首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid and effective method based on a novel permanent magnetic hypercrosslinked resin W150 was proposed for the removal of organic micropollutants in drinking water. W150 was prepared by suspension and post-crosslinking reaction and found to possess a high specific surface area of 1149.7 m2·g-1, a small particle size of 50 μm to 100 μm, and a saturation magnetization as high as 8 emu·g-1. W150 was used to eliminate nitrofurazone (NFZ) and oxytetracycline (OTC) from drinking water compared with commercial adsorbents XAD-4 and F400D. The adsorption kinetics of NFZ and OTC onto the three adsorbents well fitted the pseudo-second-order equation (r>0.972), and the adsorption isotherms were all well described by the Freundlich equation (r>0.851). Results showed that the reduction in adsorbent size and the enlargement in sorbent pores both accelerated adsorption. Moreover, the effect of particle size on adsorption was more significant than that of pore width. Given that the smallest particle size and the highest specific surface area were possessed by W150, it had the fastest adsorption kinetics and largest adsorption capacity for NFZ (180 mg·g-1) and OTC (200 mg·g-1). For the adsorbents with dominant micropores, the sorption of large-sized adsorbates decreased because of the inaccessible micropores. The solution pH and ionic strength also influenced adsorption.  相似文献   

2.
In this work, the enhanced dewaterabing characteristics of waste activated sludge using Fenton pretreatment was investigated in terms of effectiveness and statistical optimization. Response surface method (RSM) and central composite design (CCD) were applied to evaluate and optimize the effectiveness of important operational parameters, i.e., H202 concentrations, Fe2+ concentrations and initial pH values. A significant quadratic polynomial model was obtained (R2= 0.9189) with capillary suction time (CST) reduction efficiency as the response. Numerical optimization based on desirability function was carried out. The optimum values for H202, Fe2, and initial pH were found to be 178 mg-g-1 VSS (volatile suspended solids), 211mg.gI VSS and 3.8, respectively, at which CST reduction efficiency of 98.25% could be achieved. This complied well with those predicted by the established polynomial model. The results indicate that Fenton pretreatment is an effective technique for advanced waste activated sludge dewatering. The enhancement of sludge dewaterability by Fenton's reagent lies in the migration of sludge bound water due to the disintegration of sludge flocs and microbial cells lysis.  相似文献   

3.
A novel hyper-crosslinked resin (MENQ) modified with an anion exchange group was prepared using divinylbenzene (DVB) and methyl acrylate (MA) as comonomers via four steps: suspension polymerization, post-crosslinking, ammonolysis and alkylation reactions. The obtained resin had both a high specific surface area (793.34 m2·g-1) and a large exchange capacity (strong base anion exchange capacity, SEC: 0.74 mmol·g-1, weak base anion exchange capacity, WEC: 0.45 mmol·g-1). XAD-4 was selected as an adsorbent for comparison to investigate the adsorption behavior of tetracycline (TC) and humic acid (HA) onto the adsorbents. The results revealed that MENQ could effectively remove both TC and HA. The adsorption capacity of XAD-4 for TC was similar to that of MENQ, but XAD-4 exhibited poor performance for the adsorption of HA. The adsorption isotherms of TC and HA were well-fitted with the Freundlich model, which indicated the existence of heterogeneous adsorption through cation-π bonding and π–π interactions. The optimal solution condition for the adsorption of TC was at a pH of 5–6, whereas the adsorption of HA was enhanced with increasing pH of the solution.  相似文献   

4.
The adsorption potential of FMBO, FeOOH, MnO2 for the removal of Cd2+, Cu2+ and Pb2+ in aqueous systems was investigated in this study. Comparing to FMBO and FeOOH, MnO2 offered a much higher removal capacity towards the three metal ions. The maximal adsorption capacity of MnO2 for Cd2+, Cu2+ and Pb2+ were 1.23, 2.25 and 2.60 mmol·g-1, respectively. And that for FMBO were 0.37, 1.13, and 1.18 mmol·g-1 and for FeOOH were 0.11, 0.86 and 0.48 mmol·g-1, respectively. The adsorption behaviors of the three metal ions on the three adsorbents were all significantly affected by pH values and heavy metal removal efficiency increased with pH increased. The Langmuir and Freundlich adsorption models were used to describe the adsorption equilibrium of the three metal ions onto the three adsorbents. Results showed that the adsorption equilibrium data fitted well to Langmuir isotherm and this indicated that adsorption of metal ions occurred on the three metal oxides adsorbents limited to the formation of a monolayer. More negative charged of MnO2 surface than that of FMBO and FeOOH could be ascribed by lower pHiep of MnO2 than that of FMBO and FeOOH and this could contribute to more binding sites on MnO2 surface than that of FMBO and FeOOH. The higher metal ions uptake by MnO2 than FMBO and FeOOH could be well explained by the surface charge mechanism.  相似文献   

