首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Hypothesized to be derived from Cretaceous marine sedimentary rocks, selenium contamination of the Kesterson National Wildlife Refuge is traced through irrigation drainage to the source bedrock of the California Coast Ranges. This biogeochemical pathway of selenium is defined here as the “Kesterson effect.” At the refuge ponds, this effect culminated in 1983 in a 64% rate of deformity and death of embryos and hatchlings of wild aquatic birds. From the previous companion paper on irrigation drainage, the Kesterson effect has been implicated in nine of 11 reconnaissance areas studied in the western United States. Deformities have resulted in at least five of these sites. Climatic, geologic, hydrologic, and soil conditions in these reconnaissance areas are similar to those in the area surrounding Kesterson National Wildlife Refuge in the west-central San Joaquin Valley of California. In California, selenium, as selenate, was ultimately found weathered with sulfur from marine sources in soluble sodium and magnesium sulfate salts, which are concentrated by evaporation on farmland soils. The Se, mobilized by irrigation drainage, is bioaccumulated to toxic levels in refuge wetland ponds that are located mainly in hydrologically closed basins and thus act as concentrating disposal points. The depositional environment of the ponds may be similar to that of the nutrient-rich continental shelf edge and slope in which Cretaceous, Eocene, and Miocene sediments found to be seleniferous in the California Coast Ranges were deposited. Bioaccumulation may be therefore a primary mechanism of selenium enrichment in ancient sediments in addition to that of the formerly suggested Cretaceous volcanic pathway.  相似文献   

2.
In much of the San Joaquin Valley, California, USA, inadequate drainage of applied irrigation water and accumulating salts in the soil have necessitated the installation of subsurface tile drainage systems to preserve crop productivity. At present, these subsurface drainage waters are disposed of by means of evaporation ponds or discharges into the San Joaquin River. Unfortunately, most of these agricultural drainage waters contain high concentrations of salts and naturally occurring trace elements, such as selenium, and recent evidence indicates that substantial numbers of waterbirds are exposed to contamination by selenium in the evaporation ponds. In order to avoid, minimize, or mitigate the adverse impacts on wildlife using the ponds, alternative pond management methods must be identified and evaluated for implementation. A number of methods have the potential to be cost-effective in significantly reducing the contamination hazard to birds using agricultural evaporation ponds. Twenty general methods were evaluated in this study, and four methods are recommended for implementation: remove levee vegetation, remove windbreaks, deepen the ponds, and haze birds. A number of other methods are recommended for further consideration because they appear to have good prospects for reducing the contamination hazard: steepen interior levee slopes, apply herbicides and insecticides, place netting on pond shorelines, and provide freshwater habitat adjacent to evaporation ponds. It may be necessary to use a combination of methods to effectively control selenium contamination of aquatic birds because it is unlikely that a single affordable pond management method will be able to entirely eliminate the contamination hazard.  相似文献   

3.
Rainfall can transport herbicides from agricultural land to surface waters, where they become an environmental concern. Tile drainage can benefit crop production by removing excess soil water but tile drainage may also aggravate herbicide and nutrient movement into surface waters. Water management of tile drains after planting may reduce tile drainage and thereby reduce herbicide losses to surface water. To test this hypothesis we calculated the loss of three herbicides from a field with three water management systems: free drainage (D), controlled drainage (CD), and controlled drainage with subsurface irrigation (CDS). The effect of water management systems on the dissipation of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine), metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazine-5(4H)-one), and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] in soil was also monitored. Less herbicide was lost by surface runoff from the D and CD treatments than from CDS. The CDS treatment increased surface runoff, which transported more herbicide than that from D or CD treatments. In one year, the time for metribuzin residue to dissipate to half its initial value was shorter for CDS (33 d) than for D (43 d) and CD (46 d). The half-life of atrazine and metolachlor were not affected by water management. Controlled drainage with subsurface irrigation may increase herbicide loss through increased surface runoff when excessive rain is received soon after herbicide application. However, increasing soil water content in CDS may decrease herbicide persistence, resulting in less residual herbicide available for aqueous transport.  相似文献   

