首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Zimmerman AR  Kang DH  Ahn MY  Hyun S  Banks MK 《Chemosphere》2008,70(6):1044-1051
Cyanide is commonly found as ferrocyanide [Fe(II)(CN)(6)](-4) and in the more mobile form, ferricyanide [Fe(III)(CN)(6)](-3) in contaminated soils and sediments. Although soil minerals may influence ferrocyanide speciation, and thus mobility, the possible influence of soil enzymes has not been examined. In a series of experiments conducted under a range of soil-like conditions, laccase, a phenoloxidase enzyme derived from the fungi Trametes versicolor, was found to exert a large influence on iron-cyanide speciation and mobility. In the presence of laccase, up to 93% of ferrocyanide (36-362ppm) was oxidized to ferricyanide within 4h. No significant effect of pH (3.6 and 6.2) or initial ferrocyanide concentration on the extent or rate of oxidation was found and ferrocyanide oxidation did not occur in the absence of laccase. Relative to iron-cyanide-mineral systems without laccase, ferrocyanide adsorption to aluminum hydroxide and montmorillonite decreased in the presence of laccase and was similar to or somewhat greater than that of ferricyanide without laccase. Laccase-catalyzed conversion of ferrocyanide to ferricyanide was extensive though up to 33% of the enzyme was mineral-bound. These results demonstrate that soil enzymes can play a major role in ferrocyanide speciation and mobility. Biotic soil components must be considered as highly effective oxidation catalysts that may alter the mobility of metals and metal complexes in soil. Immobilized enzymes should also be considered for use in soil metal remediation efforts.  相似文献   

2.
Fungal laccase-catalyzed degradation of hydroxy polychlorinated biphenyls   总被引:9,自引:0,他引:9  
Keum YS  Li QX 《Chemosphere》2004,56(1):23-30
Hydroxy polychlorinated biphenyls (hydroxy PCBs) are toxic metabolites of PCBs. Their toxicity such as strong endocrine disruption demands effective remediation methods. Laccases from Trametes versicolor and Pleurotus ostreatus were tested to degrade hydroxy PCBs. Optimum pHs for both enzymes were around 4.0. Laccase from T. versicolor degrades hydroxy PCBs more rapidly than that from P. ostreatus. The enzymatic activities remained little changes in up to 10% organic solvents, but decreased rapidly in more than 10% acetone, acetonitrile or DMSO. Degradation rate constants decreased with increase of chlorination and no degradation was observed with tetra-, penta- and hexa-chloro hydroxy PCBs in non-mediated reactions. However, the tetra- to hexa-chloro hydroxy PCBs were degraded by laccase from T. versicolor in the presence of the mediator 2,2,6,6-tetramethylpiperidine-N-oxy radical. The other mediators, 4-ethyl-2-methoxyphenol, 2,2'-azino-bis(3-ethylbenzthiazoline sulfonic acid) diammonium salt and 1-hydroxybenzotriazole and humic acid, also enhanced degradation of all the hydroxy PCBs except 4-hydroxy-2',3,3',4',5,5'-hexachlorobiphenyl. The results showed that 3-hydroxy biphenyl was more resistant to laccase degradation than 2- or 4-hydroxy analogues. Significant linear-correlations (coefficient of determination, r2 = 0.9097 and 0.8186 for laccases from P. ostreatus and T. versicolor, respectively) were found between the ionization potentials and the removal rate constants of hydroxy PCBs.  相似文献   

3.
Hu X  Zhao X  Hwang HM 《Chemosphere》2007,66(9):1618-1626
Laccase from Trametes versicolor was immobilized on nanoparticles and kaolinite by physical adsorption or chemical covalence in which the supporters were activated by cross-linked with glutaraldehyde. Thermal and pH stabilities of immobilized laccase on these different supporters were compared. The degradation efficiencies of these immobilized laccases on oxidation of benzo[a]pyrene (BaP) were also compared. The results showed that the immobilized laccases on nanoparticles were more stable in resisting pH and thermal changes. After 48h oxidation, laccase immobilized on kaolinite using the covalent coupling method showed a higher efficiency of oxidation with the BaP residue of 23% in the presence of 1mM HBT and with BaP residue of 37% in 1mM ABTS as the mediator. The results also exhibited a significant inhibition by 1% surfactant Tween 80. According to the HPLC analysis, the oxidation products including 1,6-benzo[a]pyrene quinone, 3,6-benzo[a]pyrene quinone and 6,12-benzo[a]pyrene quinone were identified.  相似文献   

