首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In the shrimp Crangon crangon, an important fishery resource and key species in the southern North Sea, we studied temporal variations in size, biomass (dry weight, W) and chemical composition (C, N, protein and lipid) of eggs in an initial embryonic stage. Data from 2 years, 1996 and 2009, consistently revealed that egg size and biomass varied seasonally, with maxima at the beginning of the reproductive season (January), decreasing values throughout spring, minima in June–July, and a slight increase thereafter. This cyclic pattern explains why “Winter eggs” are on average larger and heavier than “summer eggs”. Using a modelling approach, we estimated the duration of oogenesis in relation to seasonally changing seawater temperatures. According to an additive model of multiple explanatory variables, the C content per newly laid egg showed in both years a highly significant negative relationship with day length (r2 = 0.38 and 0.40, respectively; P < 0.0001), a weak positive relationship with temperature (r2 = 0.08 and 0.09; P < 0.05), and a weak negative relationship with phytoplankton biomass (r2 = 0.11 and 0.12; P < 0.05) at the estimated time of beginning oogenesis. Phenotypic plasticity in initial egg size and biomass is interpreted as an adaptive reproductive trait that has evolved in regions with strong seasonality in plankton production and periods of larval food limitation. In contrast to biomass per egg, the percentage chemical composition remained similar throughout the reproductive period. Both the absolute and percentage values also showed significant interannual variations, which caution against generalizations based on short-term studies of reproductive traits of C. crangon and other species of shrimp.  相似文献   

2.
T. Ikeda  R. Kirkwood 《Marine Biology》1989,100(3):301-308
Oxygen consumption, ammonia excretion and phosphate excretion rates were measured for Euphausia superba and E. crystallorophias captured under the pack-ice off Enderby Land, Antarctica, during November 1985. Water, ash, carbon, nitrogen and phosphorus composition were also determined. Compared with summer data, body composition of E. superba at this time of year was characterized by low carbon (40.2 to 40.7% of total dry wt), high nitrogen (11.8 to 12.0%), high phosphorus (1.2%) and high water (80.6 to 81.7% of total wet wt) content. Metabolic rates, expressed as percentage daily losses of body carbon, nitrogen and phosphorus were 1.3 to 1.6%, 0.38 to 0.42% and 1.9 to 2.2%, respectively; these fall within the ranges of summer data. E. superba fed on algae growing on the bottom of the ice, but body compositional features of this species suggest limited contribution of ice-algae to nutrition. Compared to E. superba, E. crystallorophias displayed greater metabolic rates and much higher body carbon content (40.9 to 45.0%), implying that feeding conditions under the ice were better suited to the requirements of E. crystallorophias. The only gravid females found belonged to E. crystallorophias.  相似文献   

3.
Above and below-ground biomass and nitrogen and carbon composition ofSpartina maritima, Halimione portulacoides andArthrocnemum perenne, dominating species in plant communities of the lower, middle and higher salt marsh, respectively, were compared in an estuarine salt marsh in Portugal. Plant and soil nitrogen and carbon pools were estimated. For all three species root biomass was significantly higher (70–92% of total biomass) than above-ground biomass. The percentage of root biomass was related to the location of the plants in the marsh: higher values were found in plants growing in the lower salt marsh where the sediment was more unstable and subject to tidal action, which stresses the role of the roots as an anchor. For all three species nitrogen concentrations were highest in leaves, reflecting the photosynthetic role of the tissue. For carbon higher concentrations were found in the stems, with the exception ofS. maritima. In general, lower nitrogen concentrations were found in summer, which can be explained by dilution processes due to plant growth. For both nitrogen and carbon, higher concentrations were found in the soil surface layers. Higher soil nitrogen and carbon levels were associated with higher organic matter contents. Most of the nitrogen in the salt marsh occurred in the sediments (0–40 cm) and only ca. 5.7–13.3% of the total was found in the plants. The greater portion (76.5%–86%) of carbon was found in the sediment.  相似文献   

4.
Summary Laboratory studies on colonies of Bombus terrestris (L.) and B. terricola Kby. showed that while the overall rate of larval feeding is highly correlated with total larval biomass, feeding of individual larvae is only weakly regulated. Nevertheless, the temporal distributions of inspections and feedings to larvae by adult nurse bees did provide evidence for a feedback mechanism.The behavior of individual workers engaged in larval feeding is highly contagious through time. A laboratory colony of B. terrestris compensated for the effect of experimental removal of half the worker population by increases in the feeding rate of individual workers. The results appear to be consistent with recent suggestions that overall colony performance is a mass effect resulting from the partially stochastic operations of its individual components.  相似文献   