4.
ABSTRACT: Increasing block-rate prices for irrigation water were implemented during 1989 in a 10,000-acre irrigation district in California's San Joaquin Valley. The program motivated improvements in irrigation practices that reduced the volume of water delivered to farm fields and the volume of drain water collected in on-farm drainage systems. The ratio of net crop water requirements to field deliveries increased from 0.65 in 1988 to 0.73 in 1989. The volume of drain water collected at a subset of 20 drainage systems was reduced by 351.1 acre-feet (11.5 percent). Estimated loads of salt, boron, and selenium were reduced by 2,407 tons (11.0 percent), 3.33 tons (11.0 percent), and 0.07 tons (9.2 percent).  相似文献   

5.
Nitrate contamination of surface waters has been linked to irrigated agriculture across the world. We determined the NO3-N loads in the drainage waters of two sprinkler-irrigated watersheds located in the Ebro River basin (Spain) and their relationship to irrigation and N management. Crop water requirements, irrigation, N fertilization, and the volume and NO3-N concentration of drainage waters were measured or estimated during two-year (Watershed A; 494 irrigated ha) and one-year (Watershed B; 470 irrigated ha) study periods. Maize (Zea mays L.) and alfalfa (Medicago sativa L.) were grown in 40 to 60% and 15 to 33% of the irrigated areas, respectively. The seasonal irrigation performance index (IPI) ranged from 92 to 100%, indicating high-quality management of irrigation. However, the IPI varied among fields and overirrigation occurred in 17 to 44% of the area. Soil and maize stalk nitrate contents measured at harvest indicated that N fertilizer rates could be decreased. Drainage flows were 68 mm yr(-1) in Watershed A and 194 mm yr(-1) in Watershed B. Drainage NO3-N concentrations were independent of drainage flows and similar in the irrigated and nonirrigated periods (average: 23-29 mg L(-1)). Drainage flows determined the exported mass of NO3-N, which varied from 18 (Watershed A) to 49 (Watershed B) kg ha(-1) yr(-1), representing 8 (Watershed A) and 22% (Watershed B) of the applied fertilizer plus manure N. High-quality irrigation management coupled to the split application of N through the sprinkler systems allowed a reasonable compromise between profitability and reduced N pollution in irrigation return flows.  相似文献   

6.
Studies of irrigation drainage in the Western United States have documented some of the effects of irrigating land without first understanding and then considering implications from the interdependent relationships of hydrology, geology, geochemistry, biology, climatology, land use and socio-economic issues. In studies completed in 26 areas, selenium is the trace element found most often at elevated concentrations in water, bottom material and biota. Boron, arsenic, mercury and pesticide residues have also been found at elevated levels in some areas. Bioaccumulation of constituents associated with irrigation drainage is common. As the world experiences an explosive population growth, particularly in poorer countries, demands for food production from marginal, submarginal and newly irrigated soils are likely to cause severe adverse environmental impacts from allocation of limited water resources and contamination from irrigation drainwater. Cultivated marginal land is highly susceptible to degradation from soil erosion, salinization and waterlogging, not withstanding release of contaminants from application of irrigation water.  相似文献   

7.
Increasing demand for global food production is leading to greater use of irrigation to supplement rainfall and enable more intensive use of land. Minimizing adverse impacts of this intensification on surface water and groundwater resources is of critical importance for the achievement of sustainable land use. In this paper we examine the linkages between irrigation runoff and resulting changes in quality of receiving surface waters and groundwaters in Australia and New Zealand. Case studies are used to illustrate impacts under different irrigation techniques (notably flood and sprinkler systems) and land uses, particularly where irrigation has led to intensification of land use. For flood irrigation, changes in surface water contaminant concentrations are directly influenced by the amount of runoff, and the intensity and kind of land use. Mitigation for flood irrigation is best achieved by optimizing irrigation efficiency. For sprinkler irrigation, leaching to groundwater is the main transport path for contaminants, notably nitrate. Mitigation measures for sprinkler irrigation should take into account irrigation efficiency and the proximity of intensive land uses to sensitive waters. Relating contaminant concentrations in receiving groundwaters to their dominant causes is often complicated by uncertainty about the subsurface flow paths and the possible pollutant sources, viz. drainage from irrigated land. This highlights the need for identification of the patterns and dynamics of surface and subsurface waters to identify such sources of contaminants and minimize their impacts on the receiving environments.  相似文献   

