首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The emission of waste in an economy, including landfill, is to a large extent determined by its patterns of technology, institutions, and lifestyle. A mathematical model (the waste input–output model) is presented that gives a simple analytical representation of this interdependence. The model was used to evaluate the effects of alternative waste disposal and recycling options on the levels of industrial production, landfill consumption, and the emission of carbon dioxide, and also to analyze the overall dependence on landfill of individual industries. It was found that a systematic combination of the options could be effective in reducing the overall landfill consumption and carbon dioxide emission. Received: November 4, 2000 / Accepted: August 2, 2001  相似文献   

2.
3.
The large quantity of wash water used in the electroplating and etching process in the manufacturing of printed circuit boards (PCBs) contains a high level of heavy metal ions (Cu++, Zn++, Ni++, Cr+++, Pb++). These potentially toxic ions are removed from the wash water effluent through a polyelectrolyte flocculation and hydroxide precipitation process during which a hydroxide sediment sludge rich in metal ions and polymers is generated. This sediment sludge possesses some unique characteristics and properties in terms of composition, fine particle size distribution, high specific surface area, and a tendency to agglomerate after drying. Direct disposal of this classified “special waste” (Department of Environment of Northern Ireland, The Special Waste Regulations, Northern Ireland, 1998) at landfill sites may cause serious soil and underground water pollution through a gradual ionic leaching process. This paper describes an experimental investigation, exploratory in nature, which employs microwave radiation for detoxification of the sediment sludge through microwave heating, drying and metal ion immobilization within the sediment solids. The effectiveness of microwave assisted binding and immobilization of the metal ions within the sediment solids was studied in conjunction with an evaluation of microwave energy efficiency in comparison to the more conventional convective heating and drying processes. Given a sufficient amount of microwave radiation, leaching of Cu2+ and Pb2+ was reduced by 2700% and 1080%, respectively, over a period of 12 weeks, and further leaching was not detectable within six months at simulated local landfill aqueous conditions. This paper also attempts, through experimental observation, to add to the very limited understanding of the complex interactions and binding of free metal ions with the polymeric materials and metal hydroxides under the influence of an electromagnetic field. The high specific surface of the sediment solids and their adsorption properties were further explored and characterized in a study of adsorption of reactive dyes by the microwave processed solids.  相似文献   

4.
In situ aeration by means of the Airflow technology was proposed for landfill conditioning before landfill mining in the framework of a reclamation project in Northern Italy. A 1-year aeration project was carried out on part of the landfill with the objective of evaluating the effectiveness of the Airflow technology for landfill aerobization, the evolution of waste biological stability during aeration and the effects on leachate and biogas quality and emissions.The main outcomes of the 1-year aeration project are presented in the paper.The beneficial effect of the aeration on waste biological stability was clear (63% reduction of the respiration index); however, the effectiveness of aeration on the lower part of the landfill is questionable, due to the limited potential for air migration into the leachate saturated layers.During the 1-year in situ aeration project approx. 275 MgC were discharged from the landfill body with the extracted gas, corresponding to 4.6 gC/kgDM. However, due to the presence of anaerobic niches in the aerated landfill, approx. 46% of this amount was extracted as CH4, which is higher than reported in other aeration projects. The O2 conversion quota was lower than reported in other similar projects, mainly due to the higher air flow rates applied.The results obtained enabled valuable recommendations to be made for the subsequent application of the Airflow technology to the whole landfill.  相似文献   

