首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Soil biological activity was calculated on a daily basis, using standard meteorological data from African weather stations, a simple soil water model, and commonly used assumptions regarding the relations between temperature, soil water content, and biological activity. The activity factor r(e_clim) is calculated from daily soil moisture and temperature, thereby taking the daily interaction between temperature and moisture into account. Annual mean r(e_clim) was normalized to 1 in Central Sweden (clay loam soil, no crop), where the original calibration took place. Since soils vary in water storage capacity and plant cover will affect transpiration, we used this soil under no crop for all sites, thereby only including climate differences. The Swedish r(e_clim) value, 1, corresponds to ca. 50% annual mass loss of, e.g., cereal straw incorporated into the topsoil. African mean annual r(e_clim) values varied between 1.1 at a hot and dry site (Faya, Chad) and 4.7 at a warm and moist site (Brazzaville, Congo). Sites in Kenya ranged between r(e_clim) = 2.1 at high altitude (Matanya) and 4.1 in western Kenya (Ahero). This means that 4.1 times the Swedish C input to soil is necessary to maintain Swedish soil carbon levels in Ahero, if soil type and management are equal. Diagrams showing daily r(e_clim) dynamics are presented for all sites, and differences in within-year dynamics are discussed. A model experiment indicated that a Swedish soil in balance with respect to soil carbon would lose 41% of its soil carbon during 30 y, if moved to Ahero, Kenya. If the soil was in balance in Ahero with respect to soil carbon, and then moved to Sweden, soil carbon mass would increase by 64% in 30 y. The validity of the methodology and results is discussed, and r(e_clim) is compared with other climate indices. A simple method to produce a rough estimate of r(e_clim) is suggested.  相似文献   

2.
Modeling the impact of ozone x drought interactions on regional crop yields   总被引:3,自引:0,他引:3  
The influence of soil moisture stress on crop sensitivity to O3 was evaluated for corn (Zea mays L.), cotton (Gossypium hirsutum L.), soybean (Glycine max L. Merr.), and wheat (Triticum aestivum L.) grown in the United States. This assessment was accomplished by using yield forecasting models to estimate the influence of soil moisture deficits on regional yield and a previously developed model to predict moisture stress x O3 interactions. Reduced crop sensitivity to O3 was predicted for those regions and years for which soil moisture stress reduced yield. The models predicted a drought-induced reduction in crop sensitivity to O3 of approximately 20% for the 1979 to 1983 period; i.e. a hypothetical O3-induced yield reduction of 5% for adequately watered crops would have been reduced to a 4% effect by the 1979 to 1983 distribution of soil moisture deficits. However, predicted drought effects varied between crops, regions, and years. Uncertainties in the model predictions are also discussed.  相似文献   

3.
An electromigration transport model for non-reactive ion transport in unsaturated soil was developed and tested against laboratory experiments. This model assumed the electric potential field was constant with respect to time, an assumption valid for highly buffered soil, or when the electrode electrolysis reactions are neutralized. The model also assumed constant moisture contents and temperature with respect to time, and that electroosmotic and hydraulic transport of water through the soil was negligible. A functional relationship between ionic mobility and the electrolyte concentration was estimated using the chemical activity coefficient. Tortuosity was calculated from a mathematical relationship fitted to the electrical conductivity of the bulk pore water and soil moisture data. The functional relationship between ionic mobility, pore-water concentration, and tortuosity as a function of moisture content allowed the model to predict ion transport in heterogeneous unsaturated soils. The model was tested against laboratory measurements assessing anionic electromigration as a function of moisture content. In the test cell, a strip of soil was spiked with red dye No 40 and monitored for a 24-h period while a 10-mA current was maintained between the electrodes. Electromigration velocities predicted by the electromigration transport model were in agreement with laboratory experimental results. Both laboratory-measured and model-predicted dye migration results indicated a maximum transport velocity at moisture contents less than saturation due to competing effects between current density and tortuosity as moisture content decreases.  相似文献   