8.
Ecological impacts of water-quality problems have developed in the western United States resulting from the disposal of seleniferous agricultural wastewater in wetland areas. Overt effects of selenium toxicosis occurred at five areas where deformities of wild aquatic birds were similar to those first observed at Kesterson National Wildlife Refuge in the west-central San Joaquin Valley of California. These areas are: Tulare Lake Bed Area, California, Middle Green River Basin, Utah, Kendrick Reclamation Project Area, Wyoming, Sun River Basin, Montana, and Stillwater Wildlife Management Area, Nevada. Potential for ecological damage is indicated at six more sites in Oregon, Colorado, the Colorado/Kansas border, and South Dakota out of 16 areas in 11 states where biological tissue data were collected. This conclusion is based on the fact that selenium bioaccumulated in bird livers to median levels that had exceeded or were in the range associated with adverse reproductive effects. Selenium concentrations in samples of fish and bird eggs support these conclusions at a majority of these areas. Reason for concern is also given for the lower Colorado River Valley, although this is not exclusively a conclusion from these reconnaissance data. Biogeochemical conditions and the extent of selenium contamination of water, bottom sediment, and biota from which this assessment was made are given here. In a companion paper, the biogeochemical pathway postulated for selenium contamination to take place from natural geologic sources to aquatic wildlife is defined.  相似文献   

9.
Pesticides and nutrients can be transported from treated agricultural land in irrigation runoff and thus can affect the quality of receiving waters. A 3-yr study was carried out to assess possible detrimental effects on the downstream water quality of the South Saskatchewan River due to herbicide and plant nutrient inputs via drainage water from an irrigation district. Automated water samplers and flow monitors were used to intensively sample the drainage water and to monitor daily flows in two major drainage ditches, which drained approximately 40% of the flood-irrigated land within the irrigation district. Over three years, there were no detectable inputs of ethalfluralin into the river and those of trifluralin were less than 0.002% of the amount applied to flood-irrigated fields. Inputs of MCPA, bromoxynil, dicamba and mecoprop were 0.06% or less of the amounts applied, whereas that for clopyralid was 0.31%. The relatively higher input (1.4%) of 2,4-D to the river was probably due its presence in the irrigation water. Corresponding inputs of P (as total P) and N (as nitrate plus ammonia) were 2.2 and 1.9% of applied fertilizer, respectively. Due to dilution of the drainage water in the river, maximum daily herbicide (with the exception of 2,4-D) and nutrient loadings to the river would not have resulted in significant concentration increases in the river water. There was no consistent remedial effect on herbicides entering the river due to passage of the drainage water through a natural wetland. In contrast, a considerable portion of the nutrients entering the river originated from the wetland.  相似文献   

10.
ABSTRACT: From 1986 to 1993, the National Irrigation Water-Quality Program (NIWQP) of the U.S. Department of the Interior studied whether contamination was induced by irrigation drainage in 26 areas of the Western United States. In 1992, a study to evaluate and synthesize data collected during these 26 investigations began. Selenium, boron, and molybdenum are the trace elements and DDT the pesticide most commonly found in surface water at concentrations exceeding chronic criteria for the protection of aquatic life. In six of the areas, the median selenium concentration exceeded the criterion. Aquatic-life criteria have not been developed for uranium, but the median uranium concentration exceeded the proposed Maximum Contaminant Level for drinking water in seven areas. A principal components analysis indicates that severity of selenium contamination is not related to the severity of contamination by boron, molybdenum, and arsenic. Arsenic, boron, molybdenum, and selenium concentrations are nearly the same in both filtered and unfiltered samples, which indicates that contaminant concentrations in filtered samples can be directly compared with biological-effects data developed using unfiltered samples. At a given site, selenium concentrations in surface water can change by an order of magnitude during the course of a year and from one year to another.  相似文献   