5.
Referring to the industrial wood waste category (as dominant in the provincial district of Pesaro-Urbino, Marche Region, Italy), this paper deals with the experimental characterisation and the carrying out of non-controlled burning tests (at lab- and pilot-scale) for selected “raw” and primarily “engineered” (“composite”) wood wastes.The property characterisation has primarily revealed the following aspects: potential influence on moisture content of local weather conditions at outdoor wood waste storage sites; generally, higher ash contents in “engineered” wood wastes as compared with “raw” wood wastes; and relatively high energy content values of “engineered” wood wastes (ranging on the whole from 3675 to 5105 kcal kg−1 for HHV, and from 3304 to 4634 kcal kg−1 for LHV).The smoke qualitative analysis of non-controlled lab-scale burning tests has primarily revealed: the presence of specific organic compounds indicative of incomplete wood combustion; the presence exclusively in “engineered” wood burning tests of pyrroles and amines, as well as the additional presence (as compared with “raw” wood burning) of further phenolic and containing nitrogen compounds; and the potential environmental impact of incomplete industrial wood burning on the photochemical smog phenomenon.Finally, non-controlled pilot-scale burning tests have primarily given the following findings: emission presence of carbon monoxide indicative of incomplete wood combustion; higher nitrogen oxide emission values detected in “engineered” wood burning tests as compared with “raw” wood burning test; and considerable generation of the respirable PM1 fraction during incomplete industrial wood burning.  相似文献   

6.
A general mathematical model has been developed as a tool for environmental evaluation of industrial chemical processes. This model is based on the life cycle assessment (LCA) methodology and includes a modular and cumulative conceptual approximation. Accordingly, the model considers the potential effects on the environment caused by mass, energy and exergy flows. For environmental loads related with mass flows, two main categories are defined: pollution and perturbation environmental effects. Whereas for the environmental effect associated with energy flows, a factor defined as “energy dissipation” is employed, and similarly for exergy flows, a “exergy destruction” parameter is used. The measurement unit employed throughout the model is expressed in terms of “potential environmental impact units/hour”. As an example study case, the integrated production chain (IPC) for nitric acid production in the Colombian context is evaluated. This particular IPC includes the ammonia production plant, energy plants and main process plant. The results demonstrate that for environmental perturbation effects based on mass flows, the main contribution in the IPC corresponds to the energy plants. In the case of pollution environmental loads, the principal contribution relates to ammonia production. Regarding environmental effects associated with energy flows, the highest “energy dissipation” factor corresponds to the main process, followed in order by the ammonia process. Finally, for the effect denominated as “exergy destruction”, it could be established that Colombian energy plants show the highest contribution in the IPC.  相似文献   

7.
Old and unlined landfill sites pose a risk to groundwater and surface water resources. While landfill leachate plumes in sandy aquifers have been studied, landfills in clay till settings and their impact on receiving water bodies are not well understood. In addition, methods for quantitatively linking soil and groundwater contamination to surface water pollution are required. This paper presents a method which provides an estimate of the contaminant mass discharge, using a combination of a historical investigation and contaminant mass balance approach. The method works at the screening level and could be part of a risk assessment. The study site was Risby Landfill, an old unlined landfill located in a clay till setting on central Zealand, Denmark. The contaminant mass discharge was determined for three common leachate indicators: chloride, dissolved organic carbon and ammonium. For instance, the mass discharge of chloride from the landfill was 9.4 ton/year and the mass discharge of chloride to the deep limestone aquifer was 1.4 ton/year. This resulted in elevated concentrations of leachate indicators (chloride, dissolved organic carbon and ammonium) in the groundwater. The mass discharge of chloride to the small Risby Stream down gradient of the landfill was approximately 31 kg/year. The contaminant mass balance method worked well for chloride and dissolved organic carbon, but the uncertainties were elevated for ammonium due to substantial spatial variability in the source composition and attenuation processes in the underlying clay till.  相似文献   

8.
Large amounts of solid waste are disposed in landfills and the potential of particulate matter (PM) emissions into the atmosphere is significant. Particulate matter emissions in landfills are the result of resuspension from the disposed waste and other activities such as mechanical recycling and composting, waste unloading and sorting, the process of coating residues and waste transport by trucks. Measurements of ambient levels of inhalable particulate matter (PM10) were performed in a landfill site located at Chania (Crete, Greece). Elevated PM10 concentrations were measured in the landfill site during several landfill operations. It was observed that the meteorological conditions (mainly wind velocity and temperature) influence considerably the PM10 concentrations. Comparison between the PM10 concentrations at the landfill and at a PM10 background site indicates the influence of the landfill activities on local concentrations at the landfill. No correlation was observed between the measurements at the landfill and the background sites. Finally, specific preventing measures are proposed to control the PM concentrations in landfills.  相似文献   