4.
During degradation of trinitrotoluene (TNT) by Trametes modesta, addition of humic monomers prevented the accumulation of all major stable TNT metabolites (aminodinitrotoluenes [AMDNT]) by at least 92% in the presence of 200 mM ferulic acid and guaiacol. Acute toxicity tests with individual TNT metabolites and in T. modesta cultures supplemented with 200 microM TNT demonstrated that the TNT biodegradation process lead to less toxic metabolites. Toxicity decreased in the order TNT>4-HADNT (4-hydroxylaminodinitrotoluene)>2-HADNT>2,6-DNT (2,6-dinitrotoluene)>2',2',6,6-azoxytetranitrotoluene>4-AMDNT>2-AMDNT>2,4-diamninonitrotoluene (2,4-DAMNT) while 2,4-DNT and 2,6-DAMNT were the least toxic. Ferulic acid is the best candidate for immobilization TNT biodegradation metabolites since it prevented the accumulation of AMDNTs in cultures during TNT biodegradation and its products were less toxic. All humic monomers were very effective in immobilizing 2-HADNT [100%], 4-HADNT [100%] and 2,2,6,6-azoxytetranitrotoluene [100%]. Two distinct laccase isoenzymes (LTM1 and LTM2) potentially involved in immobilization of TNT degradation products were purified to electrophoretic homogeneity. LTM1 and LTM2 have molecular weights of 77.6 and 52.5 kDa, are 18% and 24% glycosylated, have pI values of 3.6 and 4.2, respectively. Both enzymes oxidized all the typical laccase substrates tested. LTM1 showed highest kinetic constants (K(m)=0.03 microM; K(cat)=8.8 4x 10(7)s(-1)) with syringaldazine as substrate.  相似文献   

5.
This investigation was undertaken to determine the atrazine degradation by fungal enzyme extracts (FEEs) in a clay-loam soil microcosm contaminated at field application rate (5 μg g?1) and to study the influence of different soil microcosm conditions, including the effect of soil sterilization, water holding capacity, soil pH and type of FEEs used in atrazine degradation through a 24 factorial experimental design. The Trametes maximaPaecilomyces carneus co-culture extract contained more laccase activity and hydrogen peroxide (H2O2) content (laccase = 18956.0 U mg protein?1, H2O2 = 6.2 mg L?1) than the T. maxima monoculture extract (laccase = 12866.7 U mg protein?1, H2O2 = 4.0 mg L?1). Both extracts were able to degrade atrazine at 100%; however, the T. maxima monoculture extract (0.32 h) achieved a lower half-degradation time than its co-culture with P. carneus (1.2 h). The FEE type (p = 0.03) and soil pH (p = 0.01) significantly affected atrazine degradation. The best degradation rate was achieved by the T. maxima monoculture extract in an acid soil (pH = 4.86). This study demonstrated that both the monoculture extracts of the native strain T. maxima and its co-culture with P. carneus can efficiently and quickly degrade atrazine in clay-loam soils.  相似文献   

6.
Two fractions containing the oxidase activity toward 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) were obtained using ion-exchange DEAE-Sepharose column chromatography of the culture fluid of white-rot fungus, Trametes versicolor. These two fractions can reduce the level of coplanar PCB congeners (Co-PCBs). The ABTS oxidase in the first fraction passed through the DEAE-Sepharose column. The ABTS oxidase in the second fraction was adsorbed to the column at 相似文献   

7.
A screening using several fungi (Phanerochaete chrysosporium, Pleurotus ostreatus, Trametes versicolor and Aureobasidium pullulans) was performed on the degradation of syringol derivatives of azo dyes possessing either carboxylic or sulphonic groups, under optimized conditions previously established by us. T. versicolor showed the best biodegradation performance and its potential was confirmed by the degradation of differently substituted fungal bioaccessible dyes. Enzymatic assays (lignin peroxidase, manganese peroxidase, laccase, proteases and glyoxal oxidase) and GC-MS analysis were performed upon the assay obtained using the most degraded dye. The identification of hydroxylated metabolites allowed us to propose a possible metabolic pathway. Biodegradation assays using mixtures of these bioaccessible dyes were performed to evaluate the possibility of a fungal wastewater treatment for textile industries.  相似文献   

