首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Humic acid (HA) was impregnated onto powdered activated carbon to improve its Cu(II) adsorption capability. The optimum pH value for Cu(II) removal was 6. The maximum adsorption capacity of HAimpregnated activated carbon was up to 5.98mg.g-1, which is five times the capacity of virgin activated carbon. The adsorption processes were rapid and accompanied by changes in pH. In using a linear method, it was determined that the equilibrium experimental data were better represented by the Langmuir isotherm than by the Freundlich isotherm. Surface charges and surface functional groups were studied through zeta potential and FTIR measurements to explain the mechanism behind the humicacid modification that enhanced the Cu(II) adsorption capacity of activated carbon.  相似文献   

2.
Humic acids (HA) didn’t cause obvious reverse osmosis (RO) membrane fouling in 45 h. Osmotic pressure (NaCl) affected slightly the RO membrane fouling behavior of HA. Ca2+ promoted aggregation of HA molecules and thus aggravated RO membrane fouling. Ozonation eliminated the effect of Ca2+ on the RO membrane fouling behavior of HA. The change of the structure of HA was related to its membrane fouling behavior. Humic acid has been considered as one of the most significant sources in feed water causing organic fouling of reverse osmosis (RO) membranes, but the relationship between the fouling behavior of humic acid and the change of its molecular structure has not been well developed yet. In this study, the RO membrane fouling behavior of humic acid was studied systematically with ozonation as a pretreatment method to control RO membrane fouling. Furthermore, the effect of ozone on the structure of humic acid was also explored to reveal the mechanisms. Humic acid alone (10–90 mg/L, in deionized water) was found not to cause obvious RO membrane fouling in 45-h operation. However, the presence of Ca2+ aggravated significantly the RO membrane fouling caused by humic acid, with significant flux reduction and denser fouling layer on RO membrane, as it was observed by scanning electron microscope (SEM) and atomic force microscope (AFM). However, after the pretreatment by ozone, the influence of Ca2+ was almost eliminated. Further analysis revealed that the addition of Ca2+ increased the particle size of humic acid solution significantly, while ozonation reduced the SUVA254, particle size and molecular weight of the complexes of humic acid and Ca2+ (HA-Ca2+ complexes). According to these results and literature, the bridge effect of Ca2+ aggregating humic acid molecules and the cleavage effect of ozone breaking HA-Ca2+ complexes were summarized. The change of the structure of humic acid under the effect of Ca2+ and ozone is closely related to the change of its membrane fouling behavior.  相似文献   

3.
Renewable algae biomass, Scenedesmus obliquus, was used as substrate for generating electricity in two chamber microbial fuel cells (MFCs). From polarization test, maximum power density with pretreated algal biomass was 102mW·m^2 (951mW·m^3) at current generation of 276mA·m^-2. The individual electrode potential as a function of current generation suggested that anodic oxidation process of algae substrate had limitation for high current generation in MFC. Total chemical oxygen demand (TCOD) reduction of 74% was obtained when initial TCOD concentration was 534mg · L^-1 for 150 h of operation. The main organic compounds of algae oriented biomass were lactate and acetate, which were mainly used for electricity generation. Other byproducts such as propionate and butyrate were formed at a negligible amount. Electrochemical Impedance Spectroscopy (EIS) analysis pinpointed the charge transfer resistance (112Ω ) of anode electrode, and the exchange current density of anode electrode was 1214 nA·cm^-2.  相似文献   

4.
Combustion-generated hydrogen chloride (HCl) is considered to be a very hazardous acid gaseous pollutant. This paper presents a laboratory study on the dry adsorption of HCl. The experiments were conducted in a dual-layer granular bed filter, at gas temperatures of 500℃-700℃ and n(Ca)/n(Cl)molar ratios of 1.0-5.0 using the silver nitrate titration method by dry adsorbent powders Ca(OH)2. Mainly, the adsorption efficiency of HCI and utilization efficiency of Calcium were studied, by varying relevant factors including n(Ca)/n(Cl), tempera- ture, feeding method, water vapor and CO2. With a relatively higher HCl concentration of 1000ppm, the experimental results revealed that 600℃ may be the optimum temperature for HCl adsorption when optimum n (Ca)/n(Cl) was 2.5 in our tests. The results also demonstrated that the feeding at a constant pressure was more effective, and the HCl adsorption efficiency could rapidly reach over 90% with n(Ca)/n(Cl) = 2.5 at 600℃. Furthermore, the HCl adsorption efficiency was found to be slightly promoted by water vapor, while could be impeded by CO2, and the utilization efficiency of calcium could be up to 74.4% without CO2, while was only 36.8% with CO2 when n(Ca)/n(Cl) was 2.5 at 600℃.  相似文献   

