首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Grain-size composition of the sea-bed and density of eggs of Labidocera aestiva in bottom sediments in Buzzards Bay were determined at approximately monthly intervals from March 1983 through April 1984. The results of this study, together with those of Marcus (1984), show that during the fall and winter periods of 1982–1984 the proportion of eggs of L. aestiva occurring in the surficial sea-bottom sediments declined and the proportion of eggs in the deeper sediment layers increased. High positive correlations (r 2=0.72 and 0.92) were observed during the early fall 1983 between egg abundance and the proportion of the total sediments represented by the mud fraction. During late fall, winter, and early spring 1983–1984, the coefficients of determination were much lower. Physical criteria (e.g. sedimentation and transport characteristics) can be used to accurately predict the distribution and abundance of recently spawned eggs on the sea-bottom.  相似文献   

2.
Bioturbation by thalassinidean sandprawns is known to structure soft-bottom communities, and field observations have suggested that the sandprawn Callianassa kraussi is a significant force influencing macrofaunal communities. To investigate causal relationships, a field experiment was undertaken in Durban Bay, South Africa, in which experimental cages were used to exclude or include C. kraussi and the abundance of macrofauna in these treatments documented. Cage effects were assessed by comparing macrofauna in inclusion cages with that of unmanipulated areas containing high densities of C. kraussi equivalent to those in inclusion cages. Measurements were made in 3 months, in March, June and September 2005. Total abundance and species richness of macrofauna were significantly greater in exclusion cages than in inclusion treatments during all sampling seasons, while diversity differed between these treatments in June and September only. Ordinations indicated that macrofaunal assemblages in exclusion cages differed statistically from inclusion and control treatments in all three sampling seasons. In general, the surface-grazing gastropod Nassarius kraussianus and suspension and deposit-feeding species such as the polychaetes Prionospio sexoculata and Desdemona ornata, cumaceans, and the bivalves Dosinia hepatica and Eumarcia paupercula were significantly more abundant in prawn-exclusion plots, implying that they are negatively affected by bioturbation by C. kraussi, whereas burrowing infauna were not affected.  相似文献   

3.
The life history patterns of Calanus marshallae Frost, C. pacificus Brodsky, and Metridia lucens Boeck were determined in Dabob Bay, Washington, USA, during 1973 and October 1981–September 1982. C. marshallae emerged from diapause and moulted to adults in January–February. One major generation was observed, having been produced mainly during early to mid-March. Most surviving individuals spawned in March, arrested development at the C5 stage, and were in diapause by late May. However, some individuals developed to adults by late April and produced a very minor second generation. C. pacificus emerged from diapause and moulted to adults in February–March. The first generation produced during the spring lagged slightly behind the C. marshallae generation. C. pacificus produced two additional generations, one in late spring and one in the fall. The production of the three generations coincided with or closely followed phytoplankton blooms. Some C. pacificus arrested development at the C5 stage and entered diapause during the summer, but the majority of the population did not do so until fall. M. lucens did not appear to enter a diapause state. The fall and winter population was chiefly adult females which mostly remained at depth and were reproductively immature. Nevertheless, naupliar M. lucens were found on all sampling dates, indicating that reproduction never ceased as it did for the two Calanus species. M. lucens produced generations in late winter/early spring, late spring, and late summer/early fall. Interspecific comparisons between the life histories observed in Dabob Bay and intraspecific comparisons between the life histories in Dabob Bay and other locations are made. The advantages or disadvantages conferred to the copepods by their differing life histories are also discussed.  相似文献   

4.
Data for phytoplankton composition and abundance in the Marsdiep are presented for the period from 1969 to 1985 inclusive. Only a few species dominated the phytoplankton. A recurrent pattern was observed in the seasonal succession: in winter, total cell numbers were invariably low, but freshwater algae, sluiced into the Wadden Sea from IJssel Lake, showed highest densities in winter. A diatom spring peak was observed around mid-April, followed by a Phaeocystis pouchetii peak about three weeks later. Later in summer usually two more diatom peaks followed by non-diatom peaks were present. The exact timing of the spring peak varied from year to year, with the extremes being late March and early May. A relatively late spring peak usually coincided with a relatively high turbidity in the preceding winter. An increase in total cell numbers was found over the 17-year observation period. Diatoms decreased from 1969 to 1974 but have increased since then, reaching values above those of 1969 during recent years. Flagellates showed a consistent increase over the entire observation period.  相似文献   