9.
3M initiated its “Pollution Prevention Pays” (3P) program in 1975 and is probably the U.S. corporation which has been most identified with using preventive strategies to reduce toxic releases. This case study draws on interviews conducted with representatives of 3M manufacturing plants and corporate staff to provide both an overview of 3M's pollution prevention efforts and explore the organizational dimensions of two types of pollution prevention projects. The analysis addresses two key questions: (1) what do 3M's accomplishments indicate about the potential for pollution prevention approaches? and (2) what are the organizational incentives, resources and strategies which underpin 3M's pollution prevention efforts?  相似文献   

10.
An inventory of material and energy consumption during the construction and operation (C&O) of a typical sanitary landfill site in China was calculated based on Chinese industrial standards for landfill management and design reports. The environmental impacts of landfill C&O were evaluated through life cycle assessment (LCA). The amounts of materials and energy used during this type of undertaking in China are comparable to those in developed countries, except that the consumption of concrete and asphalt is significantly higher in China. A comparison of the normalized impact potential between landfill C&O and the total landfilling technology implies that the contribution of C&O to overall landfill emissions is not negligible. The non-toxic impacts induced by C&O can be attributed mainly to the consumption of diesel used for daily operation, while the toxic impacts are primarily due to the use of mineral materials. To test the influences of different landfill C&O approaches on environmental impacts, six baseline alternatives were assessed through sensitivity analysis. If geomembranes and geonets were utilized to replace daily and intermediate soil covers and gravel drainage systems, respectively, the environmental burdens of C&O could be mitigated by between 2% and 27%. During the LCA of landfill C&O, the research scope or system boundary has to be declared when referring to material consumption values taken from the literature; for example, the misapplication of data could lead to an underestimation of diesel consumption by 60–80%.  相似文献   

11.
Investigations at an 11-year-old landfill site have shown that soil moisture was positively, and soil oxygen was negatively correlated with temperature and concentration of soil methane generated by decomposition of the underlying landfill materials. A thin (0.2 m) cover of soil-forming material over the landfill showed acute oxygen deficiency and high temperatures. The high moisture content of this cover was probably caused by upward movement of water from within the landfill across a temperature gradient. Nearly all the trees of five species on the thinnest (0.2 m) cover died, but survival and growth was markedly improved on 1.5 m additional clay cover over the landfill. This material prevented landfill gas contamination, and also contained sufficient plant-available soil moisture to negate the large soil moisture deficits the area experiences in most summers. The evidence presented shows that landfill sites are dynamic in the distribution of landfill temperature and gas emissions and the planning of tree planting schemes should take this into account.  相似文献   

12.
A large-scale field experiment has been carried out at the Coastal Park landfill which serves the City of Cape Town, South Africa. The landfill is unlined, and the City Council was under pressure from the central Government to cap and close the existing landfill and to establish an extension to the landfill with a lining to prevent the escape of leachate into the ground water. Measuring cells, installed to measure the rate of leachate flow from the landfill had shown that over a period of 9 years, from 1987 to 1995, leachate flow had averaged only 2% of rainfall. It therefore appeared possible, by increasing the moisture absorption capacity of the landfill, i.e., by increasing its height, to stop the leachate flow completely. If this could be achieved, there would be no need for a lining, and the raising would considerably extend the life of the landfill.The paper describes the experiment and its results, including the effects of the raising on leachate flow, settlement, leachate quality and the potential for polluting ground water, and the landfill’s water balance.  相似文献   

13.
Electrochemical oxidation for landfill leachate treatment   总被引:10,自引:0,他引:10  
This paper aims at providing an overview of electrochemical oxidation processes used for treatment of landfill leachate. The typical characteristics of landfill leachate are briefly reviewed, and the reactor designs used for electro-oxidation of leachate are summarized. Electrochemical oxidation can significantly reduce concentrations of organic contaminants, ammonia, and color in leachate. Pretreatment methods, anode materials, pH, current density, chloride concentration, and other additional electrolytes can considerably influence performance. Although high energy consumption and potential chlorinated organics formation may limit its application, electrochemical oxidation is a promising and powerful technology for treatment of landfill leachate.  相似文献   

