首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The ability of Dutch grassland soil and Dutch peat soil for methane oxidation was investigated. The kinetics of methane oxidation by soil from different depths were determined in batch cultures incubated with 1; 10; 100; and 10,000 ppmv methane, respectively. All 4 applied concentrations of methane were degraded by both types of soil. Thereby, the highest oxidative activities were observed between 5 and 10 cm soil depth. Most importantly, these experiments demonstrated that this soil acts as a sink for methane even at concentrations well below 1 ppmv. Especially at higher methane concentrations (100 - 10,000 ppmv) much higher degradation rates were found in the peat soil. This also correlates with the higher methane production rates which had been observed in peat soil.  相似文献   

2.
Castaldi S  Tedesco D 《Chemosphere》2005,58(2):131-139
Methane fluxes were measured, using closed chambers, in the Crater of Solfatara volcano, Campi Flegrei (Southern Italy), along eight transects covering areas of the crater presenting different landscape physiognomies. These included open bare areas, presenting high geothermal fluxes, and areas covered by vegetation, which developed along a gradient from the central open area outwards, in the form of maquis, grassland and woodland. Methane fluxes decreased logarithmically (from 150 to -4.5 mg CH4 m(-2)day(-1)) going from the central part of the crater (fangaia) to the forested edges, similarly to the CO2 fluxes (from 1500 g CO2 m(-2)day(-1) in the centre of the crater to almost zero flux in the woodlands). In areas characterized by high emissions, soil presented elevated temperature (up to 70 degrees C at 0-10 cm depth) and extremely low pH (down to 1.8). Conversely, in woodland areas pH was higher (between 3.7 and 5.1) and soil temperature close to air values. Soil (0-10 cm) was sampled, in two different occasions, along the eight transects, and was tested for methane oxidation capacity in laboratory. Areas covered by vegetation mostly consumed CH4 in the following order woodland>macchia>grassland. Methanotrophic activity was also measured in soil from the open bare area. Oxidation rates were comparable to those measured in the plant covered areas and were significantly correlated with field CH4 emissions. The biological mechanism of uptake was demonstrated by the absence of activity in autoclaved replicates. Thus results suggest the existence of a population of micro-organisms adapted to this extreme environment, which are able to oxidize CH4 and whose activity could be stimulated and supported by elevated concentrations of CH4.  相似文献   

3.
In order to decide on a suitable sampling depth for grassland soil treated with sewage sludge and to assess implications for grazing animals, a field trial on two soils was designed to estimate the distribution of metals in grassland soil profiles following surface applications of sludge. Thus the sites represented permanent grassland where no form of cultivation had taken place. Soil cores were taken using specialised equipment to 30 cm depth and divided into seven sections. Movement from the soil surface to a depth of 10 cm was observed for all of the seven metals, Cd, Cr, Cu, Mo, Ni, Pb and Zn, but most of the metal (60%-100%, mean 87%) remained in the upper 5 cm of soil. It was concluded that sampling to a depth of 5 or 7.5 cm would be most suitable for monitoring long-term grassland treated with surface applications of sludge.  相似文献   

4.
Li K  Gong Y  Song W  He G  Hu Y  Tian C  Liu X 《Chemosphere》2012,88(1):140-143
To assess the effects of nitrogen (N) deposition on greenhouse gas (GHG) fluxes in alpine grassland of the Tianshan Mountains in central Asia, CH4, CO2 and N2O fluxes were measured from June 2010 to May 2011. Nitrogen deposition tended to significantly increase CH4 uptake, CO2 and N2O emissions at sites receiving N addition compared with those at site without N addition during the growing season, but no significant differences were found for all sites outside the growing season. Air temperature, soil temperature and water content were the important factors that influence CO2 and N2O emissions at year-round scale, indicating that increased temperature and precipitation in the future will exert greater impacts on CO2 and N2O emissions in the alpine grassland. In addition, plant coverage in July was also positively correlated with CO2 and N2O emissions under elevated N deposition rates. The present study will deepen our understanding of N deposition impacts on GHG balance in the alpine grassland ecosystem, and help us assess the global N effects, parameterize Earth System models and inform decision makers.  相似文献   