5.
Suspended particulate matter, zooplankton, and macrobenthos dynamics were investigated in a shallow area of the Ligurian Sea (north-west Mediterranean) characterized by wide temporal variability over an annual cycle. As indicated by multivariate analyses, the seasonal dynamics can be summarized as follows: (1) a late winter-early spring phytoplankton bloom followed by high zooplankton and macrobenthos densities during the spring months; (2) low-quality particulate suspended matter in summer, and an increase in the importance of zooplankton taxa with a wide range of feeding strategies, a decrease in macrofaunal abundance, and an increase in deposit-feeders and predators; and (3) a second phytoplankton bloom in autumn, followed by an increase in copepod density and a low macrofaunal abundance. In conclusion, pelagic and benthic communities in the coastal area of the Ligurian Sea mainly seem to be controlled bottom-up. Our results suggest that the quality of the particulate organic matter may play an important role in determining the temporal changes of both plankton and benthic assemblages, while the direct influence of other environmental features (such as sediment grain size) is relevant only for some macrobenthic taxa (e.g. crustaceans).  相似文献   

6.
The reproductive cycles and abundance of the sympatric colonial ascidians Pycnoclavella brava, Pycnoclavella aurilucens and Pycnoclavella communis from two Northwestern Mediterranean sites over a period of 2.5 years are reported. The species showed some differences in their biological patterns. Gonad maturation and larval brooding took place during autumn and early winter for P. communis, during spring for P. aurilucens and during late winter and spring for P. brava. Summer was found to be the unfavorable season for all species, and an aestivation period occurred in P. communis and P. brava. Maximum abundance for the three species was observed during winter. Growth rates of the most abundant species, P. communis, were also monitored and found to peak during the initial phases of reactivation after aestivation. Growth rates decreased afterwards, becoming negative as water temperature started to increase after the winter minima. Reproductive activity and growth rates for P. communis displayed a temporal lag that suggested partitioning of resources to either reproduction or growth in this species.  相似文献   

7.
A. Martel  F. S. Chia 《Marine Biology》1991,110(2):237-247
We investigated recruitment of the herbivorous gastropodLacuna vincta (Montagu, 1803) in the canopies ofMacrocystis integrifolia andNereocystis luetkeana beds in Barkley Sound, Vancouver Island (British Colombia), from 1987 to 1989. Four factors influencing intensity and patterns of recruitment were studied: (1) seasonality of oviposition, (2) larval abundance, (3) growth of larvae in the field and (4) larval settlement. Egg masses were abundant on low intertidal algae but were scarce in kelp canopies. Although egg masses could be found almost year-round, a distinct and intense period of oviposition occurred during winter and spring. Intracapsular development lasted 2.5 to 3.5 wk before planktotrophic veligers emerged. The duration of the planktonic period, 7 to 9 wk, was determined through an in situ study of cohorts ofLacuna spp. larvae present in the plankton between January and June 1988. The general timing of the onset of the spring peak recruitment period was predicted from these cohorts. Primary periods of recruitment ofL. vincta in the canopy occurred in April–May (average density up to 383.9 juveniles m–2 blades), with a second period of lower intensity in the late summer—fall period. We observed similar trends between abundance of advanced larvae (> 500µm) in the plankton and recruitment rates in kelp canopies. Although adults were occasionally observed in the canopy, newly metamorphosed juveniles consistently dominated the habitat. The persistance of small juveniles (0.7 to 1.5 mm), rapid declines in density shortly after recruitment, and SCUBA observations of drifting individuals suggest that juveniles migrate to the under-canopy or low intertidal area after a brief period of growth on kelp blades.  相似文献   