14.
As the stabilization criteria for landfill sites, only chemical criteria for the leachate discharges from the landfill sites have been used in Japan and many other countries. Recently, chemical oxidation has been developed as a method for the early-stabilization of landfills. However, by-products that are difficult to detect by chemical analysis can be produced by this method. Therefore, toxicity tests are useful tools for detecting the changes of leachate quality after application of this method. The heat source in the A landfill was analyzed by organic position inquiry technology, and ozone-treated leachate was sprayed back to the heat source in the landfill. Toxicity changes of the leachate after the spray were monitored using Microtoxtrade mark, ToxScreen-II, and DaphTox tests. The hardly-degradable organic matter was efficiently removed and toxicities of the leachate in the heat source decreased after the application. These toxicity results were significantly related to chemical oxygen demand (COD) changes. Thus, it was concluded that the toxicity tests were effective for monitoring the leachate quality after applying the chemical oxidation method for landfill stabilization, and its incorporation to establish the criteria for early-stabilization of landfill sites needs to be considered.  相似文献   

15.

The main objective of this study was to assess the impact of the NamSon landfill on subsurface geological structure and hydrological environment by geophysical techniques and hydrochemical analysis of surface and groundwater. The electrical resistivity tomography (ERT), self-potential (SP) and very low frequency (VLF) methods were used for the investigation of geological structure near the landfill. Three profiles (900 m long in total) of the two-dimensional ERT, VLF density sections and 180 SP data points scattered throughout the study area near the disposal site constituted the basis of the data used in analysis. Additionally, surface water and groundwater samples were collected from six sites in the area for the chemical analysis. Interpretations of geophysical data show a low resistivity zone (< 15 Ωm), which appears to be a fully saturated zone with leachate from landfill. The results of the geophysical investigations are not always fully confirmed by the results of hydrochemical analysis. The quality of water in the vicinity of the landfill dramatically decreased over the year (2015–2016) and actions should be taken to inverse this negative trend.

  相似文献   

16.
The observed temperatures in different landfills are used to establish a number of idealized time–temperature histories for geomembrane liners in municipal solid waste (MSW) landfills. These are then used for estimating the service life of different HDPE geomembranes. The predicted antioxidant depletion times (Stage I) are between 7 and 750 years with the large variation depending on the specific HDPE geomembrane product, exposure conditions, and most importantly, the magnitude and duration of the peak liner temperature. The higher end of the range corresponds to data from geomembranes aged in simulated landfill liner tests and a maximum liner temperature of 37 °C. The lower end of the range corresponds to a testing condition where geomembranes were immersed in a synthetic leachate and a maximum liner temperature of 60 °C. The total service life of the geomembranes was estimated to be between 20 and 3300 years depending on the time–temperature history examined. The range illustrates the important role that time–temperature history could play in terms of geomembrane service life. The need for long-term monitoring of landfill liner temperature and for geomembrane ageing studies that will provide improved data for assessing the likely long-term performance of geomembranes in MSW landfills are highlighted.  相似文献   

17.
This article discusses the appropriateness of using landfills as part of remediating hazardous chemical and Superfund sites, with particular emphasis on providing for true long‐term public health and environmental protection from the wastes and contaminated soils that are placed in the landfills. On‐site landfilling or capping of existing wastes is typically the least expensive approach for gaining some remediation of existing hazardous chemical/Superfund sites. The issues of the deficiencies in US EPA and state landfilling approaches discussed herein are also applicable to the landfilling of municipal and industrial solid “nonhazardous” wastes. These deficiencies were presented in part as “Problems with Landfills for Superfund Site Remediation” at the US EPA National Superfund Technical Assistance Grant Workshop held in Albuquerque, New Mexico, in February 2003. They are based on the author's experience in investigating the properties of landfill liners and the characteristics of today's landfills, relative to their ability to prevent groundwater pollution and to cause other environmental impacts. Discussed are issues related to both solid and hazardous waste landfills and approaches for improving the ability of landfills to contain wastes and monitor for leachate escape from the landfill for as long as the wastes in the landfill will be a threat. © 2004 Wiley Periodicals, Inc.  相似文献   