11.
ABSTRACT: Assessment and control of nutrient losses from paddy fields is important to protect water quality of lakes and streams in Korea. A four‐year field study was carried out to investigate water management practices and losses of nitrogen (N) and phosphorus (P) in rice paddy irrigation fields in southern Korea. The amount and water quality of rainfall, irrigation, surface drainage, and infiltration were measured and analyzed to estimate inputs and losses of N and P. The observed irrigation amount surpassed consumptive use, and approximately 52 to 69 percent of inflow (precipitation plus irrigation) was lost to surface drainage. Field data showed that significant amounts of irrigation water and rainfall were not effectively used for rice paddy culture. Water quality data indicated that drainage from paddy fields could degrade the recipient water environment. The nutrient balance indicated that significant amounts of nutrients (29.5 percent of total N and 8.6 percent of total P compared to input) were lost through surface drainage. Furthermore, up to half the nutrient losses occurred during nonstorm periods. The study results indicate that inadequate water management influences N and P losses during both storm and nonstorm periods. Proper water management is required to reduce nutrient losses through surface drainage from paddy fields; this includes such measures as minimum irrigation, effective use of rainfall, adoption of proper drainage outlet structures, and minimized forced surface drainage.  相似文献   

12.
The Pampa in Argentina is a large plain with a quite obvious dependence on agriculture, water availability and its quality. It is a sensitive environment due to weather changes and slope variations. Supplementary irrigation is a useful practice for compensating the production in the zone. However, potential negative impacts of this type of irrigation in salinization and sodification of soils are evident. Most conventional methodologies for assessing water irrigation quality have difficulties in their application in the region because they do not adjust to the defined assumptions for them. Consequently, a new GIS-based methodology integrating multiparametric data was proposed for evaluating and delineating groundwater suitability zones for irrigation purposes in flat areas. Hydrogeological surveys including water level measurements, groundwater samples for chemical analysis and electrical conductivity (EC) measurements were performed. The combination of EC, sodium adsorption ratio, residual sodium carbonate, slopes and hydraulic gradient parameters generated an irrigation water index (IWI). With the integration of the IWI 1 to 3 classes (categories of suitable waters for irrigation) and the aquifer thickness the restricted irrigation water index (RIWI) was obtained. The IWI's index application showed that 61.3?% of the area has "Very high" to "Moderate" potential for irrigation, while the 31.4?% of it has unsuitable waters. Approximately, 46?% of the tested area has high suitability for irrigation and moderate groundwater availability. This proposed methodology has advantages over traditional methods because it allows for better discrimination in homogeneous areas.  相似文献   

13.
ABSTRACT: Using a geographic information system, a regression model has been developed to identify and to assess potential sources of selenium in the Kendrick Reclamation Project Area, Wyoming. A variety of spatially distributed factors was examined to determine which factors are most likely to affect selenium discharge in tributaries to the North Platte River. Areas of Upper Cretaceous Cody Shale and Quaternary alluvial deposits and irrigated land, length of irrigation canals, and boundaries of hydrologic subbasins of the major tributaries to the North Platte River were digitized and stored in a geographic information system. Selenium concentrations in samples of soil, plant material, ground water, and surface water were determined and evaluated. The location of all sampling sites was digitized and stored in the geographic information system, together with the selenium concentrations in samples. A regression model was developed using stepwise multiple regression of median selenium discharges on the physical and chemical characteristics of hydrologic subbasins. Results indicate that the intensity of irrigation in a hydrologic subbasin, as determined by area of irrigated land and length of irrigation delivery canals, accounts for the largest variation in median selenium discharges among subbasins. Tributaries draining hydrologic subbasins with greater intensity of irrigation result in greater selenium discharges to the North Platte River than do tributaries draining subbasins with lesser intensity of irrigation.  相似文献   