8.
We investigated the potential of the laccase from the white-rot fungus Marasmius quercophilus to transform certain alkylphenols (p-nonylphenol, p-octylphenol and p-t-octylphenol). We tested the reactivity of this enzyme under different conditions: in liquid cultures and using the partially purified laccase with and without 2,2′-azino-bis-3-ehtylbenzothiazoline-6-sulfonicacid (ABTS) as a mediator. The percentage of p-t-octylphenol disappearance in liquid cultures was 69.0 ± 1.5% and 81 ± 5% after a 8-d or 15-d incubation, respectively, with p-nonylphenol, these percentages were 62 ± 4% and 91 ± 6% and with p-octylphenol 37 ± 3% and 65 ± 1% after a 15-d and a 21-d incubations, respectively. Induced pre-cultures were also used to inoculate the liquid cultures to enhance p-octylphenol transformation: the percentages of disappearance were 91.0 ± 0.5% and 97 ± 1% after a 8-d and a 15-d incubation, respectively. Mass spectrometry analysis showed that the products of oxidation of p-octylphenol were dimers with a mass of 411 m/z. Furthermore, we identified a purple compound (m/z 476) formed when ABTS was added to the reaction medium with the purified laccase. This result confirms that, in complex environments such as soils or litters where many molecules can interact with the enzyme substrate or the product of oxidation, laccase activities and those of other phenoloxidases should not be measured with ABTS.  相似文献   

9.
The white-rot fungus Trametes versicolor growing in submerged culture on a basal medium, with barley bran as a carbon source, produced two laccase isoenzymes LacI and LacII. The addition of metal ions to the culture medium was performed to improve the total laccase activity and to determine the effect on the production of laccase isoenzymes. From all the tested metals, only Cu2+ increased laccase activity (up to 12-fold with respect to control cultures) and T. versicolor in presence of all metals produced the two isoenzymes in different proportion with ratios of activity (LacI/LacII) varying between 0.11 and 0.51. This factor played an important role in the decolourisation of the textile dye Indigo Carmine.  相似文献   

10.
Ozone treatment of soil contaminated with aniline and trifluralin   总被引:1,自引:0,他引:1  
Column studies were conducted to determine the ability of ozone to degrade aniline and trifluralin in soil. Ozone rapidly degraded aniline from soil under moist soil conditions, 5% (wt). Removal of 77-98% of [UL-14C]-aniline was observed from soil columns (15 ml, i.d. = 2.5 cm), exposed to 0.6% O(3) (wt) at 200 ml/min after 4 min. Initial ozonation products included nitrosobenzene and nitrobenzene, while further oxidation led to CO(2). Ring-labeled-[UL-14C]-trifluralin removal rates were slower, requiring 30 min to achieve removals of 70-97%. Oxidation and cleavage of the N-propyl groups of trifluralin was observed, affording 2,6-dinitro-4-(trifluoromethyl)-aniline, 2,6-dinitro-N-propyl-4-(trifluoromethyl)-benzamine, and 2,6-dinitro-N-propyl-N-acetonyl-4-(trifluoromethyl)-benzamine. Base solutions revealed that trifluralin was similarly oxidized to CO(2), where 72-83% of the activity recovered comprised 14CO(2). Use of ozone-rich water improved contaminant removal in trifluralin-amended soil columns, but did not improve removal in aniline, pentachloroaniline, hexachlorobenzene amended soil columns, suggesting that ozonated water may improve contaminant removal for reactive contaminants of low solubility.  相似文献   