5.
To recycle the sludge resource from sewage treatment plants and solve the problem of odor pollution, the sludge was converted into an adsorbent by carbonized pyrolysis and the process was optimized by orthogonal experiments. The capability for odor removal as well as the structure of the adsorbent was studied with H2S as a target pollutant. The results indicate that the main factor affecting the deodorization performance of the adsorbent is the activating time. The sludge adsorbent sample SAC1 prepared under optimum conditions exhibits the best deodorization performance with a H2S breakthrough time of 58 min and an iodine value nearly that of the coal activated carbon. The breakthrough time of H2S is much longer than that on the coal activated carbon. On the other hand, characterization results from X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and scanning electron microscope (SEM) techniques show that SAC1 is composed of mainly graphite carbon with lower oxygen content on the surface. The bulk of SAC1 exhibits a honeycomb structure with well developed porosity and a high specific surface area of 120.47 m2·g-1, with the average pore diameter being about 5 nm. Such a structure is in favor of H2S adsorption. Moreover, SAC1 is detected to contain various metal elements such as Zn, Fe, Mg, etc., leading to a superior deodorization property to that of coal activated carbon.  相似文献   

6.
生物炭对土壤中阿特拉津吸附特征的影响   总被引:3,自引:0,他引:3  
为探究生物炭对土壤中阿特拉津的吸附特征及影响因素,采用批处理实验研究了灭菌(T1)、5%秸秆生物炭+灭菌(T2)、未灭菌(T3)和5%秸秆生物炭+未灭菌(T4)条件下对土壤中阿特拉津吸附特征及土壤理化性质的影响.结果表明,在最初0—12 h内,不同处理下阿特拉津吸附量均随时间的延长而快速增加,而在12—96 h内增加较为缓慢并逐渐趋于平衡.在96 h时,T2和T4处理下阿特拉津最大吸附量分别达到46.22 mg·kg-1和46.43 mg·kg-1,而未添加生物炭的T1和T3处理则有所降低,分别为44.20 mg·kg-1和43.09 mg·kg-1.准二级动力学模型更好地拟合不同处理下土壤对阿特拉津吸附特征,T2和T4处理下吸附速率常数K分别为0.257 kg·mg-1·h-1和0.339 kg·mg-1·h-1,显著高于未添加生物炭处理的T1和T3处理(K分别为-0.083 kg·mg-1·h-1和-0.261 kg·mg-1·h-1).内扩散模型显示添加生物炭后,土壤对阿特拉津的吸附是一个由边界扩散、内部孔隙扩散等多因素控制的复杂化学过程.添加生物炭可显著提高土壤pH、有机碳、碱解氮、速效磷和速效钾含量,其中土壤有机碳含量与阿特拉津最大吸附量之间存在显著的正相关关系(P<0.05).由此可见,添加生物炭可以提高土壤对阿特拉津的固持能力,减少其淋溶迁移风险,从而达到修复阿特拉津污染土壤的目的.  相似文献   

7.
The biologic activated carbon (BAC) process is widely used in drinking water treatments. A comprehensive molecular analysis of the microbial community structure provides very helpful data to improve the reactor performance. However, the bottleneck of deoxyribonucleic acid (DNA) extraction from BAC attached biofilm has to be solved since the conventional procedure was unsuccessful due to firm biomass attachment and adsorption capacity of the BAC granules. In this study, five pretreatments were compared, and adding skim milk followed by ultrasonic vibration was proven to be the optimal choice. This protocol was further tested using the vertical BAC samples from the full-scale biofilter of Pinghu Water Plant. The results showed the DNA yielded a range of 40 μg·g-1 BAC (dry weight) to over 100 μg·g-1 BAC (dry weight), which were consistent with the biomass distribution. All results suggested that the final protocol could produce qualified genomic DNA as a template from the BAC filter for downstream molecular biology researches.  相似文献   