5.
This study focused on the adsorptive behaviors of humic acid onto freshly prepared hydrous MnO2(s) (δMnO2), and investigated the feasibility of employing δMnO2 for humic acid removal from drinking water. Effects of such parameters as molecular mass of humic acid, kinds of divalent cations on adsorptive behaviors and possible mechanisms involved were investigated. This study indicated that humic acid with higher molecular mass exhibited more tendency of adsorbing onto δMnO2 than that with lower molecular mass. Ca2+ facilitated more humic acid adsorption than Mg2+; UV-Vis spectra analysis indicated higher capabilities of Ca2+ coordinating with acidic functional groups of humic acid than that of Mg2+. Additionally, ζ potential characterization indicated that Ca2+ showed higher potential of increasing gz potential of δMnO2 than Mg2+. Ca2+ of 1.0 mmol/L increased ζ potential of δMnO2 from ?37 mV (pH 7.9) to +7 mV (pH 7.2), while 1.0 mmol/L Mg2+ increased to lower value as ?9 mV (pH 6.5), correspondingly. Fourier transform infrared (FTIR) spectra demonstrated the adsorption of humic acid onto δMnO2, showing the important roles of-COO? functional groups and surface Mn-OH in the adsorption of humic acid onto δMnO2.  相似文献   

6.
A solution of atrazine in a TiO2 suspension, an endocrine disruptor in natural water, was tentatively treated by microwave-assisted photocatalytic technique. The effects of mannitol, oxygen, humic acid, and hydrogen dioxide on the photodegradation rate were explored. The results could be deduced as follows: the photocatalytic degradation of atrazine fits the pseudo-first-order kinetic well with k = 0.0328 s−1, and ·OH was identified as the dominant reactant. Photodegradation of atrazine was hindered in the presence of humic acid, and the retardation effect increased as the concentration of humic acid increased. H2O2 displayed a significant negative influence on atrazine photocatalysis efficiency. Based on intermediates identified with gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography-mass spectrometry (LC-MS/MS) techniques, the main degradation routes of atrazine are proposed.  相似文献   

7.
A novel method was applied to co-recover proteins and humic acid from the dewatered sewage sludge for liquid fertilizer and animal feed. The proteins in sewage sludge were first extracted using the processes of ultra-sonication and acid precipitation, and then the humic acid was recovered via membrane filtration. The extraction efficiency was 125.9 mg humic acid?g−1VSS volatile suspended solids (VSS) and 123.9 mg proteins?g−1 VSS at the optimal ultrasonic density of 1.5 W?mL−1. FT-IR spectrum results indicated that the recovered proteins and humic acid showed similar chemical characteristic to the natural proteins and humic acid. The acidic solution (pH 2) could be recycled and used more than 10 times during the co-recovery processes. In addition, the dewatered sludge could be easily biodegraded when the humic acid and proteins are extracted, which was essential for further utilization. These findings are of great significance for recovering valuable nutrient from sewage sludge.  相似文献   

8.
为阐明天然有机物(NOM)在纳米颗粒(NPs)吸附重金属中的作用,研究了蛋白质(牛血清白蛋白,BSA)、碳水化合物(海藻酸钠,NaAlg)和腐殖酸(HA)对二氧化钛纳米颗粒(TNPs)和氧化铈纳米颗粒(CNPs)聚集沉降和吸附Cd2+和Pb2+的影响.结果表明,当Pb2+和Cd2+在20—120 mg·L-1范围内,HA和NaAlg显著促进了TNPs和CNPs对这些金属离子的吸附(P<0.05),而BSA对这些金属吸附的影响甚微.TNPs-HA和TNPs-NaAlg对Pb2+的吸附分别提高了14%—41%和16%—57%,对Cd2+的吸附分别提高了12%—112%和22%—143%.与CNPs相比,CNPs-HA和CNPs-NaAlg对Pb2+的吸附增加了21%—71%和23%—65%,对Cd2+的吸附增加了26%—45%和45%—91%.并且NPs和NPs-NOM对Pb2+和Cd2+的吸附符合Freundlich吸附模型.离子强度的增加抑制了NPs-HA/NaAlg和NPs对Pb2+和Cd2+的吸附,而pH的增加对NPs-HA/NaAlg和NPs吸附Pb2+和Cd2+起促进作用.  相似文献   