5.
Open-top chambers (OTCs) were used to evaluate the effects of moderately elevated O3 (40-50 ppb) and CO2 (+100 ppm) and their combination on N2O, CH4 and CO2 fluxes from ground-planted meadow mesocosms. Bimonthly measurements in 2002-2004 showed that the daily fluxes of N2O, CH4 and CO2 reacted mainly to elevated O3, while the fluxes of CO2 also responded to elevated CO2. However, the fluxes did not show any marked response when elevated O3 and CO2 were combined. N2O and CO2 emissions were best explained by soil water content and air and soil temperatures, and they were not clearly associated with potential nitrification and denitrification. Our results suggest that the increasing O3 and/or CO2 concentrations may affect the N2O, CH4 and CO2 fluxes from the soil, but longer study periods are needed to verify the actual consequences of climate change for greenhouse gas emissions.  相似文献   

6.
Land use conversion and fertilization have been widely reported to be important managements affecting the exchanges of greenhouse gases between soil and atmosphere. For comprehensive assessment of methane (CH4) and nitrous oxide (N2O) fluxes from hilly red soil induced by land use conversion and fertilization, a 14-month continuous field measurement was conducted on the newly converted citrus orchard plots with fertilization (OF) and without fertilization (ONF) and the conventional paddy plots with fertilization (PF) and without fertilization (PNF). Our results showed that land use conversion from paddy to orchard reduced the CH4 fluxes at the expense of increasing the N2O fluxes. Furthermore, fertilization significantly decreased the CH4 fluxes from paddy soils in the second stage after conversion, but it failed to affect the CH4 fluxes from orchard soils, whereas fertilizer applied to orchard and paddy increased soil N2O emissions by 68 and 113.9 %, respectively. Thus, cumulative CH4 emissions from the OF were 100 % lower, and N2O emissions were 421 % higher than those from the PF. Although cumulative N2O emissions were stimulated in the newly converted orchard, the strong reduction of CH4 led to lower global warming potentials (GWPs) as compared to the paddy. Besides, fertilization in orchard increased GWPs but decreased GWPs of paddy soils. In addition, measurement of soil moisture, temperature, dissolved carbon contents (DOCs), and ammonia (NH4 +-N) and nitrate (NO3 ?-N) contents indicated a significant variation in soil properties and contributed to variations in soil CH4 and N2O fluxes. Results of this study suggest that land use conversion from paddy to orchard would benefit for reconciling greenhouse gas mitigation and citrus orchard cultivation would be a better agricultural system in the hilly red soils in terms of greenhouse gas emission. Moreover, selected fertilizer rate applied to paddy would lead to lower GWPs of CH4 and N2O. Nevertheless, more field measurements from newly converted orchard are highly needed to gain an insight into national and global accounting of CH4 and N2O emissions.  相似文献   

7.
Agricultural soils may account for 10% of anthropogenic emissions of NO, a precursor of tropospheric ozone with potential impacts on air quality and global warming. However, the estimation of this biogenic source strength and its relationships to crop management is still challenging because of the spatial and temporal variability of the NO fluxes.Here, we present a combination of new laboratory- and field-scale methods to characterise NO emissions and single out the effects of environmental drivers.First, NO fluxes were continuously monitored over the growing season of a maize-cropped field located near Paris (France), using 6 automatic chambers. Mineral fertilizer nitrogen was applied from May to October 2005. An additional field experiment was carried out in October to test the effects of N fertilizer form on the NO emissions. The automatic chambers were designed to measure simultaneously the NO and N2O gases. Laboratory measurements were carried out in parallel using soil cores sampled at same site to test the response of NO fluxes to varying soil N–NH4 and water contents, and temperatures. The effects of soil core thickness were also analysed.The highest NO fluxes occurred during the first 5 weeks following fertilizer application. The cumulative loss of NO–N over the growing season was estimated at 1.5 kg N ha?1, i.e. 1.1% of the N fertilizer dose (140 kg N ha?1). All rainfall events induced NO peak fluxes, whose magnitude decreased over time in relation to the decline of soil inorganic N. In October, NO emissions were enhanced with ammonium forms of fertilizer N. Conversely, the application of nitrate-based fertilizers did not significantly increase NO emissions compared to an unfertilized control. The results of the subsequent laboratory experiments were in accordance with the field observations in magnitude and time variations. NO emissions were maximum with a water soil content of 15% (w w?1), and with a NH4–N content of 180 mg NH4–N kg soil?1. The response of NO fluxes to soil temperature was fitted with two exponential functions, involving a Q10 of 2.0 below 20 °C and a Q10 of 1.4 above. Field and laboratory experiments indicated that most of the NO fluxes originated from the top 10 cm of soil. The characterisation of this layer in terms of mean temperature, NH4 and water contents is thus paramount to explaining the variations of NO fluxes.  相似文献   