11.
Trifluralin[2,6-dinitro-N,N-dipropyl-4-(trifluormethyl)benzenamine], metolachlor[2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide], and metribuzin[4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)one] were applied in field plots located on a Commerce clay loam soil near Baton Rouge, Louisiana at the rate of 1683 g/ha, 2759 g/ha and 609 g/ha, respectively. The half-lives of trifluralin, metolachlor, and metribuzin in the top 0-15 cm soil depth were found to be 54.7 days, 35.8 days and 29.8 days, respectively. The proportion of trifluralin, metolachlor, and metribuzin in the top 0-15 cm soil depth was 94.7%, 86.6%, and 75.4%, respectively of that found in the top 0-60 cm soil depth 30 days after application. Trifluralin concentrations were within a range of 0.026 ng/mL to 0.058 ng/mL in 1 m deep well water, and between 0.007 ng/mL and 0.039 ng/mL in 2 m deep well water over a 62 day period after application. Metolachlor concentrations in the 1 m and 2 m wells ranged from 3.62 ng/mL to 82.32 ng/mL and 8.44 ng/mL to 15.53 ng/mL, respectively. Whereas metribuzin concentrations in the 1 m and 2 m wells ranged from 0.70 ng/mL to 27.75 ng/mL and 1.71 ng/mL to 3.83 ng/mL, respectively. Accordingly, trifluralin was found to be strongly adsorbed on the soil and showed negligible leaching. Although metolachlor and metribuzin were also both readily adsorbed on the soil, their leaching potential was high. As a result, in the clay loam soil studied, metribuzin concentration in groundwater with shallow aquifers is likely to exceed the 10 mg/L US Environmental Protection Agency (EPA) advisory level for drinking water early in the application season, whereas trifluralin and metolachlor concentrations are expected to remain substantially lower than their respective 2 ng/mL and 175 ng/mL EPA advisory levels.  相似文献   

12.
Mechichi T  Mhiri N  Sayadi S 《Chemosphere》2006,64(6):998-1005
The decolourization of the recalcitrant dye RBBR by the culture filtrate of Trametes trogii and its isolated laccase was investigated. Both filtrates from Cu-induced cultures as well as purified laccase decolourized the dye RBBR. The purified laccase decolourized the dye down to 97% of 100 mg l(-1) initial concentration of RBBR when only 0.2U ml(-1) of laccase was used in the reaction mixture. The effects of different physicochemical parameters were tested and optimal decolourization rates occurred at pH 5 and at a temperature of 50 degrees C. Decolourization of RBBR occurred in the presence of metal ions which could be found in textile industry effluents. Of all the metal ions tested, FeCl2 was the most inhibiting for the decolourization. HBT was shown to have no effect on the decolourization of RBBR at low concentration, while at a concentration of 5 mM it slightly inhibited decolourization. The presence of aromatic compounds was found to be inhibiting for the decolourization at a concentration of 10 mM, but not at 0.1 mM, while at 1 mM only ortho-diphenols were inhibiting. Probing the effect of methanol it was found that higher concentrations caused a decrease in the decolourization rate of RBBR. The effect of laccase inhibitors on the decolourization of RBBR was tested with L-cysteine, SDS and EDTA. It was demonstrated that L-cysteine was the most inhibiting substrate for the decolourization while SDS was only inhibiting at 10 mM concentration and ETDA was not inhibiting at all tested concentrations.  相似文献   

13.
Some researches studied the removal of steroid estrogens by enzymatic treatment, however none verified the residual estrogenicity after the enzymatic treatment at environmental conditions. In this study, the residual estrogenic activities of the key natural and synthetic steroid estrogens were investigated following enzymatic treatment with horseradish peroxidase (HRP) and laccase from Trametes versicolor. Synthetic water and municipal wastewater containing environmental concentrations of estrone, 17beta-estradiol, estriol, and 17alpha-ethinylestradiol were treated. Liquid chromatography-mass spectrometry analysis demonstrated that the studied steroid estrogens were completely oxidized in the wastewater reaction mixture after a 1-h treatment with either HRP (8-10 U ml(-1)) or laccase (20 U ml(-1)). Using the recombinant yeast assay, it was also confirmed that both enzymatic treatments were very efficient in removing the estrogenic activity of the studied steroid estrogens. The laccase-catalyzed process seemed to present great advantages over the HRP-catalyzed system for up-scale applications for the treatment of municipal wastewater.  相似文献   