9.
A solution of atrazine in a TiO2 suspension, an endocrine disruptor in natural water, was tentatively treated by microwave-assisted photocatalytic technique. The effects of mannitol, oxygen, humic acid, and hydrogen dioxide on the photodegradation rate were explored. The results could be deduced as follows: the photocatalytic degradation of atrazine fits the pseudo-first-order kinetic well with k = 0.0328 s?1, and ·OH was identified as the dominant reactant. Photodegradation of atrazine was hindered in the presence of humic acid, and the retardation effect increased as the concentration of humic acid increased. H2O2 displayed a significant negative influence on atrazine photocatalysis efficiency. Based on intermediates identified with gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography-mass spectrometry (LC-MS/MS) techniques, the main degradation routes of atrazine are proposed.  相似文献   

10.
A polymer with characteristics similar to those of humic acids was obtained by synthesis reactions from oxidative polymerization in an alkaline medium using para-benzoquinone, hydroquinone and 4-aminobenzoic acid as precursors. Samples of natural and synthetic humic acid were used to examine the adsorption behavior of Cu2+ ions on these substrates. The mathematical models described by Langmuir and Freundlich equations were applied, yielding the maximum adsorption intensity values K′ (Langmuir), maximum adsorption capacity, b (Langmuir) and the adsorbent adsorption capacity, m (Freundlich). Based on solubility studies, pH 3 was selected for the development of the adsorption experiment. The Cu2+ ion presented a favorable adsorption, with RL (equilibrium parameter) responses in Langmuir isotherms falling within the desirable ranges.  相似文献   

11.
The release of bound [14C] atrazine residues and their uptake by maize plants was investigated.

“Natural”; humic acids, extracted from a brown soil, and “model”; humic acids, prepared from catechol, both containing bound [14C] atrazine residues were incubated with plants in soil. After 21 days, the maize plants contained 0.7% (plants grown in soil mixed with “natural”; humic acids) to 1.7% (plants grown in soil mixed with “model”; humic acids) of the radioactivity originally introduced.

The roots contained 55 to 70% of the [14C] residues whereas the remainder was present in the shoots. A significant amount of the total [14C] residues (29 to 53%) became again bound in plant tissues, whereas the, majority of extractable [14C] residues was present in the form of conjugates.

The behaviour of “model”; humic acid‐bound residues was comparable to that of “natural”; humic acid‐bound residues or soil‐bound residues.  相似文献   

12.
As a promising in situ remediation technology, nanoscale zero-valent iron (nZVI) can remove polybrominated diphenyl ethers such as decabromodiphenyl ether (BDE209) effectively, However its use is limited by its high production cost. Using steel pickling waste liquor as a raw material to prepare nanoscale zero-valent metal (nZVM) can overcome this deficiency. It has been shown that humic acid and metal ions have the greatest influence on remediation. The results showed that nZVM and nZVI both can effectively remove BDE209 with little difference in their removal efficiencies, and humic acid inhibited the removal efficiency, whereas metal ions promoted it. The promoting effects followed the order Ni2+>Cu2+>Co2+ and the cumulative effect of the two factors was a combination of the promoting and inhibitory individual effects. The major difference between nZVM and nZVI lies in their crystal form, as nZVI was found to be amorphous while that of nZVM was crystal. However, it was found that both nZVM and nZVI removed BDE209 with similar removal efficiencies. The effects and cumulative effects of humic acid and metal ions on nZVM and nZVI were very similar in terms of the efficiency of the BDE209 removal.  相似文献   

13.
Subcellular distributions and chemical forms of cadmium (Cd) in the leaves, stems and roots were investigated in low-Cd accumulation cultivars and high-Cd accumulation cultivars ofpakchoi (Brassica chinensis L.). Root cell wall played a key role in limiting soil Cd from entering the protoplast, especially in the low-Cd cultivars. The high-Cd cultivars had significantly higher leaf and stem Cd concentrations than the low-Cd cultivars in cell wall fraction, chloroplast/trophoplast fraction, organelle fraction and soluble fraction. In low-Cd cultivars, which were more sensitive and thus had greater physiological needs of Cd detoxification than high-Cd cultivars, leaf vacuole sequestrated higher proportions of Cd. Cd in the form of pectate/protein complexes (extracted by 1 tool. L~ NaC1) played a decisive role in Cd translocation from root to shoot, which might be one of the mechanisms that led to the differences in shoot Cd accumulation between the two types of cultivars. Furthermore, the formation of Cd- phosphate complexes (extracted by 2% HAc) was also involved in Cd detoxification within the roots of pakchoi under high Cd stress, suggesting that the mechanisms of Cd detoxification might be different between low- and high-Cd cultivars.  相似文献   