8.
Liou RM  Huang SN  Lin CW 《Chemosphere》2003,50(2):237-246
Flooded rice fields are one of the major biogenic methane sources. In this study, methane emission rates were measured after transplanting in paddy fields with application of two kinds of nitrogen fertilizers (ammonium sulfate, NH4+-N and potassium nitrate, NO3(-)-N) and with two kinds of rice varieties (Japonica and Indica). The experiment was conducted in fields located at Tainan District Agricultural Improvement Station in Chia-Yi county (23 degrees 25'08"N, 120 degrees 16'26"E) of southern Taiwan throughout the first and the second crop seasons in 1999. The seasonal methane flux in the first crop season with NH4+-N and NO3(-)-N ranged from 2.48 to 2.78 and from 8.65 to 9.22 g CH4 m(-2); and the values ranged 24.6-34.2 and 36.4-52.6 g CH4 m(-2) in the second crop season, respectively. In the first crop season, there were significantly increased 3.1-3.7-fold in methane emission fluxes due to plantation of Indica rice. In comparison of two rice varieties, the Indica rice variety showed a tendency for larger methane emission than the Japonica rice variety in the second crop season. Moreover, ammonium sulfate treatment significantly reduced CH4 emissions by 37-85% emissions compared to potassium nitrate plots. It was concluded that the CH4 emission was markedly dependent on the type of nitrogen fertilizer and rice variety in Taiwan paddy soils.  相似文献   

9.
Singh S  Singh JS  Kashyap AK 《Chemosphere》1999,38(1):175-189
Growth of three rice varieties (Heera, Dhala Heera and Narendra-118) and their relationship with methane consumption was investigated under rainfed (dryland) condition. Overall methane flux rates ranged between -0.58 to 1.25 mg m(-2) h(-1) across varieties, treatments, and dates of measurements. Except for two days when soil was saturated, the soil consumed 0.05-0.58 mg CH4 m(-2) h(-1); these rates were inversely related with soil moisture. N-fertilization reduced consumption rates. Although all plant growth parameters, except for number of tillers, exhibited relationship with methane consumption in control plots, only root porosity did so in fertilized plots. Combinations of plant growth characteristics explained 74-92% variability in seasonal CH4 consumption in unfertilized plots. It was concluded that methane consumption by dryland soils was influenced by rice variety, soil moisture and nitrogen fertilization.  相似文献   

10.
The spatial variability of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes from forest soil with high nitrogen (N) deposition was investigated at a rolling hill region in Japan. Gas fluxes were measured on July 25th and December 5th, 2008 at 100 points within a 100 × 100 m grid. Slope direction and position influenced soil characteristics and site-specific emissions were found. The CO2 flux showed no topological difference in July, but was significantly lower in December for north-slope with coniferous trees. Spatial dependency of CH4 fluxes was stronger than that of CO2 or N2O and showed a significantly higher uptake in hill top, and emissions in the valley indicating strong influence of water status. N2O fluxes showed no spatial dependency and exhibited high hot spots at different topology in July and December. The high N deposition led to high N2O fluxes and emphasized the spatial variability.  相似文献   