5.
The calanoid copepods Calanus hyperboreus and C. finmarchicus were investigated in view of their lipid and wax ester content and their fatty acid and alcohol composition. Analyses were performed in females and copepodid stages V and IV from the Fram Strait region between Greenland and Spitsbergen in 1984. This region offers different food conditions like diatom blooms in the North East Water Polynya, food shortage in areas with very close ice cover, high phytoplankton biomass in the marginal ice zone and lower biomass in the open Atlantic water. Lipids contained generally more than 70% wax esters. Highest levels were found in C. hyperboreus with more than 90%. This percentage was not very variable, in spite of large differences in dry weight and lipid content. Copepods with particularly high weight and lipid content were found in the North East Water Polynya. The lightest individuals were found under the pack ice. Lipid proportions per unit dry weight were higher in C. hyperboreus than in C. finmarchicus, whose lowest values were found in the open Atlantic water. Spatial variability in fatty acid composition was much higher than in alcohol composition. The principle alcohols, 20:1 and 22:1, generally accounting for more than 80% of total alcohols. In the North East Water Polynya, the predominant monounsaturated fatty acid was 16:1, while under the ice 20:1 and 22:1 dominated. In the marginal ice zone and in the open water, the 18:4 acid reached percentages up to 30% of total fatty acids. These changes were related to the different food conditions. C. hyperboreus appears to be best adapted to the cold water and unfavourable conditions of polar regions because of its high lipid and wax ester store with long-chain wax esters of high calorific value.  相似文献   

6.
The time course of faecal pellet production (egestion) was monitored in January 1985 for a population of Antarctic krill, Euphausia superba Dana, maintained in flowing seawater aquaria at Palmer Station, Antarctica. Following transfer to filtered seawater, krill produced faecal strings for roughly 40 min, after which time faecal egestion virtually ceased. Similar results were obtained for freshly-trawled krill at sea in February and March 1985. There were wide daily variations in total faecal egestion rate; mean rates varied from 0.54 to 1.66 mg dry wt h-1 and individual rates from 0.25 to 2.35 mg h-1 (all data corrected to a standard krill of 600 mg fresh weight). Despite these wide fluctuations in total faecal egestion, the loss of organic matter showed no significant daily variation, with a mean value of 0.13 mgh-1. The relationship between faecal egestion rate and faecal organic content suggested that feeding rate was governed by food quality; when inorganic load was high, feeding rate increased to ensure sufficient energy intake. The data suggest that superfluous feeding does not occur in krill and that values of gut-clearance time calculated from time intervals greater than about 40 min will not be representative of previous feeding history. the rates of faecal egestion observed in this study indicate that the flux of faecal pellets from krill is substantial. They imply an energy intake in E. superba of 17 to 28% body weight per day, much higher than estimated previously for this species by summing known energy losses, but similar to estimates for other euphausiids.  相似文献   

7.
The growth, survival, digestive enzyme activity and biochemical composition ofPenaeus japonicus (Bate) larvae and postlarvae were measured under three feeding regimes. Larvae were reared through the protozoeal stages usingChaetoceros gracilis. From the first mysis stage, three feeding regimes were used; (A)C. gracilis plusArtemia sp. nauplii, (B)Artemia sp. nauplii alone or (C)C. gracilis alone. No significant difference was found in growth, survival, protein content or lipid content of postlarvae from the treatments receiving the single-feed type, despite the low protein (7%) and highly unsaturated fatty acid content of the alga. Growth of larvae receiving the mixed diet was significantly higher than in the other treatments. Trypsin activity was more strongly influenced than amylase activity by dietary treatment, and differences in the ratio of these enzymes between treatments suggest independent control of their secretion. Trypsin activity recorded in larvae feeding onC. gracilis was up to six time higher than in larvae feeding onArtemia sp. nauplii, apparently in response to the low protein content of the alga. Larvae receiving the mixed diet exhibited an intermediate level of trypsin activity; it is suggested that the ingestion of algae is necessary for optimal assimilation of the zooplankton component of the diet.  相似文献   