14.
Benzene removal evaluated using Fe304 nano continuous condition. A 44 initial benzene concentration, from aqueous solutions was magnetic particles (NM) in factorial design including NM dose, contact time and pH was investigated in 16 experiments (Taguchi OA design). The results indicated that all factors were significant and the optimum condition was: pH 8, NM dose of 2000 mg.L-1, benzene concentrations of 100 mg.L-1 and contact time of 14min. The maximum benzene uptake and distribution ratio in the optimum situation were 49.4mg.g-1 and 38.4L.g-1, respectively. The nano particles were shown to capture 98.7% of the benzene in optimum batch condition and 94.5% in continuous condition. The isotherm data proved that the Bmnauer-Emmett-Teller model fit more closely and produced an isotherm constant (b) less than one, indicating favorable adsorption. Regeneration studies verified that the benzene adsorbed by the NM could be easily desorbed by temperature, and thereby, NM can be employed repeatedly in water and wastewater management.  相似文献   

15.
Precise and sensitive methods for the simultaneous determination of different classes of antibiotics, including sulphonamides, fluoroquinolones, macrolides, tetracyclines, and trimethoprim in surface water, sediments, and fish muscles were developed. In water samples, drugs were extracted with solid-phase extraction (SPE) by passing 1000 mL of water through hydrophilic lipophilic balanced (HLB) SPE cartridges. Sediment samples were solvent-extracted, followed by tandem SPE (strong anion exchange (SAX) + HLB) clean-ups. Fish muscles were extracted by a mixture of acetonitrile and citric buffer (80:20, v/v) solution, and cleaned by SPE. Liquid chromatography-tandem mass spectrometry (LC-MS/ MS) with multiple reaction monitoring (MRM) detection was employed to quantify all compounds. The recoveries for the antibiotics in the spiked water, sediment, and fish samples were 60.2%-95.8%, 48.1%-105.3%, and 59.8%- 103.4%, respectively. The methods were applied to samples taken from Dianchi Lake, China. It showed that concentrations of the detected antibiotics ranged from limits of quantification (LOQ) to 713.6 ng- L1 (ofloxacin) in surface water and from less than LOQ to 344.8 μg·kg-1 (sulphamethoxazole) in sediments. The number of detected antibiotics and the overall antibiotic concentrations were higher in the urban area than the rural area, indicating the probable role of livestock and human activities as important sources of antibiotic contamination. In fish muscles, the concentration of norfioxacin was the highest (up to 38.5 μg·kg-1), but tetracyclines and macrolides were relatively low. Results showed that the methods were rapid and sensitive, and capable of determining several classes of antibiotics from each of the water, sediment, and fish matrices in a single run.  相似文献   

16.
High quality and low cost carbon can be prepared from Eupatorium adenophorum (E. adenophorum) and Buckwheat straw. The biosorbent was used for Cr(VI) removal. The effect of experimental parameters, such as pH, sorbent dosage and temperature were examined and the optimal experimental condition was determned. Solution pH is found influencing the adsorp- tion. Cr(VI) removal efficiency is found to be maximum (98%) at pH= 1. Langmuir and Freundlich adsorption isotherms were applicable to the adsorption process and their constants were evaluated. The adsorption data obtained agreed well with the Langmuir sorption isotherm model. The maximum adsorption capacities for Cr(VI) ranged from 46.23 to 55.19mg.g^-1 for temperature between 298 K and 308 K under the condition of pH = 1.0. Thermodynamic parameters such as free energy change (AG), enthalpy (AH) and entropy (AS) indicate a spontaneous, endothermic and increased randomness nature of Cr(VI) adsorption. Studies found that the raw E. adenophorum and buckwheat straw mixed materials with simple treatment had a high efficiency for the removal of Cr(VI) and would be a promising adsorbent.  相似文献   