8.
The effect of diel and seasonal changes in the distribution of fishes on a subtropical sandy beach on the southeastern coast of Brazil were studied. Seine netting was carried out on both seasonal and diel scales between July 1998 and June 1999. A total of 46 fish species was recorded, six being numerically dominant: Anchoa tricolor, Gerres aprion, Harengula clupeola, Atherinella brasiliensis, Mugil liza and Diapterus rhombeus. Seasonal changes in abundance of dominant species were detected. Species dominant in winter were Anchoa tricolor, H. clupeola and Atherinella brasiliensis; in spring, Anchoa tricolor and G. aprion; in summer G. aprion and D. rhombeus; and in autumn M. liza and H. clupeola. Overall, diel patterns did not reveal any significant trends; however, if we consider each season separately, an increase in A. tricolor abundance was recorded during the day in winter/spring, being replaced at night by H. clupeola in winter, and by G. aprion in spring. Increases in number of individuals and biomass at sunset, and decreases during the night were recorded. The winter/spring inshore/offshore movements at diel scale performed by the three most abundant species demonstrate that diel fluctuation acts more at a species-specific level than at a structural one; in summer there was no evidence of diel movements due to a heavy influx of G. aprion and D. rhombeus, which use the area throughout day and night, increasing overall abundance. Seasonal movements seems to be related to ontogenetic change in species, while diel movements in the fish assemblage seem to be more related to physiological requirements, such feeding activity of each particular species, than to physico-chemical conditions.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

9.
Effects of periodic hypoxia on distribution of demersal fish and crustaceans   总被引:12,自引:0,他引:12  
Effects of periodic hypoxia (O2 < 2 mg l–1) on distribution of three demersal fish species, spot (Leiostomus xanthurus), hogchoker (Trinectes maculatus) and croaker (Micropogonias undulatus), and of two crustacean species, mantis shrimp (Squilla empusa) and blue crab (Callinectes sapidus), were investigated in the lower York River, Chesapeake Bay, USA. Trawl collections were made in four depth strata (5 to 10, 10 to 14, 14 to 20 and > 20 m) during normoxia and hypoxia from 26 June to 20 October 1989. Three periods with hypoxia in the bottom water (below 10 m depth) occurred in mid-July, early August and early September, each with a duration of 6 to 14 d. The demersal fish and crustaceans studied were all affected by hypoxia, and a general migration from deeper to shallower water took place during July and August. However, when oxygen conditions improved after a hypoxic event all species, exceptS. empusa, returned to the deeper areas. The degree of vertical migration was related to levels of oxygen concentration and varied for the different species.M. undulatus was the most sensitive species to low oxygen, followed byL. xanthurus andC. sapidus. T. maculatus andS. empusa were more tolerant and survived in 14 to 25% oxygen saturation by increasing ventilation rate and, forS. empusa, by also increasing blood pigment (haemocyanin) concentration. Periodic hypoxia driven by the spring-neap tidal cycle may represent a natural phenomenon with which the fishes and crustaceans are in a delicate balance. Areas experiencing periodic short-lived hypoxia may be good nursery grounds for fisheries species, and there is no indication that the habitat value in the study area of lower York River is lessened. However, if eutrophication lengthens the time of hypoxia or brings the system closer to anoxia the system may change and become characteristically stressed. The migratory and physiological responses of these species to hypoxia are good indicators of the severity of oxygen stress and could be used as part of an early warning monitoring system for changes in environmental quality.Contribution of the Virginia Institute of Marine Science  相似文献   