11.
Various redox reactions may occur at the fringe of a landfill leachate plume, involving oxidation of dissolved organic carbon (DOC), CH4, Fe(II), Mn(II), and NH4 from leachate and reduction of O2, NO3 and SO4 from pristine groundwater. Knowledge on the relevance of these processes is essential for the simulation and evaluation of natural attenuation (NA) of pollution plumes. The occurrence of such biogeochemical processes was investigated at the top fringe of a landfill leachate plume (Banisveld, the Netherlands). Hydrochemical depth profiles of the top fringe were captured via installation of a series of multi-level samplers at 18, 39 and 58 m downstream from the landfill. Ten-centimeter vertical resolution was necessary to study NA within a fringe as thin as 0.5 m. Bromide appeared an equally well-conservative tracer as chloride to calculate dilution of landfill leachate, and its ratio to chloride was high compared to other possible sources of salt in groundwater. The plume fringe rose steadily from a depth of around 5 m towards the surface with a few meters in the period 1998-2003. The plume uplift may be caused by enhanced exfiltration to a brook downstream from the landfill, due to increased precipitation over this period and an artificial lowering of the water level of the brook. This rise invoked cation exchange including proton buffering, and triggered degassing of methane. The hydrochemical depth profile was simulated in a 1D vertical reactive transport model using PHREEQC-2. Optimization using the nonlinear optimization program PEST brought forward that solid organic carbon and not clay minerals controlled retardation of cations. Cation exchange resulted in spatial separation of Fe(II), Mn(II) and NH4 fronts from the fringe, and thereby prevented possible oxidation of these secondary redox species. Degradation of DOC may happen in the fringe zone. Re-dissolution of methane escaped from the plume and subsequent oxidation is an explanation for absence of previously present nitrate and anaerobic conditions in pristine groundwater above the plume. Stable carbon isotope (delta13C) values of methane confirm anaerobic methane oxidation immediately below the fringe zone, presumably coupled to reduction of sulfate, desorbed from iron oxide. Methane must be the principle reductant consuming soluble electron-acceptors in pristine groundwater, thereby limiting NA for other solutes including organic micro-pollutants at the fringe of this landfill leachate plume.  相似文献   

12.
Geologic emissions of methane to the atmosphere   总被引:6,自引:0,他引:6  
Etiope G  Klusman RW 《Chemosphere》2002,49(8):777-789
The atmospheric methane budget is commonly defined assuming that major sources derive from the biosphere (wetlands, rice paddies, animals, termites) and that fossil, radiocarbon-free CH4 emission is due to and mediated by anthropogenic activity (natural gas production and distribution, and coal mining). However, the amount of radiocarbon-free CH4 in the atmosphere, estimated at approximately 20% of atmospheric CH4, is higher than the estimates from statistical data of CH4 emission from fossil fuel related anthropogenic sources. This work documents that significant amounts of "old" methane, produced within the Earth crust, can be released naturally into the atmosphere through gas permeable faults and fractured rocks. Major geologic emissions of methane are related to hydrocarbon production in sedimentary basins (biogenic and thermogenic methane) and, subordinately, to inorganic reactions (Fischer-Tropsch type) in geothermal systems. Geologic CH4 emissions include diffuse fluxes over wide areas, or microseepage, on the order of 10(0)-10(2) mg m(-2) day(-1), and localised flows and gas vents, on the order of 10(2) t y(-1), both on land and on the seafloor. Mud volcanoes producing flows of up to 10(3) t y(-1) represent the largest visible expression of geologic methane emission. Several studies have indicated that methanotrophic consumption in soil may be insufficient to consume all leaking geologic CH4 and positive fluxes into the atmosphere can take place in dry or seasonally cold environments. Unsaturated soils have generally been considered a major sink for atmospheric methane, and never a continuous, intermittent, or localised source to the atmosphere. Although geologic CH4 sources need to be quantified more accurately, a preliminary global estimate indicates that there are likely more than enough sources to provide the amount of methane required to account for the suspected missing source of fossil CH4.  相似文献   

13.
Three types of farm waste (cattle slurry, dirty water and farm yard manure (FYM)) were applied to hydrologically isolated grassland plots on a sloping poorly draining soil. Two applications were made, the first in October and the second in February. Application rates were 50 m(3) ha(-1) of slurry and dirty water and 50 t ha(-1) of FYM. Volumes of run-off following rainfall events and concentrations of N, P and K in run-off were measured. Losses of nutrients were higher following applications made with the soil at field capacity and rainfall soon after application. In terms of percentage loss of applied nutrients, losses were generally low. Concentration of N in run-off from the dirty water and FYM treated plots following the first application and the slurry treated plots following the second application exceeded 11.3 mg dm(-3) (a recommended limit for drinking water) although the maximum concentration recorded was 15 mg dm(-3) following FYM application. Concentration of P in run-off only exceeded 1 mg dm(-3) following the second application of cattle slurry. Concentration of K exceeded 10 mg dm(-3) following the first application of FYM and the second application of cattle slurry.  相似文献   