8.
The adsorption of direct fast black onto acid-thermal modified sepiolite was investigated. Batch adsorption experiments were performed to evaluate the influences of experimental parameters such as initial dye concentration, initial solution pH and adsorbent dosage on the adsorption process. The three-factor and three-level Box-Behnken response surface methodology (RSM) was utilized for modeling and optimization of the adsorption conditions for direct fast black onto the acid-thermal modified sepiolite. The raw sepiolite was converted to acid-thermal modified sepiolite, and changes in the fourier transform infrared spectrum (FTIR) adsorption bands of the sample were noted at 3435 cm-1 and 1427 cm-1. The zeolitic water disappeared and the purity of sepiolite was improved by acid-thermal modification. The decolorization rate of direct fast black adsorbed increased from 68.2% to 98.9% on acid-thermal modified sepiolite as the initial solution pH decreased from 10 to 2. When the adsorbent dosage reached to 2.5 g·L-1, 2.0 g·L-1, 1.5 g·L-1 and 1.0 g·L-1, the decolorization rate was 90.3%, 86.7%, 61.0% and 29.8%, respectively. When initial dye concentration increased from 25 to 200 mg·L-1, the decolorization rate decreased from 91.9% to 60.0%. The RSM results showed that the interaction between adsorbent dosage and pH to be a significant factor. The optimum conditions were as follows: the adsorbent dosage 1.99 g·L-1, pH 4.22, and reaction time 5.2 h. Under these conditions, the decolorization rate was 95.1%. The three dimensional fluorescence spectra of direct fast black before and after treatment showed that the direct fast black was almost all adsorbed by the acid-thermal modified sepiolite.  相似文献   

9.
Three adsorbents including TiO2, Ti-Ce, and Ti-La hybrid oxides were prepared to remove fluoride from aqueous solution. The Ti-Ce and Ti-La hybrid adsorbents obtained by the hydrolysis-precipitation method had much higher sorption capacity for fluoride than the TiO2 adsorbent prepared through hydrolysis. Rare earth (Ce and La) oxides and TiO2 exhibited a synergistic effect in the hybrid adsorbents for fluoride sorption. The sorption equilibrium of fluoride on the three adsorbents was achieved within 4 h, and the pseudo-second-order model described the sorption kinetics well. The sorption isotherms fitted the Langmuir model well, and the adsorption capacities of fluoride on the Ti-Ce and Ti-La adsorbents were about 9.6 and 15.1 mg·g-1, respectively, at the equilibrium fluoride concentration of 1.0 mg·L-1, much higher than the 1.7 mg·g-1 on the TiO2. The sorption capacities of fluoride on the three adsorbents decreased significantly when the solution pH increased from 3 to 9.5. The electrostatic interaction played an important role in fluoride removal by the three adsorbents, and Fourier transform infrared (FTIR) analysis indicated that the hydroxyl groups on the adsorbent surface were involved in fluoride adsorption.  相似文献   

10.
新型溴系阻燃剂(NBFRs,novel brominated flame retardants)作为传统溴系阻燃剂的替代品已广泛应用于电子产品、纺织品、家具等商品中,随着这些商品的生产、使用和处置,NBFRs不可避免地释放到环境中,给环境和人体带来潜在的危害.部分NBFRs可通过摄食和呼吸作用进入人体对人体产生一定危害...  相似文献   

11.
Highly activated carbon from the seed husk of Casuarina Casuarinas equisetifolia, a worldwide famous plant, have been prepared and tested for the removal of toxic Cr(VI) from its aqueous solution. The adsorbent was investigated for influences of initial chromium concentration (75, 100, 125, and 150 mg l-1), pH, contact time, and quantity of carbon on removal of Cr(VI) from aqueous solution at room temperature (25±2 °C). The adsorption kinetic of Cr(VI) was studied, and the rates of sorption were found to conform to pseudo-second-order kinetics with a good correlation (R2≥0.99). The Langmuir and Freundlich models fit the isotherm data well. Furthermore, the Gibbs free energy was obtained for each system and was found to be-5.29 kJ mol-1 for removal of Cr(IV). The negative value of Δ G° indicates the feasibility and spontaneous nature of adsorption. The results indicate that acidic pH (1.05) supported the adsorption of Cr(IV) on activated carbon. The maximum adsorption capacity of Cr(VI) on activated carbon was about 172.4 mg g-1 at pH 1.05.  相似文献   