18.
The main purpose of this research is to clarify and compare the mechanism of waste stabilization by a recirculatory semi-aerobic landfill with the aeration system. Our research is proposing the semi-aerobic landfill system for developing countries because of the simple and low-cost technology for the final disposal. Moreover, this system with leachate recirculation can be a more effective system for waste stabilization because of the improvement of leachate quality as an organic pollutant and, also, nitrogen removal. In this research, five different systems of landfill (Ae: aerobic, An: anaerobic, Se: semi-aerobic, SeR: recirculatory semi-aerobic landfill, and SeRA: recirculatory semi-aerobic landfill with aeration system) are compared with lysimeters which are 1 m high with a diameter of 0.3 m. The results of the leachate quality shows that the leachate treatment effect of the SeRA system can be observed to be as high as the Ae system. To determine the mechanism of this process, all lysimeters are dismantled after 1,100 days in the experimental period and the waste composition, the dissolution test, the mass balance of carbon and nitrogen, the determination of bacterial counts, etc., were analyzed. In this research, it was proven that the SeRA system has an optimal leachate treatment effect that is the same as the Ae system. And, from the results of the mass balance of carbon and nitrogen, the SeR and SeRA systems show higher waste stabilization effectiveness and nitrogen removal than the other systems. Moreover, the number of the aerobic bacteria can be observed to be higher in the SeR and SeRA systems. To determine these results, the waste stabilization mechanism is considered by the results of leachate quality, the mass balance of carbon and nitrogen, and, also, the bacterial numbers.  相似文献   

19.
The potential for aeration of MSW landfills to accelerate completion   总被引:4,自引:0,他引:4  
Landfilling is a popular waste disposal method, but, as it is practised currently, it is fundamentally unsustainable. The low short-term financial costs belie the potential long-term environmental costs, and traditional landfill sites require long-term management in order to mitigate any possible environmental damage. Old landfill sites might require aftercare for decades or even centuries, and in some cases remediation may be necessary. Biological stabilisation of a landfill is the key issue; completion criteria provide a yardstick by which the success of any new technology may be measured. In order for a site to achieve completion it must pose no risk to human health or the environment, meaning that attenuation of any emissions from the site must occur within the local environment without causing harm. Remediation of old landfill sites by aerating the waste has been undertaken in Germany, the United States, Italy and The Netherlands, with considerable success. At a pilot scale, aeration has also been used in newly emplaced waste to accelerate stabilisation. This paper reviews the use of aerobic landfill worldwide, and assesses the ways in which the use of aerobic landfill techniques can decrease the risks associated with current landfill practices, making landfill a more sustainable waste disposal option. It focuses on assessing ways to utilise aeration to enhance stabilisation. The results demonstrated that aeration of old landfill sites may be an efficient and cost-effective method of remediation and allow the date of completion to be brought forward by decades. Similarly, aeration of newly emplaced waste can be effective in enhancing degradation, assisting with completion and reducing environmental risks. However, further research is required to establish what procedure for adding air to a landfill would be most suitable for the UK and to investigate new risks that may arise, such as the possible emission of non-methane organic compounds.  相似文献   

20.
Advanced oxidation processes (AOPs) such as Fenton, electro-Fenton and photo-Fenton have been applied effectively to remove refractory organics from landfill leachate. The Fenton reaction is based on the addition of hydrogen peroxide to the wastewater or leachate in the presence of ferrous salt as a catalyst. The use of this technique has proved to be one of the best compromises for landfill leachate treatment because of its environmental and economical advantages. Fenton process has been used successfully to mineralize wide range of organic constituents present in landfill leachate particularly those recalcitrant to biological degradation. The present study reviews the use of Fenton and related processes in terms of their increased application to landfill leachate. The effects of various operating parameters and their optimum ranges for maximum COD and color removal are reviewed with the conclusion that the Fenton and related processes are effective and competitive with other technologies for degradation of both raw and pre-treated landfill leachate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号