14.
Hirota M  Senga Y  Seike Y  Nohara S  Kunii H 《Chemosphere》2007,68(3):597-603
We measured fluxes of carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) simultaneously in two typical fringing zones, sandy shore and salt marsh, of coastal lagoon, Lake Nakaumi, Japan, in mid-summer 2003. Our aim was to quantify net the greenhouse gases (GHGs) fluxes and examine key factors, which control variation of the GHGs fluxes in the two sites. Net CO(2) and CH(4) fluxes were markedly different between the two sites; magnitudes and variations of the both fluxes in sandy shore were lower than those of salt marsh. Meanwhile, magnitude and variation of net N(2)O flux in the two sites were similar. In sandy shore, temporal and spatial variation of the three GHGs fluxes were highly controlled by water level fluctuation derived from astronomic tide. In salt marsh, spatial variation of the three GHGs fluxes were correlated with aboveground biomass, and temporal variation of CO(2) and CH(4) fluxes were correlated with soil temperature. The sum of global warming potential, which was roughly estimated using the observed GHGs fluxes, was ca. 174-fold higher in salt marsh than in sandy shore.  相似文献   

15.
The springtime methane (CH4) emission from a small, eutrophied boreal lake was assessed during the winter ice-cover by measurement of gas ebullition and CH4 accumulation in the water column in association with the development of oxygen depletion after ice formation. The winter CH4 production was estimated to result in a loss of 3.6-7.9 g CH4 m(-2) from the lake to the atmosphere during the short period of ice melt. This could account for 22-48% of the annual CH4 emission from the pelagic zone of the lake. The contribution of winter to the annual CH4 release can be similar or even higher in seasonally ice-covered northern aquatic ecosystems than in northern terrestrial wetlands, thus winter must be considered in any studies into the aquatic CH4 emissions. The trophic state and wintertime oxygen conditions, linked to the changes in land-use in the catchments and climate, are important factors controlling the springtime lake CH4 emissions.  相似文献   

16.
Tropical peatland could be a source of greenhouse gases emission because it contains large amounts of soil carbon and nitrogen. However these emissions are strongly influenced by soil moisture conditions. Tropical climate is characterized typically by wet and dry seasons. Seasonal changes in the emission of carbon dioxide (CO(2)), methane (CH(4)) and nitrous oxide (N(2)O) were investigated over a year at three sites (secondary forest, paddy field and upland field) in the tropical peatland in South Kalimantan, Indonesia. The amount of these gases emitted from the fields varied widely according to the seasonal pattern of precipitation, especially methane emission rates were positively correlated with precipitation. Converting from secondary forest peatland to paddy field tended to increase annual emissions of CO(2) and CH(4) to the atmosphere (from 1.2 to 1.5 kg CO(2)-C m(-2)y(-1) and from 1.2 to 1.9 g CH(4)-C m(-2)y(-1)), while changing land-use from secondary forest to upland tended to decrease these gases emissions (from 1.2 to 1.0 kg CO(2)-C m(-2)y(-1) and from 1.2 to 0.6 g CH(4)-C m(-2)y(-1)), but no clear trend was observed for N(2)O which kept negative value as annual rates at three sites.  相似文献   

17.
垃圾填埋场甲烷氧化菌及甲烷通量的研究   总被引:1,自引:0,他引:1  
采用静态箱法、滚管计数法和气相色谱法,对6个不同封场时间填埋区的甲烷通量、覆土层甲烷氧化菌数量和甲烷氧化速率的变化趋势进行了测定,并分析了它们与封场时间、植被覆盖率等因素之间的相关性。结果发现6个填埋区甲烷通量的变化范围在-0.34~5.31 mg/(m2.h)之间;覆土层甲烷氧化菌的数量范围为3.10×107~20.77×107 cfu/g干土,甲烷氧化速率在1.65×10-8~4.34×10-8mol/(h.g)之间。覆土层甲烷氧化菌的数量与甲烷氧化速率呈正相关,但前者并不是后者的决定性因素;甲烷通量高时可刺激甲烷氧化菌数量及氧化速率的提高,且三者均与封场时间呈显著负相关,与植被覆盖率呈负相关;当含水率大于15%时,随着覆土层含水率的增加,甲烷氧化速率呈下降趋势;覆土pH、有机质和铵态氮与甲烷氧化速率等无明显相关性。提高覆土层的甲烷氧化速率可有效减少垃圾填埋场的甲烷排放。  相似文献   