10.
A. L. Suer 《Marine Biology》1984,78(3):275-284
Growth and spawning of the large, infaunal echiuran worm Urechis caupo Fisher and MacGinitie were studied at Bodega Harbor on the coast of central California, USA, from 1978 through 1981. In situ growth rates of marked worms were negatively related to initial size. Short-term, summer growth rates (volmo–1) of small worms (<80 ml) were greater than longer-term growth rates measured over several seasons (asesonal). Size-frequency distributions of worms sampled from two sites also suggested a seasonal growth pattern with relatively fast spring-summer growth and slower winter growth. However, larger worms sometimes lost volume during in situ growth experiments, and the loss was most pronounced during short-term, summer growth periods. It is suggested that energy used in burrow construction may have contributed to volume loss during short-term growth experiments. In contrast, longer-term, aseasonal growth rates were nearly always positive, and indicated that reproductive size (about 56 ml) could be reached within about 1.5 yr of recruitment, and a large size (about 158 ml) could be reached within about 6 yr. A seasonal pattern of spawning was observed during three consecutive years, as indicated by ripeness indices (storage organ dry weight ÷ body wall dry weight). At least two spawning episodes occurred annually: ripe gametes that accumulated in the storage organs during the summer and fall were spawned during the winter; gametes that accumulated during late winter and early spring were spawned during the spring or early summer. Worms were spawned-out by mid-summer.  相似文献   

11.
M. Thiel 《Marine Biology》1998,132(2):209-221
The suspension-feeding amphipod Dyopedos monacanthus (Metzger, 1875) is a common epibenthic amphipod that lives on self-constructed “mud whips” (built from filamentous algae, detritus and sediment particles) in estuaries of the northern North Atlantic Ocean. The population biology of D. monacanthus at a shallow subtidal site in the Damariscotta River Estuary (Maine, USA) was examined between July 1995 and July 1997. The resident population at the study site was dominated by adult females during most months of the year. High percentages of subadults were found in late summer/early fall. Often, between 10 and 20% of the adult females were paired with males, and the percentage of ovigerous females varied between 40 and 100%, indicating continuous reproduction. The percentage of parental females varied between 40 and 80% during most months, but dropped to levels below 20% during summer/early fall. The average size of amphipods on their own mud whips was ∼4 mm during the summer/early fall, after which it increased continuously to >7.0 mm in March or April, and then dropped again. In March and April, the average number of eggs and juveniles female−1 was ∼100 eggs and 55 juveniles, while during the summer/early fall the average number of eggs female−1 was <20 and that of juveniles female−1 was <10. Many juveniles grew to large sizes (>1.4 mm) on their mothers' whips in winter/early spring but not in the summer/fall. The average number of amphipods at the study site was low in late summer/early fall (<50 individuals m−2), increased steadily during the winter, and reached peak densities of >3000 individuals m−2 in April 1996 (>1600 individuals m−2 in May 1997), after which densities decreased again. The decrease of the D.␣monacanthus population at the study site coincided with a strong increase of amphipods found pelagic in the water column. This behavioural shift occurred when temperatures increased and benthic predators became more abundant and active on shallow soft-bottoms, suggesting that D. monacanthus at the study site is strongly affected by predation. The effects are direct (by predation on amphipods) and indirect (by reducing duration of extended parental care and enhancing pelagic movements). Both extended parental care and pelagic movements are important behavioural traits of D.␣monacanthus (and other marine amphipods), and significantly affect its population dynamics. Received: 18 January 1998 / Accepted: 27 May 1998  相似文献   

12.
The Río de la Plata is one of the main estuarine systems of South America. It is characterized by a salt wedge regime, a well-developed bottom salinity front, and a maximum turbidity zone associated with it. We described, for the first time, the spatial distributional patterns of Neomysis americana, the most abundant mysid and the main food item for juvenile fishes in this estuary. We analyzed the link between mysid distribution and abundance and the bottom salinity gradient. A total of 242 plankton samples were taken from the Río de la Plata estuary in spring and fall between 1991 and 2001. Bottom salinity gradient was quantified from grids created on the basis of 348 oceanographic stations. The N. americana population was characterized by high abundances (up to 2500 ind. m−3), with juveniles, males, gravid and non-gravid females present in both spring and fall of different years. N. americana distribution followed the position of the bottom salinity front in different years and seasons. Pearson’s correlation analysis between mysid abundance and bottom salinity gradient confirmed the association of mysids with the bottom salinity front (maximum salinity gradient). No correlation was detected between mysid abundance and salinity per se or temperature (neither in spring nor in fall). We speculate that mysids concentrated at the front could take advantage of the high concentration of detrital material for feeding. The results of our work highlight the importance of the magnitude of salinity gradient for the ecological processes of a salt-wedge estuary like the Río de la Plata. The analysis of the spatial distribution of gradient values presented in this work also constitutes a useful tool to locate key ecological areas such as fronts.  相似文献   