12.
Optimization of an integrated anaerobic-aerobic bioreactor (IAAB) treatment system for the reduction of organic matter (Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) concentrations) in Palm Oil Mill Effluent (POME) to legal standards with high methane yield was performed for the first time under thermophilic condition (50°C–55°C) by using response surface methodology (RSM). The experiments were conducted based on a central composite rotatable design (CCRD) with three independent operating variables, organic loading rates in anaerobic compartment (OLRan) and mixed liquor volatile suspended solids (MLVSS) concentration in anaerobic (MLVSSan) and aerobic compartments (MLVSSa). The optimum conditions for the POME treatment were determined as OLRan of 15.6 g COD·L-1·d-1, MLVSSan of 43100 mg·L-1, and MLVSSa of 18600 mg·L-1, where high aerobic COD, BOD and TSS removal efficiencies of 96.3%, 97.9%, and 98.5% were achieved with treated BOD of 56 mg·L-1 and TSS of 28 mg·L-1 meeting the discharge standard. This optimization study successfully achieved a reduction of 42% in the BOD concentrations of the final treated effluent at a 48% higher OLRan as compared to the previous works. Besides, thermophilic IAAB system scores better feasibility and higher effectiveness as compared to the optimized mesophilic system. This is due to its higher ability to handle high OLR with higher overall treatment efficiencies (more than 99.6%), methane yield (0.31 L CH4·g-1 CODremoved) and purity of methane (67.5%). Hence, these advantages ascertain the applicability of thermophilic IAAB in the POME treatment or even in other high-strength wastewaters treatment.  相似文献   

13.
The reduction of hexavalent chromium by scrap iron was investigated in continuous long-term fixed bed system. The effects of pH, empty bed contact time (EBCT), and initial Cr(VI) concentration on Cr(VI) reduction were studied. The results showed that the pH, EBCT, and initial Cr(VI) concentration significantly affected the reduction capacity of scrap iron. The reduction capacity of scrap iron were 4.56, 1.51, and 0.57 mg Cr(VI)·g-1 Fe0 at pH 3, 5, and 7 (initial Cr(VI) concentration 4 mg·L-1, EBCT 2 min, and temperature 25°C), 0.51, 1.51, and 2.85 mg Cr(VI)·g-1 Fe0 at EBCTs of 0.5, 2.0, and 6.0 min (initial Cr(VI) concentration 4 mg·L-1, pH 5, and temperature 25°C), and 2.99, 1.51, and 1.01 mg Cr(VI)·g-1 Fe0 at influent concentrations of 1, 4, and 8 mg·L-1 (EBCT 2 min, pH 5, and temperature 25°C), respectively. Fe(total) concentration in the column effluent continuously decreased in time, due to a decrease in time of the iron corrosion rate. The fixed bed reactor can be readily used for the treatment of drinking water containing low amounts of Cr(VI) ions, although the hardness and humic acid in water may shorten the lifetime of the reactor, the reduction capacity of scrap iron still achieved 1.98 mg Cr6+·g-1 Fe. Scanning electron microscope equipped with energy dispersion spectrometer and X-ray diffraction were conducted to examine the surface species of the scrap iron before and after its use. In addition to iron oxides and hydroxide species, iron-chromium complex was also observed on the reacted scrap iron.  相似文献   