14.
Thirteen metric tons of poultry litter are produced annually by poultry producers in the U.S. Poultry litter contains the sex hormones estradiol and testosterone, endocrine disruptors that have been detected in surface waters. The objective of this study was to evaluate the potential impact of poultry litter applications on estradiol and testosterone concentrations in subsurface drainage and surface runoff in irrigated crop land under no-till and conventional-till management. We conducted an irrigation study in fall of 2001 and spring of 2002. Four treatments, no-till plus poultry litter, conventional-till plus poultry litter, no-till plus conventional fertilizer, and conventional-till plus conventional fertilizer, were evaluated. Flow-weighted concentration and load ha−1 of the two hormones were measured in drainage and runoff. Soil concentrations of estradiol and testosterone were measured. Based on comparisons to the conventional fertilizer (and control) treatments, poultry litter did not add to the flow-weighted concentration or load ha−1 of either estradiol or testosterone in subsurface drainage or surface runoff. Significant differences were, however, observed between tillage treatments: flow-weighted concentrations of estradiol were greater for no-till than conventional-till plots of the June irrigation; and runoff loads of both estradiol and testosterone were less from no-till than conventional-till plots for the November irrigation. Although the differences between no-till and conventional-tillage appeared to affect the hydrologic transport of both hormones, the differences appeared to have inconsequential environmental impact.  相似文献   

15.
Salt loading in irrigation return flows contributes to the salinization of the receiving water bodies, particularly when originated in salt-affected areas as frequently found in the middle Ebro River basin (Spain). We determined the salt loading in La Violada Gully from the total dissolved solids (TDS) and flows (Q) during the 1995 to 1998 hydrological years. Since this gully collects flows from various sources, an end-member mixing analysis (EMMA) was performed to quantify the drainage flow from La Violada Irrigation District (VID). Three flow components were identified in La Violada Gully: drainage waters from VID (Qd); tail-waters from irrigation ditches, spill-over, and seepage from the Monegros Canal (Qo); and ground water inflows (Qg) originating in the dryland watershed. Gypsum in the soils of VID was the main source for salts in La Violada Gully (flow-weighted mean TDS=1720 mg L-1, dominated by sulfate and calcium). The contribution of Qg to the total gully flow during the 1996 irrigation season was low (6.5% of the total flow). The 1995 to 1998 annual salt load average in La Violada Gully was 78 628 Mg, 71% of which was exported during the irrigation season. The 1995 to 1998 irrigation season salt load average in Qd was 43 015 Mg (77% of the total load). Thus, irrigated agriculture in VID was the main source of salt loading in this gully, with a yield of 11.1 Mg of salts per hectare of irrigated land for the irrigation season. Efficient irrigation systems and irrigation management practices that reduce Qd are key factors for controlling off-site salt pollution of these gypsum-rich irrigated areas.  相似文献   

16.
Salinity, selenium, and uranium pose water‐quality challenges for the Arkansas River in southeastern Colorado and other rivers that support irrigation in semiarid regions. This study used 31 years of continuous discharge and specific conductance (SC) monitoring data to assess interannual patterns in water quality using mass balance on a 120‐km reach of river. Discrete sampling data were used to link the SC records to salinity, selenium, and uranium. Several important patterns emerged. Consumptive use reduced discharge by a median value of 33% and drove corresponding increases in salinity and uranium concentrations. Increased water availability for irrigation from rainfall and upstream snowpack in 1995–1999 flushed additional salinity and uranium into the river in 1996–2000; average annual total dissolved solids (salinity) concentrations increased 25%, and loads increased 131%. Smaller flushing events have occurred, sometimes lagging an increase in water availability by about one year. The pattern indicates flushing of salts temporarily stored, evaporatively concentrated, or of geologic origin. Mobilization of selenium from the reach was minor compared to salinity and uranium, and net selenium removal from the river was suggested in some years. Several processes related to irrigation could be removing selenium. The results provide context for efforts to improve water quality in the Arkansas River and rivers in other semiarid regions.  相似文献   