14.
Farnet AM  Gil G  Ferre E 《Chemosphere》2008,70(5):895-900
Marasmius quercophilus is a white-rot fungus involved in carbon recycling in Mediterranean ecosystems because of its laccase production. Here we described the effect of metal ions and halide salts, on laccase activity in order to point out the action of such environmental pollutants on this enzyme of major importance. Furthermore we tested organic solvent effects on laccase reaction since reaction mixture including solvent can be used in the transformation of xenobiotics. In the case of metal ions, we found that chloride ions were responsible for inhibition while CuSO(4) and MnSO(4) enhanced laccase activity. When halides were tested, we showed the following degree of inhibition: F(-)>Cl(-)>Br(-). Furthermore we found that I(-) was oxidized by laccase with I(2) as the product of the reaction. With ABTS, 50% of the laccase activity remains for solvent concentration ranging from 40% to 60% depending on the solvent used while with syringaldazine solvent concentration ranged from 50% to 70%. The organic solvent effects observed were probably a result of enzyme denaturation and of both enhancement of oxidised product solubilisation and of substrate solubilisation (for syringaldazine). These results show that laccase from M. quercophilus is not rapidly inhibited by certain environmental pollutants which sustains its role in carbon turnover under pertubation. However the strong effect of chloride ion on laccase activity should be further investigated with in situ studies since this could drastically influence carbon recycling in litters from Mediterranean littoral locations.  相似文献   

15.
A field study was conducted to determine the effects of glyphosate on microbial activity in the rhizosphere of glyphosate-resistant (GR) soybean and to evaluate interactions with foliar amendments. Glyphosate at 0.84 kg ae ha(-1) was applied GR soybean at the V4-V5 development stages. Check treatments included a conventional herbicide tank mix (2003 study only) and no herbicides (hand-weeded). Ten days after herbicide application, a commercially available biostimulant and a urea solution (21.0% N) were applied to soybean foliage at 33.5 mL ha(-1) and 9.2 kg ha(-1), respectively. Soil and plant samples were taken 0, 5, 10, 15, 20 and 25 days after herbicide application then assayed for enzyme and respiration activities. Soil respiration and enzyme activity increased with glyphosate and foliar amendment applications during the 2002 growing season; however, similar increases were not observed in 2003. Contrasting cumulative rainfall between 2002 and 2003 likely accounted for differences in soil microbial activities. Increases in soil microbial activity in 2002 suggest that adequate soil water and glyphosate application acted together to increase microbial activity. Our study suggests that general soil microbial properties including those involving C and N transformations are not sensitive enough to detect effects of glyphosate on rhizosphere microbial activity. Measurements of soil-plant-microbe relationships including specific microbial groups (i.e., root-associated Fusarium spp.) are likely better indicators of impacts of glyphosate on soil microbial ecology.  相似文献   

16.
In this paper, the effect of redox mediators on synthetic acid dye decolourization (Sella Solid Red and Luganil Green) by laccase from Trametes hirsuta cultures has been investigated. All the redox mediators tested, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 1-hydroxybenzotriazole (HBT) and Remazol Brilliant Blue R (RBBR), led to higher activities than those obtained without mediators addition showing the suitability of the laccase/mediator system (LMS) in the decolourization of acid dyes. HBT was by far the most effective mediator, showing a decolourization percentage of 88% in 10 min for Sella Solid Red and of 49% in 20 min for Luganil Green. On the other hand, the stability of laccase against several metal ions, normally found in textile wastewater, was assessed. Laccase was stable at a concentration of 1mM for 7d against all the metal ions tested except for Zn+2, CrO4(-2), Cd+2, Cr2O7(-2), Fe+2, Cu+2 and especially Hg+2. When the concentration was increased to 10mM laccase stability decreased against all the metals assayed, in particular against Fe+2. In addition, the effect of metal ions on the decolourization process was also studied. It was found that Hg+2 inhibited the dye decolourization process, being the presence of HBT absolutely required for dye decolourization.  相似文献   

