical process and from cement prepared from the treated fly ash. We used lead oxide (PbO), a typical Pb compound in fly ash, as a model substance. Mechanochemical treatment of the fly ash inhibited Pb leaching by 93%, and further inhibition (more than 99.9%) was observed in cement produced from the treated fly ash. During the mechanochemical treatment, PbO was reduced to Pb by iron from the stainless-steel mill used for processing, and the lower solubility of Pb in water resulted in immobilization of the Pb.  相似文献   

10.
The use of recycled and waste thermoplastics has been recently considered for producing wood plastic composites (WPCs). They have great potential for WPCs manufacturing according to results of some limited researches. This paper presents a detailed review about some essential properties of waste and recycled plastics, important for WPCs production, and of research published on the effect of recycled plastics on the physical and mechanical properties of WPCs.  相似文献   

11.
As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.  相似文献   

12.
The effects of using untreated leachate for supplemental water addition and liquid recirculation on anaerobic digestion of food waste was evaluated by combining cyclic water recycle operations with batch mesophilic biochemical methane potential (BMP) assays. Cyclic BMP assays indicated that using an appropriate fraction of recycled leachate and fresh make up water can stimulate methanogenic activity and enhance biogas production. Conversely increasing the percentage of recycled leachate in the make up water eventually causes methanogenic inhibition and decrease in the rate of food waste stabilization. The decrease in activity is exacerbated as the number cycles increases. Inhibition is possibly attributed to accumulation and elevated concentrations of ammonia as well as other waste by products in the recycled leachate that inhibit methanogenesis.  相似文献   

13.
Building activity is currently demanding remarkable amounts of inert materials (such as gravel and sand) that are usually provided by alluvial sediments. The EU directives and Italian Legislation are encouraging the re-use of construction and demolition waste provided by continuous urban redevelopment. The re-utilisation of building waste is a relatively new issue for Italy: unfortunately the employment of recycled inert materials is still limited to general bulk and drainage fills, while a more complete re-evaluation is generally hampered by the lack of suitable recycling plants. In this paper, chemical-mineralogical characterization of recycled inert materials was carried out after preliminary crushing and grain-size sorting. XRF and XRD analysis of the different grain-size classes allowed us to recognise particular granulometric classes that can be re-utilised as first-order material in the building activity. Specifically, the presented chemical-mineralogical appraisal indicates that the recycled grain-size fraction 0.6-0.125 mm could be directly re-employed in the preparation of new mortar and concrete, while finer fractions could be considered as components for industrial processing in the preparation of cements and bricks/tiles.  相似文献   

14.
Solid waste management in Macao: practices and challenges   总被引:2,自引:0,他引:2  
The rapid economic development and population growth in Macao have resulted in a large increase in refuse generated over the past decade. In 2003, the quantity of solid waste generated reached 249,255 tons, corresponding to 1.52 kg/day per capita. This figure has been gradually increasing. Domestic solid waste is the primary source of solid waste generation. The data showed that a considerable amount of the solid waste generated can be recycled and reutilized. Due to Macao's small geographic area and high cost of land, landfilling has the lowest priority for waste disposal. Solid waste incineration has been given a top priority over other waste disposal methods although it is much more expensive. In the last decade, more than 80% of the total waste in Macao was incinerated. However, the incineration capacity of the Macao Incineration Plant is going to reach its saturation earlier than expected. Waste minimization, the establishment of an effective waste collection and disposal fee system, and alternate ways dealing with the limited capacity of waste treatment facilities are regarded to be major challenges in the future.  相似文献   

15.
The life cycle assessment of an e-waste treatment enterprise in China   总被引:1,自引:0,他引:1  
Electrical and electronic waste (e-waste) has become one of the fastest growing waste streams in the world, and many countries have established e-waste treatment enterprises to solve their e-waste problems. In this study, a life cycle assessment (LCA) was undertaken to quantitatively investigate the environmental impacts of an e-waste treatment enterprise in China. The LCA is constructed by SimaPro software version 7.2 and expressed with the Eco-indicator 99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the so-called CML method is used in order to estimate the influence of the choice of the assessment method on the result. According to the survey data, discarded TV sets accounted for the highest proportion of e-waste treated in the enterprise in 2010. The e-waste treatment had little environmental impact, and at the same time large environmental benefits can be achieved mainly due to the recycled resources and reuse of some components. Based on the research results, it can be seen that recycled metal, especially copper, would be of more importance for environmental benefits. Relevant results and data from this study could provide decision support to enterprise managers and government sectors.  相似文献   