18.
Methane exchange with the atmosphere was measured during three seasons at the Rooney Road landfill in Jefferson County, CO. Substantial spatial and temporal variability in exchange rates were observed. Mean fluxes to the atmosphere were 534, 1290, and 538 mg CH4/m2/day, respectively, in the fall of 1994, winter of 1994-1995, and summer of 1995. Median fluxes were 12.42, 8.62, and 5.65 mg CH4/m2/day, respectively, during those seasons. Forty-three of 177 measurements had small negative fluxes, suggesting methanotrophic activity in the landfill cover soils. Despite probable methanotrophic activity in cover soils, landfills without gas collection systems may emit substantial CH4 to the atmosphere, with large spatial and seasonal variability.  相似文献   

19.
Ding W  Cai Z  Tsuruta H  Li X 《Chemosphere》2003,51(3):167-173
To understand the mechanism for spatial variation of CH(4) emissions from marshes grown with different type of plants in a region and plots within a certain marsh grown with one type of plants, we measured CH(4) emissions from a region in which eutrophic freshwater marshes were divided into three types: Carex lasiocarpa, Carex meyeruana and Deyeuxia angustifolia according to plant type as well as CH(4) concentration in porewater, aboveground plant biomass and stem density in situ in Sanjiang Plain of Northeast China in August 2001. Spatial variation of CH(4) emissions from both different marshes in a region and different plots within a certain marsh was high. The flux rates of CH(4) emissions from three marshes ranged from 17.2 to 66.5 mg CH(4) m(-2)h(-1) with 34.76% of variation coefficient, whereas the values in Carex lasiocarpa, Carex meyeriana and Deyeuxia angustifolia marshes varied from 21.6 to 66.5 (39.61%), from 17.2 to 45.0 (29.26%) and from 19.1 to 33.0 mg CH(4) m(-2)h(-1) (17.51%), respectively. Both the flux rates and spatial variation of CH(4) emissions strongly increased as standing water depth increased significantly. Standing water depth greatly governed the spatial variation of CH(4) emissions from different marshes in a region by changing the amount of plant litters inundated in standing water, which provided labile organic C for methanogens and controlled CH(4) concentrations in porewater. Moreover, the aboveground plant biomass determined spatial variation of CH(4) emissions from plots within a certain marsh by controlling the pathways (stem density) of CH(4) emissions from the marsh into the atmosphere.  相似文献   

20.
Methane and nitrous oxide emissions from an irrigated rice of North India   总被引:18,自引:0,他引:18  
Ghosh S  Majumdar D  Jain MC 《Chemosphere》2003,51(3):181-195
Upland rice was grown in the kharif season (June-September) under irrigated condition in New Delhi, India (28 degree 40'N and 77 degree 12'E) to monitor CH4 and N2O emission, as influenced by fertilizer urea, ammonium sulphate and potassium nitrate alone (at 120 kg ha-1) and mixed with dicyandiamide (DCD), added at 10% of applied N. The experimental soil was a typic ustochrept (Inceptisol), clay loam, in which rice (Oryza sativa L., var. Pusa-169, duration: 120-125 days) was grown and CH4 and N2O was monitored for 105 days by closed chamber method, starting from the 5 days and 1 day after transplanting, respectively. Methane fluxes had a considerable temporal variation (CV=52-77%) and ranged from 0.05 (ammonium sulphate) to 3.77 mg m-2 h-1 (urea). There was a significant increase in the CH4 emission on the application of fertilizers while addition of DCD with fertilizers reduced emissions. Total CH4 emission (105 days) ranged from 24.5 to 37.2 kg ha-1. Nitrous oxide fluxes were much lower than CH4 fluxes and had ranged from 0.18 to 100.5 g m-2 h-1 with very high temporal variation (CV=69-143%). Total seasonal N2O emission from different treatments ranged from 0.037 to 0.186 kg ha-1 which was a N loss of 0.10-0.12% of applied N. All the fertilizers significantly increased seasonal N2O emission while application of DCD reduced N2O emissions significantly in the range of 10-53%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号