17.
Soils contaminated with 2,4,6-trinitrotoluene (TNT) and TNT primary reduction products have been found to be toxic to certain soil invertebrates, such as earthworms. The mechanism of toxicity of TNT and of its by-products is still not known. To ascertain if one of the TNT reduction products underlies TNT toxicity, we tested the toxicity and bioaccumulation of TNT reduction products. 2-Amino-4,6-dinitrotoluene (2-ADNT), 4-amino-2,6-dinitrotoluene (4-ADNT), 2,4-diamino-6-nitrotoluene (2,4-DANT) and 2,6-diamino-4-nitrotoluene (2,6-DANT) were tested separately in adult earthworms (Eisenia andrei) following a 14-d exposure to amended sandy loam forest soil. TNT, 4-ADNT, and 2-ADNT were lethal to earthworms (14-d LC(50) were: 580, 531 and 1088 micromol kg(-1), or 132, 105 and 215 mgkg(-1) dry soil, respectively) and gave the following order of toxicity: 4-ADNT>TNT>2-ADNT. Exposure to 2,4-DANT and to 2,6-DANT caused no mortality at 600 micromol kg(-1) or 100 mgkg(-1) dry soil. We found that all four TNT reduction products accumulated in earthworm tissues and 2-ADNT reached the highest levels at 3.0+/-0.3 micromol g(-1) tissue. The 14-d bioaccumulation factors were 5.1, 6.4, 5.1 and 3.2 for 2-ADNT, 4-ADNT, 2,4-DANT and 2,6-DANT, respectively. Results also suggest that some TNT metabolites are at least as toxic as TNT and should be considered when evaluating the overall toxicity of TNT-contaminated soil to earthworms.  相似文献   

18.
Osma JF  Saravia V  Herrera JL  Couto SR 《Chemosphere》2007,67(8):1677-1680
In the present study, we investigated the effect of different carbon sources (glucose, glycerol and ground mandarin peelings) on laccase production by Trametes pubescens grown on stainless steel sponges under static conditions. The cultures with ground mandarin peelings gave the highest laccase activities, showing values of about 100 U l(-1). This is a very interesting result, since mandarin peelings are common agricultural wastes in some regions such as Mediterranean and Asiatic countries. Therefore, their reutilisation, besides reducing medium cost, also helps to solve the pollution problems caused by their disposal. Also, we studied the effect of supplementing the culture medium with different potential laccase-inducing compounds (ABTS, Tween 20, soya oil, Malaquite Green, Cu(2+), tannic acid) on laccase production. Soya oil was the best inducer of laccase activities, attaining values 4-fold higher than those obtained in the reference cultures.  相似文献   

19.
Crude enzyme from a soil fungus, Aspergillus flavus, was isolated from a field soil following repeated applications of metolachlor [2-Chloro-N-(methoxy-1-methylethyl)-2'-ethyl-6'-methyl acetanilide]. Metolachlor hydrolysis by the crude enzyme extract was determined by enzyme assay. The tests were performed in phosphate buffer, pH 7.5, and the reaction was carried out at two herbicide concentrations (20 and 100 microg mL(-1)) and two crude extract volumes (0.2 and 0.5 mL of the homogenized crude extract mixture). The rate of metolachlor degradation was found faster in samples containing higher volume of crude extract, (T(1/2), 5.7 h) for both concentrations of the herbicide. The activities of enzymes responsible for dechlorination coupled with hydroxylation, N-dealkylation, and breaking of amide linkage were found responsible in the degradation.  相似文献   

20.
Estuarine sediments from a USEPA Superfund site in coastal Georgia were extensively contaminated with Aroclor 1268, a mixture of highly chlorinated polychlorinated biphenyls used by a former chlor-alkali plant. Batch slurries of contaminated sediment were incubated for 1 yr with amendments of 2,6-dibromobiphenyl (26-BB) and 2,3,4,5,6-pentachlorobiphenyl (23456-CB) under anaerobic, sulfate-reducing conditions and different pH (5.5-7.5). Organic extracts of slurry sub-samples in a time series were analyzed by congener-specific GC-MS. Dechlorination of 23456-CB was pH dependent and occurred via two routes with the sequential loss of (1) meta and para chlorines and (2) para, ortho, and meta chlorines. Quantitative dehalogenation of 26-BB was observed at all pH. Supplementation of nonachlorobiphenyls (as primers) did not induce dechlorination of native Aroclor 1268 nor of the primers themselves. While contaminated estuarine sediments possess microbial consortia with diverse dehalogenating activities, lack of dechlorination of Aroclor 1268 and spiked nonachlorobiphenyl congeners suggests a bioavailability limitation or enzyme-substrate incompatibilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号