16.
The Integrated Battery Recycling (BATINTREC) process is an innovative technology for the recycling of used batteries and electronic waste, which combines vacuum metallurgical reprocessing and a ferrite synthesis process. Vacuum metallurgical reprocessing can be used to reclaim the mercury (Hg) in the dry batteries and the cadmium (Cd) in the Ni-Cd batteries. The ferrite synthesis process reclaims the other heavy metals by synthesizing ferrite in a liquid phase. Mixtures of manganese oxide and carbon black are also produced in the ferrite synthesis process. The effluent from the process is recycled, thus significantly minimizing its discharge. The heavy metal contents of the effluent could meet the Integrated Wastewater Discharge Standard of China if the ratio of the crushed battery scrap and powder to FeSO4.7H2O is set at 1:6. This process could not only stabilize the heavy metals, but also recover useful resource from the waste.  相似文献   

17.
Recycling today constitutes the most environmentally friendly method of managing wood waste. A large proportion of the wood waste generated consists of used furniture and other constructed wooden items, which are composed mainly of particleboard, a material which can potentially be reused. In the current research, four different hydrothermal treatments were applied in order to recover wood particles from laboratory particleboards and use them in the production of new (recycled) ones. Quality was evaluated by determining the main properties of the original (control) and the recycled boards. Furthermore, the impact of a second recycling process on the properties of recycled particleboards was studied. With the exception of the modulus of elasticity in static bending, all of the mechanical properties of the recycled boards tested decreased in comparison with the control boards. Furthermore, the recycling process had an adverse effect on their hygroscopic properties and a beneficial effect on the formaldehyde content of the recycled boards. The results indicated that when the 1st and 2nd particleboard recycling processes were compared, it was the 2nd recycling process that caused the strongest deterioration in the quality of the recycled boards. Further research is needed in order to explain the causes of the recycled board quality falloff and also to determine the factors in the recycling process that influence the quality degradation of the recycled boards.  相似文献   

18.
Low grade recycled aggregates obtained from a construction waste sorting facility were tested to assess the feasibility of using these in the production of concrete blocks. The characteristics of the sorted construction waste are significantly different from that of crushed concrete rubbles that are mostly derived from demolition waste streams. This is due to the presence of higher percentages of non-concrete components (e.g. >10% soil, brick, tiles etc.) in the sorted construction waste.In the study reported in this paper, three series of concrete block mixtures were prepared by using the low grade recycled aggregates to replace (i) natural coarse granite (10 mm), and (ii) 0, 25, 50, 75 and 100% replacement levels of crushed stone fine (crushed natural granite <5 mm) in the concrete blocks. Test results on properties such as density, compressive strength, transverse strength and drying shrinkage as well as strength reduction after exposure to 800 °C are presented below. The results show that the soil content in the recycled fine aggregate was an important factor in affecting the properties of the blocks produced and the mechanical strength deceased with increasing low grade recycled fine aggregate content. But the higher soil content in the recycled aggregates reduced the reduction of compressive strength of the blocks after exposure to high temperature due probably to the formation of a new crystalline phase. The results show that the low grade recycled aggregates obtained from the construction waste sorting facility has potential to be used as aggregates for making non-structural pre-cast concrete blocks.  相似文献   

19.
Use of selected waste materials in concrete mixes   总被引:2,自引:0,他引:2  
A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.  相似文献   

20.
The environmental problem posed by construction and demolition waste (C&D waste) is derived not only from the high volume produced, but also from its treatment and disposal. Treatment plants receive C&D waste which is then transformed into a recycled mixed aggregate. The byproduct is mainly used for low-value-added applications such as land escape restoration, despite the high quality of the aggregate. In the present work, the chemical composition properties and grading curve properties of these aggregates are defined. Furthermore, the resulting recycled concrete with a high proportion of recycled composition, from 20% to 100% replacement of fine and coarse aggregate, is characterized physically and mechanically. An environmental study of the new construction material when all aggregates are substituted by C&D waste shows a low toxicity level, similar to that of other construction materials. The new material also has improved properties with respect to standard concrete such as high fire resistance, good heat insulation, and acoustic insulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号