13.
A model food chain, utilizing 65Zn-labeled and nonlabeled food organisms, was used to measure the relative contributions of food and water to Zn accumulation by Gambusia affinis and Leiostomus xanthurus. Chlamydomonas sp. was fed to Artemia sp. which in turn was fed to G. affinis and L. xanthurus. A trace metal-chelate buffer system was used to maintain a stable free Zn ion activity (10-8.5 mol l-1) in the experimental seawater. Food represented 78 to 82% of total accumulation of 65Zn by the fish. Thus, food cannot be ignored in assessing the accumulation and toxicity of trace metals.  相似文献   

14.
The abundance, vertical distribution and population structure of two important small calanoid copepod species, Microcalanus pygmaeus (G. O. Sars) and Ctenocalanus citer Heron and Bowman, were studied in the eastern Weddell Sea in summer (January/February 1985), in late winter/early spring (October/November 1986) and in autumn (April/May 1992). The population of Microcalanus pygmaeus consisted mainly of copepodite stages CII and CIII in late winter/early spring and were concentrated between 500 and 200 m depth. In summer, stage CIV was the modal stage and the bulk of the population had ascended above 300 m. In autumn the population structure was bimodal with CI and CV dominating. Most of the population was concentrated between 300 and 200 m. In all investigation periods M. pygmaeus had their maximal concentrations in the thermo-pycnocline. The developmental stages CIII to CV of Ctenocalanus citer formed the bulk of the population in late winter/early spring. In October all developmental stages had their main distribution between 500 and 200 m, except females, which were concentrated in the upper 50 m. In November most of the population occurred between 200 and 50 m. The summer population was concentrated in the upper 50 m, and numbers increased dramatically as the new cohort hatched. Copepodite stages CII and CIII dominated the population at the end of January, while CIV dominated 2 wk later. In autumn, CV was the modal stage. The majority of the population was concentrated in the upper 100 m, but there was an increase in abundance below 300 m compared to summer. Age structure changed with depth with a younger surface population and an older one in deeper water layers. The seasonal change in number of M. pygmaeus is much smaller than that of C. citer; the summer:winter:autumn ratio of the former being about one, whereas the winter:summer/autumn of the latter was about nine. Early copepodite stages and adults of M. pygmaeus occurred throughout all investigation periods. The large proportion of early copepodite stages in April and in mid-October suggests autumn and early to midwinter breeding. Apparently, M. pygmaeus may reproduce and grow year-round or perhaps has a 2-yr life-cycle. In contrast, the dramatic increase in abundance of early copepodite stages of C. citer in summer suggests springtime reproduction.  相似文献   

15.
Dry weight levels of the red alga Hypnea musciformis (Wulfen) Lamouroux from Atlantic and Gulf of Mexico coastal sites in florida, USA were lowest in the late winter and early spring, increasing through the summer and highest in the fall. There was a two-month lag in the Gulf coast population's dry weight pattern, indicating differing growth patterns. Chlorophyll a, phycoerythrin and phycoerythrin/chlorophyll a ratios were highest in the winter and lowest in the summer for both populations. Total pigment levels for H. musciformis from the Atlantic coast site were significantly greater than those of the Gulf coast. Protein and carbohydrate percentages were inversely related in both populations, with carbohydrate levels highest in summer and protein levels highest in winter. The Gulf coast population contained significantly more protein than the Atlantic coast plants. Carrageenan levels were highest in spring and lowest in fall, the Atlantic coast population generally had higher levels than the Gulf coast population. The differences in seasonal patterns and levels of the chemical constituents were reflected by distinct morphological characteristics for each population. The Atlantic coast population was larger, darker, more coarse in texture and possessed more crozier branch tips than the Gulf coast plants. These distinctions represent acclimitization responses that relate to habitat differences.  相似文献   