14.
低碳氮比(C/N)废水处理是含氮废水处理中的难题之一.本实验在C/N为4:1和2:1(COD和NH4+-N浓度分别为400 mg·L-1和100 mg·L-1,400 mg·L-1和200 mg·L-1)条件下,考察好氧颗粒污泥系统对低碳氮比废水的处理效果、长期运行稳定性,研究C/N对好氧颗粒微生物结构变化的影响.研究结果表明,在C/N为4:1的废水中接种活性污泥培养好氧颗粒污泥,形成的颗粒沉降性能良好,MLSS为4.94 g·L-1,SVI30为40 mL·g-1,COD去除率90%以上,氨氮去除率接近100%.降低碳氮比,即C/N为2:1后,好氧颗粒的物理及硝化性能无明显变化,MLSS为11.38 g·L-1,SVI30/SVI5维持在1左右,COD去除率大于85%,氨氮去除率98%.碳氮比降低使颗粒微生物多样性减少,其中陶厄氏菌受影响较小,而硝化功能菌出现更替:噬氢菌、食酸菌、里德拜特氏菌消失,鞘氨醇单胞菌、束缚杆菌等成为优势菌种.实验表明,该低碳氮比条件下好氧颗粒污泥系统能够稳定运行,且具有优良的处理性能.  相似文献   

15.
钾改性蒙脱石磁性微球对铯的吸附性能   总被引:1,自引:0,他引:1  
本研究以钙基蒙脱石(Ca-MMT)为原料,通过K+作用制得改性蒙脱石粉(K-MMT),经海藻酸钠交联作用,将改性蒙脱石与永磁体(BaFe12O19)结合,制成钾改性蒙脱石磁性微球(KMBC).对比了Ca-MMT、K-MMT、KMBC对Cs+的吸附差异,并通过SEM-EDS、FTIR、XRD、XPS分析了K-MMT的微观结构及理化性质.试验结果表明,K+对蒙脱石的改性以离子交换为主,改性后晶体层间距变小,吸附量K-MMT>KMBC>Ca-MMT,分别为57.08、45.13、45.05 mg·g-1;K-MMT对Cs+的吸附属于吸热反应,反应在2 h内可达到平衡,35℃时KMBC的最大吸附量为136.08 mg·g-1;随着pH的增加,KMBC对Cs+的吸附量呈先增大后减小的趋势;吸附机理主要包括离子交换和内层扩散.  相似文献   

16.
The adsorption characteristics of 1,1,1,2‐tetrafluoroethane (HFC‐134a) on activated carbon were investigated to evaluate the recovery efficiency of HFC‐134a by six activated carbons (two granular activated carbons (GAC1 and GAC2), one high‐surface area activated carbon (HAC), and three activated carbon fibers (ACF10, ACF15, and ACF20)). HFC‐134a adsorption on the activated carbons increased with increase in the specific surface area and pore volume of the activated carbon. The differential heat of the HFC‐134a adsorption decreased with increase in the percentage of the micropore volume to the total pore volume. The adsorption model of HFC‐134a on the activated carbon could be based on the Langmuir model. The constant a of the Langmuir plot of HAC and ACF20 is smaller than GAC1 or GAC2 and ACF10 or ACF15, respectively. The constant Ws of HAC has the largest value. The constant a was correlated to the heat of adsorption. It is concluded that the largest amount of HFC‐134a was adsorbed on HAC, and the least amount of interaction occurred between HFC‐134a and the HAC. The amount of HFC‐134a adsorbed on the activated carbons over time was applied to the Sameshima equation. The adsorption rate constant of HFC‐134a on HAC was the largest. The HAC could be suitable for the recovery of HFC‐134a.  相似文献   

17.
Among the numerous parameters affecting the membrane bioreactor (MBR) performance, the aeration intensity is one of the most important factors. In the present investigation, an anoxic/aerobic-type (A/O-type) sequencing batch MBR system, added anoxic process as a pretreatment to improve the biodegradability of azo dye wastewater, was investigated under different aeration intensities and the impact of the aeration intensity on effluent quantity, sludge properties, extracellular polymeric substances (EPS) amount generated as well as the change of permeation flux were examined. Neither lower nor higher aeration intensities could improve A/O-type sequencing batch MBR performances. The results showed 0.15 m3·h-1 aeration intensity was promising for treatment of azo dye wastewater under the conditions examined. Under this aeration intensity, chemical oxygen demand (COD), ammonium nitrogen and color removal as well as membrane flux amounted to 97.8%, 96.5%, 98.7% and 6.21 L·m-2·h-1, respectively. The effluent quality, with 25.0 mg·L-1COD, 0.84 mg·L-1 ammonium nitrogen and 8 chroma, could directly meet the reuse standard in China. In the meantime, the sludge relative hydrophobicity, the bound EPS, soluble EPS and EPS amounts contained in the membrane fouling layer were 70.3%, 52.0 mg·g-1VSS, 38.8 mg·g-1VSS and 90.8 mg·g-1VSS, respectively, which showed close relationships to both pollutant removals and membrane flux.  相似文献   