8.
Specimens of the Dungeness crab Cancer magister, were collected subtidally and intertidally from an estuary in Washington State, USA in June and September 1980, and January, April, May and July, 1981. Gut contens of freshly collected crabs were analyzed by the Index of Relative Importance; for each prey taxon, this method measured frequency of occurrence, percentage of total biomass, and percentage of total numbers consumed. The most important higher taxon eaten was fish; however, the most important prey genus was the shrimp Crangon spp. There was greater predation on Crangon spp. at night at the intertidal site, and during winter and spring when the shrimp were most abundant there. Feeding activity, as indicated by a weight-specific gut-fullness index, showed no consistent diel pattern. There were significant ontogenetic changes in feeding patterns: first-year crabs preyed primarily on very small bivalves or small crustaceans including their conspecifics; second-year crabs preferred Crangon spp. and fish, and third-year crabs preyed less on Crangon spp. and more on fish. Such changes in feeding habits with ege could be purely due to mechanics of food handling, but might also reduce competition among age groups of crabs, possibly partitioning resources within the estuary. Findings are discussed in terms of optimal foraging and compared to other similar studies.Contribution No. 599, School of Fisheries, University of Washington, Seattle, Washington 98195, USA  相似文献   

9.
Summary Reduced forage intake by males is generally believed to coincide with the peak of rutting activities in many ungulates. Activity budgets of bull moose (Alces alces) in Denali National Park and Preserve (DNPP) and Isle Royale National Park (IRNP) were analyzed to assess: (1) if time spent foraging decreased during the rut; (2) the timing of reduced forage intake; (3) whether there was variation in feeding time among bulls of varying size; and (4) the proximate mechanism and adaptive value of reduced forage intake. Time spent feeding by bull moose began to decrease around 1 September: large bulls completely ceased feeding for approximately 2 weeks, with median dates of feeding cessation at 18 and 20 September for IRNP and DNPP, respectively. Small bulls fed at reduced rates, but did not cease feeding. Although large bulls in both study sites spent large amounts of time engaged in social behavior during the period of appetite suppression, much of their active time was also spent standing inattentive, i.e., engaged in no activity (45.5% in IRNP, 29.8% in DNPP), suggesting that a constraint in time budgets did not limit opportunities to feed. Forage intake reduction is more likely mediated through a physiological mechanism. Feeding cessation did not coincide with the peak of the rut: at DNPP the median date of feeding cessation was significantly earlier than the median date of breeding behavior and fighting. The timing of feeding cessation coincided with that of scent-urination at both study sites, raising the possibility that appetite suppression may be a byproduct of physiological processes associated with chemical communication.  相似文献   

10.
Chlorophyll a concentration was compared with carotenoid concentration as a predictor of seasonal changes in phytoplankton biomass within Bedford Basin, Nova Scotia, Canada (1976–1977). For all seasons, predictions of biomass from different measures of chlorophyll a were poor and were not improved when chlorophyll a was measured accurately by chromatography. Chlorophyll a and a carotenoid (fucoxanthin) were highly correlated and equally good predictors of total biomass, but neither was related to changes in peridinin concentration. Correlations between specific carotenoids and diatom or dinoflagellate biomass indicate that carotenoids may be useful to describe changes in biomass composition. For all pigments measured, predictions of biomass were hampered when large dinoflagellate cells were present, which biased estimates of total cell volume. Regardless of species composition or cell density, dinoflagellate biomass contributed on the average 68% of the total cell volume measured each day compared with only 14% for diatoms and 17% for flagellates, the most abundant taxa.  相似文献   

11.
Changes in the chemical composition of developing dolphin (Coryphaena hippurus) eggs and prefeeding yolksac larvae were determined in order to estimate probable dietary requirements of first-feeding larvae. Daily dry matter, protein nitrogen (PN), non-protein nitrogen (NPN), lipid, gross energy content, fatty acid and amino acid profiles from Day 1 to Day 2 eggs and Day 1 to Day 3 larvae were compared. Lipid was the primary endogenous energy source accounting for the daily caloric deficit through both the egg and larval stages, except over the day of hatching. The catabolism of lipid by embryos (0.078 cal d–1) was greater than that by yolksac larvae (0.036 cal d–1). The higher demand for energy by embryos was related to a greater rate of protein synthesis during the egg stage. The ratio of PN:NPN increased during egg development without change in total nitrogen content, but was constant throughout the yolksac larvae period. The lipid content per embryo did not decrease over the hatching period (Day 2 to 3, postspawning). However, there was a loss in amino acid content not totally accounted for by sloughing of the chorion at hatching. This loss, as protein, accounted for 0.053 cal of gross energy, which represented 70% of the total estimated energy needs of the fish over this period. Loss of non-essential amino acids (25%) was higher than that of essential amino acids (13%). Proline and tyrosine accounted for 32% of the total loss of amino acids at this time. The only preferential use of fatty acids over any period was a small but significant drop in the content of C22:6n-3 prior to the onset of feeding (Day 5, postspawning). It is speculated that the pattern of energy-substrate use of first-feeding dolphin larvae will reflect the pattern of endogenous energy use during the egg and prefeeding yolksac larval stages. Diets or feeding regimens with lipid as the primary energy source, and containing a fatty acid profile similar to that of eggs or yolksac larvae, should be useful in culturing this species, at least during the early feeding stages.  相似文献   