16.
M. Thiel 《Marine Biology》1999,135(2):321-333
The isopod Sphaeroma terebrans Bate, 1866 burrows in aerial roots of the red mangrove Rhizophora mangle L. The burrows serve as shelter and as a reproductive habitat, and females are known to host their offspring in their burrows. I examined the reproductive biology of S. terebrans in the Indian River Lagoon, a shallow lagoon stretching for ∼200 km along the Atlantic coast of Florida, USA. Reproductive isopods were found throughout the year, but reproductive activity was highest in the fall and during late spring/early summer. During the latter periods, large numbers of subadults established their own burrows in aerial roots. The average numbers of S. terebrans per root were high during the fall, but decreased during the winter and reached lowest levels at the end of the summer. Females reached maturity at a larger size than males, but also grew to larger sizes than the males. The average size of females varied between 8 and 10 mm, the average size of males between 6.5 and 8.5 mm. The number of embryos female−1 was strongly correlated with female body length. No indication for embryo mortality during development was found. Parental females (i.e. with juveniles in their burrows) hosted on average between 5 and 20 juveniles in their burrows (range 1 to 59). Most juveniles found in female burrows were in the manca stage and 2 to 3 mm in body length. Juveniles did not increase in size while in the maternal burrow, and juveniles of similar sizes could also be found in their own burrows. Males did not participate in extended parental care, since most of them left the females after copulation. Many females that were born in the summer produced one brood in the fall and a second during winter/early spring. Females that were born in the fall produced one brood during spring/early summer, but then probably died. Extended parental care in S. terebrans is short compared to other peracarid crustaceans. It is concluded that this reproductive strategy in S. terebrans serves primarily to shelter small juveniles immediately after they emerge from the female body, when their exoskeleton is still hardening and their physiological capabilities are still developing. Thus, in S. terebrans, extended parental care probably aids to protect small juveniles from adverse physical conditions in their subtropical intertidal habitat. Received: 9 December 1998 / Accepted: 24 June 1999  相似文献   

17.
The spatiotemporal distributions of major phytoplankton taxa were quantified to estimate the relative contribution of different microalgal groups to biomass and bloom dynamics in the eutrophic Neuse River Estuary, North Carolina, USA. Biweekly water samples and ambient physical and chemical data were examined at sites along a salinity gradient from January 1994 through December 1996. Chemosystematic photopigments (chlorophylls and carotenoids) were identified and quantified using high-performance liquid chromatography (HPLC). A recently-developed factor-analysis procedure (CHEMTAX) was used to partition the algal group-specific chlorophyll a (chl a) concentrations based on photopigment concentrations. Results were spatially and temporally integrated to determine the ecosystem-level dynamics of phytoplankton community-constituents. Seasonal patterns of phytoplankton community-composition changes were observed over the 3 yr. Dinoflagellates reached maximum abundance in the late winter to early spring (January to March), followed by a spring diatom bloom (May to July). Cyanobacteria were more prevalent during summer months and made a large contribution to phytoplankton biomass, possibly in response to nutrient-enriched freshwater discharge. Cryptomonad blooms were not associated with a particular season, and varied from year to year. Chlorophyte abundance was low, but occasional blooms occurred during spring and summer. Over the 3 yr period, the total contribution of each algal group, in terms of chl a, was evenly balanced, with each contributing nearly 20% of the total chl a. Cryptomonad, chlorophyte, and cyanobacterial dynamics did not exhibit regular seasonal bloom patterns. High dissolved inorganic-nitrogen loading during the summer months promoted major blooms of cryptomonads, chlorophytes, and cyanobacteria. Received: 12 September 1997 / Accepted: 12 December 1997  相似文献   