17.
Porous ZIF-7 with the sodalite (SOD) cage structure (ZIF, Zeolitic imidazolate framework) were synthesized by the solvothermal method. Synthesized material was characterized by powder X-ray diffraction (PXRD), thermal gravity (TG), scanning electron micro- scopy (SEM) and Na adsorption analysis. ZIF-8 with the SOD structure and a littl larger pore window was synthesized in a similar way and was characterized for comparisons. Thermal stability and structural stability of ZIF-7 were tested through PXRD analysis, and the capability of the material for CO2 capture from simulated flue gas was investigated through physical adsorption method. The results showed that CO: adsorption capacity on ZIF-7 was about 48 mL. gl while the capacity on ZIF-8 was about 18mg.g-1 (at 12C and 0.98 P/Po relative pressure). Furthermore, the impact of flue gas components on adsorption capacity of ZIF-7 and the selectivity of CO2 against N2 on ZIF-7 was also investigated in this work  相似文献   

18.
Application of Probabilistic Risk Assessment (PRA) and Deterministic Risk Assessment (DRA) at a coking plant site was compared. By DRA, Hazard Quotient (HQ) following exposure to Naphthalene (Nap) and Incremental Life Cancer Risk (ILCR) following exposure to Benzo(a)pyrene (Bap) were 1.87 and 2.12 × 104. PRA revealed valuable information regarding the possible distribution of risk, and risk estimates of DRA located at the 99.59th and 99.76th percentiles in the risk outputs of PRA, which indicated that DRA overestimated the risk. Cleanup levels corresponding acceptable HQ level of 1 and ILCR level of 104 were also calculated for both DRA and PRA. Nap and Bap cleanup levels were 192.85 and 0.14mg.kg-1 by DRA, which would result in only 0.25% and 0.06% of the exposed population to have a risk higher than the acceptable risk, according to the outputs of PRA. The application of PRA on cleanup levels derivation would lift the cleanup levels 1.9 times for Nap and 2.4 times for Bap than which derived by DRA. For this coking plant site, the remediation scale and cost will be reduced in a large portion once the method of PRA is used. Sensitivity analysis was done by calculating the contribution to variance for each exposure parameter and it was found that contaminant concentration in the soil (Cs), exposure duration (ED), total hours spent outdoor per day (ETout), soil ingestion rate (IRs), the air breathing rate (IRa) and bodyweight (BW) were the most important parameters for risk and cleanup levels calculations.  相似文献   

19.
Self-made cation exchange resin supported nanoscale zero-valent iron (R-nZVI) was used to remove phosphorus in rainwater runoff. 80% of phosphorus in rainwater runoff from grassland was removed with an initial concentration of 0.72 mg. L-1 phosphorus when the dosage of R-nZVl is 8 g per liter rainwater, while only 26% of phosphorus was removed when using cation exchange resin without supported nanoscale zero-valent iron under the same condition. The adsorption capacity of R-nZVI increased up to 185 times of that of the cation exchange resin at a saturated equilibrium phosphorous concentration of 0.42 mg. L-1. Various techniques were implemented to characterize the R-nZVI and explore the mechanism of its removal of phosphate. Scanning electron microscopy (SEM) indicated that new crystal had been formed on the surface of R-nZVI. The result from inductive coupled plasma (ICP) indicated that 2.1% of nZVI was loaded on the support material. The specific surface area was increased after the load of nanoscale zero-valent iron (nZVI), according to the measurement of BET-N2 method. The result of specific surface area analysis also proved that phosphorus was removed mainly through chemical adsorption process. X-ray photoelectron spectroscopy (XPS) analysis showed that the new product obtained from chemical reaction between phosphate and iron was ferrous phosphate.  相似文献   

20.
Interaction between peat, humic acid and aqueous metal ions   总被引:2,自引:0,他引:2  
Analysis of peat samples from four regions of the British Isles indicates that the concentrations of Al, Pb and common transition metals tend, as expected, to be higher in regions subject to industrial pollution, but that the concentrations of the nontransition metals Na, K, Mg, Ca and Zn tend to be higher in regions remote from industrial pollution. Humic acids were extracted from the most polluted and least polluted of the peat samples and some characteristics of these acids were compared with those of two commercial acids. Values for stability constants of complexes formed between humic acids extracted from peat and Cu2+, Zn2+ or Pb2+ have been obtained by an ionexchange equilibrium method. Of the three metal ions examined, Pb2+ was found to form the most stable humic acid complexes, followed by Cu2+: this order agrees with the findings of Irving and Williams and of Bunzl. Implications to the binding of actinide and other heavy metal ions in aqueous humic acid are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号