12.
We studied benthic harpacticoid grazing on diatom algae from two sites on the White Sea intertidal sandflat. Diatoms from sediments and from harpacticoid gut contents were sampled in situ, identified and counted, and grazing rates were calculated by two ways: (1) using potential daily ration estimations and (2) from the gut content and gut-residence time data. Paraleptastacus kliei did not contain any diatoms in the guts and presumably fed on other objects (bacteria or flagellates). Two other dominating species studied, Heterolaophonte minuta and Huntemannia jadensis, contained an average of 604 and 222 diatom cells per specimen. Diet composition differed significantly from the natural algal community. Two diatoms of intermediate cell size (Nitzschia palea var. debilis and Navicula sp.) contributed 92–97% of gut content for H. minuta and 58–81% for Hn. jadensis, whereas these diatoms amounted to only about 10% of biomass in native community. Mean consumption rates were estimated as 50–200 μg of wet biomass/day/cm2, so the harpacticoids grazed only between 3 and 11% of the total microalgae biomass per day. The grazing impact on the two preferred diatom populations, however, was much more intensive, 10–30% per day for Navicula sp. and 55–228% for N. palea. Therefore, native harpacticoid populations demonstrate highly selective feeding and could be strongly limited by their food in spite of seemingly plentiful total abundance of microphytobenthos. This disproportionally high grazing pressure upon some species apparently could affect the structure of microalgae communities resulting in low relative abundance of mid-sized forms. We hypothesize that a very dynamic spatio-temporal distribution of epibenthic harpacticoids (short-living micropatches) may be the possible adaptation to such local food limitation.  相似文献   

13.
Marine phytoplankton have been shown to use chemical feeding deterrents to reduce or inhibit zooplankton grazing. In order to screen phytoplankton species for feeding deterrent production and to isolate and identify feeding deterrent compounds, a new, rapid, and reliable laboratory bioassay was developed. This bioassay used the laboratory-reared harpacticoid copepod Tigriopus californicus and measured inhibition of feeding by measuring the fecal pellet production rate. The bioassay was capable of detecting deterrent compounds: (1) adsorbed onto ground fish food (a normally palatable food); (2) dissolved in a mixture of seawater and live Thalassiosira pseudonana cells (a species of diatom which had no feeding deterrent activity); and (3) present in live cell cultures. Method (2) was recommended for use in bioassay-guided fractionation (isolation of chemical compounds), as it was reliable, rapid, accurate, and easy to perform with large numbers of samples. The total bioassay time was < 48 h, and data collection required only a microscope. Methanolic cell extracts of several phytoplankton species were screened for feeding deterrent activity. Extracts from the diatom Phaeodactylum tricornutum and the dinoflagellate Gonyaulax grindleyi gave feeding deterrent responses, while extracts from the diatom Thalassiosira pseudonana gave no feeding deterrent responses. Live P. tricornutum cells deterred feeding at densities of 6x105 cells ml-1. This bioassay should provide a valuable tool in screening phytoplankton for feeding deterrent compounds and determining the chemical nature of these compounds.  相似文献   

14.
Recent studies have indicated that populations of gelatinous zooplankton may be increasing and expanding in geographic coverage, and these increases may in turn affect coastal fish populations. We conducted trawl surveys in the northern California Current and documented a substantial biomass of scyphomedusae consisting primarily of two species (Chrysaora fuscescens and Aurelia labiata). Spatial overlap of these jellyfish with most pelagic fishes, including salmon, was generally low, but there were regions of relatively high overlap where trophic interactions may have been occurring. We compared feeding ecology of jellyfish and pelagic fishes based on diet composition and found that trophic overlap was high with planktivorous species that consume copepods and euphausiid eggs such as Pacific sardines (Sardinops sagax), northern anchovy (Engraulis mordax), Pacific saury (Cololabis saira), and Pacific herring (Clupea pallasi). Moreover, isotope and diet analyses suggest that jellyfish occupy a trophic level similar to that of small pelagic fishes such as herring, sardines and northern anchovy. Thus jellyfish have the potential, given their substantial biomass, of competing with these species, especially in years with low ecosystem productivity where prey resources will be limited.  相似文献   