18.
Although both chronic and episodic hypoxia (O2<2 mg l–1) alter the distribution and abundance patterns of mobile animals within estuaries, recent evidence suggests that some animals may be more likely to remain within hypoxic or anoxic water than others, due to differences in physiological tolerance and movement responses to the dynamics of hypoxia. Determining avoidance responses to hypoxia is important for identifying the species most susceptible to the direct and indirect impacts of these events. A trawl survey was used to examine the avoidance responses of blue crabs (Callinectes sapidus) and several fish [pinfish (Lagodon rhomboides), spot (Leiostomus xanthurus), Atlantic croaker (Micropogonias undulatus), bay anchovy (Anchoa mitchilli), and paralichthid flounders (Paralichthys dentatus and Paralichthys lethostigma)] to chronic hypoxia and episodic hypoxic upwelling events in the Neuse River Estuary, North Carolina, USA. Trawl collections were made in three depth strata (3.0–4.6 m, 1.7–3.0 m, and 0.9–1.7 m depth) to quantify changes in the depth-specific distribution and abundance patterns of the six most common estuarine taxa during three dissolved oxygen conditions: normoxia, chronic hypoxia, and episodic hypoxic upwelling events. Pinfish, anchovies, blue crabs, and paralichthid flounder abundance increased with increasing dissolved oxygen concentrations. The two taxa most closely associated with the bottom (blue crabs and flounder) showed the strongest avoidance response to hypoxia. All taxa showed a stronger avoidance response to chronic hypoxia as compared to episodic hypoxic upwelling events. This difference is attributed to a reduced ability to avoid the rapid intrusions of hypoxic water during episodic events, or to increased risks of injury and predation in shallow refuge habitats, which may force some individuals back into hypoxic water.Communicated by J.P. Grassle, New Brunswick  相似文献   

19.
The animal-habitat relationships and seasonal dynamics of the benthic macroinfauna were investigated from November 1986 to October 1988 in the Great Sippe-wissett salt marsh (Massachusetts, USA). Total macrofaunal abundance varied seasonally, displaying a peak in late spring and early summer, then declining sharply during late summer and recovering briefly in fall before collapsing in winter. Three macroinfaunal assemblages were found in the marsh, distributed along gradients of environmental factors. These included a sandy non-organic sediment assemblage, a sandy organic sediment assemblage and a muddy sediment assemblage. The species groups characteristic of unstable sandy non-organic sediments included the polychaetes Leitoscoloplos fragilis, Aricidea jefreyssi, Magelona rosea and Streptosyllis verrilli, the oligochaete Paranais litoralis, and the crustacean Acanthohaustorius millsi. Sandy organic sediments were characterized by the polychaetes Marenzelleria viridis, Capitella capitata, Neanthes succinea, N. arenaceodonta, Polydora ligni and Heteromastus filiformis, the oligochaete Lumbricillus sp., and the mollusc Gemma gemma. In muddy sites, the polychaete Streblospio benedicti and the oligochaetes Paranais litoralis and Monopylephorus evertus were the dominant species. Secondary production of benthic macroinfauna in each of these habitats was estimated. The highest values of biomass and production were recorded in the sandy organic sediments. Secondary production was estimated to be 1850 kJ m-2 yr-1 in sandy organic areas, but only 281 kJ m-2 yr-1 in sandy non-organic areas and 113 kJ m-2 yr-1 in muddy areas. This results in an area-weighted average production of 505 kJ m-2 yr-1 for the unvegetated areas of the marsh. The Great Sippewissett salt marsh has an area of 483800 m2, the total secondary production of the macroinfauna for the whole unvegetated area of the marsh was estimated as 4651 kg dry wt yr-1, expressed as somatic growth. This production value seems consistent with production data obtained for other intertidal North Atlantic environments.  相似文献   

20.
Seasonal changes in rates of rhizome elongation, frond initiation, photosynthesis, respiration, starch content and mortality of rhizome apices were measured for a population of Caulerpa paspaloides (Bory) Greville located off Key Largo, Florida, USA. Maximal growth rates occur during spring and coincide with high photosynthetic production and low mortality of rhizome apices. A secondary period of rapid growth occurs during fall; however, rates are less than during spring. Minimal growth rates occur during winter and summer. Reduced growth during winter coincides with (1) low photosynthetic rates, (2) low photosynthesis: respiration ratios, and (3) reduced frond biomass, indicating that photosynthetic production is limiting. Reserve carbohydrate (starch) is apparently utilized to maintain vegetative growth during the winter. Increased mortality of rhizome apices is responsible for most of the reduction in growth during summer and fall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号