17.
The limited water resources of Egypt lead to widespread water-stress. Consequently, the use of marginal water sources, such as agricultural drainage waters, provides one of the national feasible solutions to the problem. However, the marginal quality of the drainage waters may restrict their use.The objective of this research is to develop a tool for planning and managing the reuse of agricultural drainage water for irrigation in the Nile Delta. This is achieved by classifying the pollution levels of drainage water into several categories using a statistical clustering approach that may ensure simple but accurate information about the pollution levels and water characteristics at any point within the drainage system.The derived clusters are then visualized by using a Geographical Information System (GIS) to draw thematic maps based on the entire Nile Delta, thus making GIS as a decision support system. The obtained maps may assist the decision makers in managing and controlling pollution in the Nile Delta regions. The clustering process also provides an effective overview of those spots in the Nile Delta where intensified monitoring activities are required. Consequently, the obtained results make a major contribution to the assessment and redesign of the Egyptian national water quality monitoring network.  相似文献   

18.
ABSTRACT .A case study was performed to evaluate potential applications of desalted saline water for agriculture using 2 distillation type processes and 2 membrane type processes. The investigation determined the costs and benefits associated with desalting saline water at concentrations of 1,500, 900, 400, 200, and 50 ppm. Benefits from desalting are generated by shifts to more profitable crops, reduced costs for drainage, and reduction in fertilizer and labor requirements with better quality water. Costs are based on the project features such as desalting plants, raw water diversion facilities, storage reservoirs, conveyance and distribution systems, brine disposal, blending facilities, and gypsum addition systems. Hydrologic studies determined the crop irrigation requirements, water demand schedules, desalted water storage requirements, brine disposal requirements, and size of facilities required. Reconnaissance design layouts were made for producing desalted water using a combination of 14 schemes. The study also included a review of irrigation practices. The benefit-cost ratios range from 0.4 to 1.0 for 1,500 ppm irrigation water to 0.8 to 1.0 for 50 and 200 ppm water. Investment costs per acre are high, ranging from $12,900 to $20,900. Irrigation benefits are based on the increase in production from a desert condition with no water supply to the irrigation conditions studied.  相似文献   

19.
Abstract: Analyses of major elements, environmental isotope ratios (δ18O, δ2H), and PHREEQC inverse modeling investigations were conducted to understand the processes controlling the salinization of groundwater within the Datong Basin. The hydrochemical results showed that groundwater with high total dissolved solid (TDS) concentrations was dominated by sodium bicarbonate (Na‐HCO3), sodium chlorite (Na‐Cl), and sodium sulfate (Na‐SO4) type waters, whereas low‐TDS groundwater from near mountain areas was dominated by calcium bicarbonate (Ca‐HCO3) and magnesium bicarbonate (Mg‐HCO3) type waters. The characterization of the major components of groundwater and PHREEQC inverse modeling indicated that the aluminosilicate hydrolysis, cation exchange, and dissolution of evaporites (halite, mirabilite, and gypsum) governed the salinization of groundwater within the Datong Basin. The environmental isotope (δ18O, δ2H) and Cl?/Br? ratios revealed the impact of fast vertical recharge by irrigation returns and salt‐flushing water on the groundwater salinization. According to the analyses of major hydrochemical components and PHREEQC inverse modeling, evaporite dissolution associated with irrigation and salt‐flushing practice was probably the dominant controlling factor for the groundwater salinization, especially in the central part of the basin. Therefore, groundwater pumping for irrigation and salt‐flushing should be controlled to protect groundwater quality in this area.  相似文献   

20.
Selenium status in soils of northern districts of India   总被引:1,自引:0,他引:1  
The HG-AAS technique was used to estimate the soil selenium status of the agricultural lands of northern parts of India. The drier lands where lesser rains were received or where less irrigation water was available in Rajasthan and southern parts of the Haryana states had above normal soil selenium levels. These soils were also found to be alkaline. Punjab, Himachal Pradesh and northern parts of the Haryana states had normal levels of selenium in their soils, except with slightly lower selenium levels in a few areas that were affected by floods along the river Yamuna. The results were also confirmed using the ICP-OES technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号