15.
The natural diet and mode of feeding of the rock lobster Jasus lalandii (H. Milne Edwards) was determined in a rock-lobster sanctuary near Cape Town, South Africa. Field observations were tested and confirmed by means of aquarium studies. Rock lobsters feed mainly upon ribbed mussels Aulacomya ater (Molina), which comprise the largest component of the sessile benthic fauna. Mussel remains were found as the major constituent in 97% of the rock-lobster stomachs examined. The density of rock lobsters averaged 8,100 per hectare (0.81 m-2), while mussel biomass averaged more than 5 kg (wet whole weight) m-2 within the same depth range (12 to 30 m). More than 80% of the mussel biomass comprised large individuals between 60 and 90 mm in length. Large rock lobsters (mainly males) were capable of feeding on all sizes of mussels, although many of these were inaccessible to predation. Smaller rock lobsters became progressively more limited in the size range of mussels which they could crack open and consume. Competition between rock lobsters for small mussels appeared to be intense, as mussels of suitable size for feeding were generally in short supply to most of the rock-lobster population. Hence, feeding and growth rates of rock lobsters are likely to be affected by the relative population densities of predator and prey. Growth rates of rock lobsters could be limited by food supplies even in areas where mussel biomass is comparatively large.  相似文献   

16.
Naturally spawned and fertilized eggs of Atlantic halibut,Hippoglossus hippoglossus L., were analysed for protein, free amino acids (FAA), ammonium ions and energy content. The chemical composition was found to be size-dependent but varied little during egg development. Ammonium ions did, however, accumulate during the late embryonic stage, and the trend in FAA content was downward during the same period. Rates of O2 uptake and NH3 excretion followed exponential patterns. A total of 1µmol O2 was consumed and 120 nmol NH3 excreted between the time intervals of fertilization and 1 d post hatch. Derived O:N ratios indicated that the dominant portion of the energy metabolism was lipid- or carbohydrate-based during the mid-development period but switched to FAA as hatch was approached.Correspondence should be addressed to: Zoological Laboratory, University of Bergen, Allégt. 41, N-5007 Bergen, Norway  相似文献   

17.
Respiration and nitrogen-excretion studies were carried out on several species of zooplankton (Meganyctiphanes norvegica, Phronima sedentaria, Acartia clausi and Sagitta setosa) under starvation. Although all the species were mainly ammonotelic, apparently a significant amount of organic nitrogen was excreted; the validity of the measurements and their significance are discussed. The effect of duration of starvation showed for M. norvegica and A. clausi two different patterns of behaviour, which were chiefly a function of the rate of biomass turnover of the species studied. The rates of metabolism, chemical composition, and reaction to starvation varied with season in M. norvegica. The physiological balance of the experimental animals was examined by calculating the protein carbon equivalent to respiratory and excretory catabolism, and by use of atomic O:N ratios. Starved individuals catabolized more protein carbon than can be accounted for by the amount of respiratory oxygen utilized. A hypothesis, which suggests that there are three levels of resistance to starvation, is proposed to explain this paradox, and its metabolic basis is discussed.  相似文献   

18.
N. Reuss  L. Poulsen 《Marine Biology》2002,141(3):423-434
An investigation of the fatty acid composition of a natural arctic plankton community was carried out over two fishing banks located between 63°N and 65°N off the West Greenland coast. Samples for fatty acid analyses, species determination and biomass assessments of the plankton community were taken at the depth of fluorescence maximum. High biomass and diatom dominance during the spring bloom and low biomass and flagellate dominance in the post-bloom period were reflected by the fatty acid profiles. The total amount of fatty acid ranged from 55 to 132 µg l-1 during the spring bloom and from 1 to 5 µg l-1 during the post bloom. Analysis of the fatty acids showed that when the plankton was dominated by diatoms of the genera Thalassiosira and Chaetoceros, the proportions of C16:1(n-7) and C20:5(n-3) were correspondingly high. C18s, and particularly C18:1(n-9), were more abundant when the plankton was dominated by small autotrophic flagellates, primarily haptophytes. We found a good positive correlation between the common diatom marker, C16:1(n-7)/C16:0, and the biomass percentage of diatoms (r=0.742, P<0.001), as well as between the biomass percentage of flagellates and total C18 fatty acids (r=0.739, P<0.001). This supports the use of these specific fatty acids and fatty acid ratios as general biomarkers of the plankton community. However, the fatty acids are not specific enough to sufficiently characterise the composition of the plankton community, and microscopical support is needed to verify observed trends.  相似文献   