18.
陈晨  李北罡 《环境化学》2021,(3):799-807
以天然高分子化合物海藻酸钠(sodium alginate,SA)为骨架,结合磁性Fe3O4和稀土铈离子Ce(Ⅲ)通过溶液反应制备出一种新型的磁性海藻酸铈复合微球(Fe3O4@SA;Ce).采用X射线衍射(XRD)、孔结构比表面积分析(BET)、扫描电子显微镜(SEM)、红外光谱(FT-IR)及振动样品强磁计(VSM)对Fe3O4@SA;Ce的结构进行了表征,并以直接桃红12B(direct red 12B,DR 12B)和直接橙S(direct orange S,DO S)两种染料为吸附对象,探讨了Fe3O4@SA;Ce的吸附剂性能、吸附动力学和热力学.结果表明,Fe3O4@SA;Ce对室温下自然pH染料溶液中DR 12B和DO S均表现出良好的吸附效果,吸附量分别可达464 mg·g-1和730 mg·g-1.在不同温度下(298、313、328 K),Fe3O4@SA;Ce对DR 12B和DO S的吸附过程均可用拟二级吸附动力学方程准确描述.通过等温吸附研究,发现Fe3O4@SA;Ce对两种染料的等温吸附较好地符合Freundlich模型.各种表征结果表明,SA与Ce(Ⅲ)和Fe3O4交联反应后生成的Fe3O4@SA;Ce凝胶球表面有大量深浅不一的褶皱沟纹,形貌发生了显著变化.作为一种绿色环保、制备方法简单、可高效吸附的磁性高分子复合吸附剂,Fe3O4@SA;Ce对高浓度染料具有很好的吸附效果,期望能够在染料废水处理中得到广泛应用.  相似文献   

19.
In this study, the adsorption performance of powdered activated carbon (PAC) on phenol was investigated in aqueous solutions. Batch adsorption studies were performed to evaluate the effects of various experimental parameters like PAC type, PAC dose, initial solution pH, temperature and pre-oxidation on the adsorption of phenol by PAC and establish the adsorption kinetics, thermodynamics and isothermal models. The results indicated that PAC adsorption is an effective method to remove phenol from water, and the effects of all the five factors on adsorption of phenol were significant. The adsorption rate of phenol by PAC was rapid, and more than 80% phenol could be absorbed by PAC within the initial 10 min. The adsorption process can be well described by pseudo-second-order adsorption kinetic model with rate constant amounted to 0.0313, 0.0305 and 0.0241 mg·μg -1·min -1 with coal, coconut shell and bamboo charcoal. The equilibrium data of phenol absorbed onto PAC were analyzed by Langmuir, Freundlich and Tempkin adsorption isotherms and Freundlich adsorption isotherm model gave the best correlation with the experimental data. Thermodynamic parameters such as the standard Gibbs free energy (?Go), enthalpy (?Ho) and entropy (?So) obtained in this study indicated that the adsorption of phenol by PAC is spontaneous, exothermic and entropy decreasing.  相似文献   

20.
Biosorption studies of Cr(VI) were carried out using waste weed, Salvinia cucullata. Various adsorption parameters were studied, such as agitation speed, contact time, pH, particle size, and concentrations of adsorbent and adsorbate. The equilibrium was achieved in 12 h. A lower pH favoured adsorption of Cr(VI). The kinetics followed pseudo-second-order rate equations. The adsorption isotherm obeyed both the Langmuir and Freundlich models. The calculated activation energy (1.1 kJ mol-1) suggested that the adsorption followed a diffusion-controlled mechanism. Various thermodynamic parameters such as Δ G°, Δ H°, and Δ S° were also calculated. The positive values of enthalpy indicated the endothermic nature of the reaction, and Δ S° showed the increasing randomness at the solid liquid interface of Cr(VI) on the adsorbent, which revealed the ease of adsorption reaction. These thermo-dynamic parameters showed the spontaneity of the reaction. The maximum adsorption of uptake (232 mg g-1) compared well with reported values of similar adsorbents. The rate-determining step was observed to follow an intra-particle diffusion model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号