19.
A 14-month study was carried out to determine the impact of kraft-mill effluents on the offshore benthic macrophyte distribution in a shallow north Florida Bay (USA). A polluted river drainage system was compared to an adjoining (unpolluted) one. The affected area was characterized by elevated levels of color and turbidity. Inshore areas associated with high levels of KME were characterized by severely reduced benthic macrophyte biomass, reduced numbers of species/unit area, and altered species composition when compared to control stations. Areas of chronic impact also had reduced levels of biomass, although the total number of species taken were not significantly different from the controls. In polluted areas, red and brown algae were proportionately more abundant than chlorophytes and spermatophytes. Dominance generally was reduced in areas of the Bay affected by KME. Except for areas of acute impact, there was no significant difference in species diversity (H) between polluted and unpolluted portions of the Bay. There were uniform increases in the total number of species on either side of the affected drainage system. Such areas were considered to be transition zones between the polluted and unpolluted parts of Apalachee Bay. Benthic macrophyte distribution, in terms of biomass and species (community) composition, was considered an important indicator of the impact of KME on the shallow coastal systems in question. The pattern of macrophyte species composition reflected various water-quality parameters. Species normally inhabiting deeper water were found in areas of increased turbidity and color. It was postulated that reduction of normal dominants such as Thalassia testudinum and Halimeda incrassata allowed the colonization of such areas by opportunistic species. This would explain the maintenance of comparable (total) numbers of species in polluted areas and the lack of effect of KME on species diversity even though biomass was severely restricted. These parameters were analogous to the epibenthic fish distribution in the respective drainage areas. Near-shore coastal systems in Apalachee Bay thus were affected by gradients in water quality in addition to natural (seasonal) fluctuations in key physical and chemical parameters. The benthic plant assemblages reflected variations in dominance, the occurrence of opportunistic species, and ecological diversity that resulted in a continuum of disturbance phenomena ranging from sparsely distributed groups in grossly polluted systems to well developed plant assemblages in areas that remain unaffected by KME.  相似文献   

20.
The biochemical and energetic composition, spicule content, and toxicity of benthic sponges was investigated in McMurdo Sound, Antarctica from October through December 1984. The predominant organic constituent of sponges was soluble and insoluble protein. Levels of total protein ranged from 17.0 to 55.9% dr. wt. Levels of lipid and carbohydrate were low, ranging from 2.1 to 9.6 and 0.6 to 3.5% dr. wt, respectively. Levels of ash were high and variable (32 t0 79% dr. wt), reflecting species-specific differences in spicule contents. Calculated energy contents of sponges were low, with a mean of 9.8±3.5 kJ g-1 dr. wt; ranging from 5.1 kJ g-1 dr. wt in Sphaerotylus antarcticus to 17.4 kJ g-1 dr. wt in Dendrilla membranosa. Insoluble protein accounted for the greatest contribution to the energetic composition of the sponges, while lipid and carbohydrate combined contributed to less than 25% of the overall energy. Normalized spicule volumes of sponges ranged from 0.15 to 0.38 cm3 g-1 dr. wt. Ichthyotoxicity assays indicated that 9 (56%) of 16 antarctic sponge species were toxic. The most highly toxic species were Mycale acerata and Leucetta leptorhapsis. The high incidence of toxicity in antarctic sponges indicates that the current hypothesis suggesting a simple inverse relationship between toxicity and latitude in marine sponges is invalid. There was little correspondence between the energetic composition or spicule contents of the sponges and feeding patterns (electivity indices) of sponge-eating predators. Although the asteroid Perknaster fuscus antarcticus specializes on the highly toxic, fast-growing M. acerata, most antarctic sponge-eating predators appear to be generalists which feed on the more abundant, non- to mildly-toxic, sponge species. This feeding strategy is based on exploitation of low energy, sedentary prey, which require a minimal energy output to harvest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号