4.
Laboratory studies were carried out to investigate solute leaching at different times from application in relation to temperature and initial soil moisture. Aggregates of a heavy clay soil were treated with a non-interactive solute (bromide) and the herbicides chlorotoluron, isoproturon and triasulfuron. The soil was incubated at 90% field capacity and either 5 or 15 degrees C. The influence of application to initially dry and initially wet aggregates on the behaviour of isoproturon was also investigated. At intervals, samples were either leached in small columns, centrifuged to characterise the fraction of chemical available in pore water under natural moisture conditions or extracted with organic solvents to assess total residues in soil. Bromide concentrations in leachate and in pore water extracted by centrifugation were constant with time. In contrast, availability for leaching and concentration in pore water of the herbicides decreased with increasing time from application in soil incubated at 15 degrees C. The effect of residence time was much smaller at 5 than at 15 degrees C. At the higher temperature, pesticide concentrations in leachate and pore water declined faster than would be expected from degradation alone, probably due to slow diffusion of the pesticides into soil aggregates where they are less available for leaching and/or slow sorption-desorption. The faster decline in availability for leaching at 15 than at 5 degrees C was attributed to faster degradation of the readily available fraction. There was no significant influence of initial soil moisture on either the leaching behaviour of isoproturon or its availability in soil water.  相似文献   

5.
A study was conducted using two pilot-scale land-treatment units (LTUs) to evaluate the efficacy of different cultivation and maintenance schedules during bioremediation of contaminated soil from a wood treatment facility using landfarming technology. The soil contained high concentrations of polycyclic aromatic hydrocarbons (PAHs, approximately 13000 ppm) as well as of pentachlorophenol (PCP, approximately 1500 ppm). An initial 6-month intensive-treatment phase was followed by 24 months of less-intensive treatment. During the first phase, traditional landfarming practice of regular cultivation was compared with a gas-phase composition based cultivation strategy, and both the landfarming units were intensively monitored and maintained with respect to moisture control and delivery of nutrients. The two strategies resulted in similar contaminant concentration profiles with time during this phase, although different microbial populations developed in the two-landfarming units. The second (less-intensive) treatment phase involved no moisture control and nutrient delivery beyond the initial adjustments, and compared natural attenuation (no cultivation) with quarterly cultivation of soil. Both the strategies showed similar behavior again. GC/MS analysis of the soil samples showed PAH removal including four-ring homologues. Leachability tests at zero time and after 6 and 22 months of operation showed significant reductions in leaching of PCP and low molecular weight PAHs. Extended treatment resulted in some leaching of high molecular weight PAHs. Significant biological activity was demonstrated, even at the high contaminant concentrations. Phospholipid ester-linked fatty acid (PLFA) analysis showed an increase in biomass and a divergence in community composition in soils depending on the treatment conducted.  相似文献   

6.
This study elucidates the effect of fluctuating soil moisture on the co-metabolic degradation of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) in soil. Degradation experiments with 14C-ring-labelled atrazine were carried out at (i) constant (CH) and (ii) fluctuating soil humidity (FH). Temperature was kept constant in all experiments. Experiments under constant soil moisture conditions were conducted at a water potential of −15 kPa and the sets which were run under fluctuating soil moisture conditions were subjected to eight drying-rewetting cycles where they were dried to a water potential of around −200 kPa and rewetted to −15 kPa. Mineralization was monitored continuously over a period of 56 d. Every two weeks the pesticide residues in soil pore water (PW), the methanol-extractable pesticide residues, the non-extractable residues (NER), and the total cell counts were determined. In the soil with FH conditions, mineralization of atrazine as well as the formation of the intermediate product deisopropyl-2-hydroxyatrazine was increased compared to the soil with constant humidity. In general, we found a significant correlation between the formation of this metabolite and atrazine mineralization. The cell counts were not different in the two experimental variants. These results indicate that the microbial activity was not a limiting factor but the mineralization of atrazine was essentially controlled by the bioavailability of the parent compound and the degradation product deisopropyl-2-hydroxyatrazine.  相似文献   

7.
The crowns of five canopy dominant black cherry (Prunus serotina Ehrh.), five white ash (Fraxinus americana L.), and six red maple (Acer rubrum L.) trees on naturally differing environmental conditions were accessed with scaffold towers within a mixed hardwood forest stand in central Pennsylvania. Ambient ozone concentrations, meteorological parameters, leaf gas exchange and leaf water potential were measured at the sites during the growing seasons of 1998 and 1999. Visible ozone-induced foliar injury was assessed on leaves within the upper and lower crown branches of each tree. Ambient ozone exposures were sufficient to induce typical symptoms on cherry (0-5% total affected leaf area, LAA), whereas foliar injury was not observed on ash or maple. There was a positive correlation between increasing cumulative ozone uptake (U) and increasing percent of LAA for cherry grown under drier site conditions. The lower crown leaves of cherry showed more severe foliar injury than the upper crown leaves. No significant differences in predawn leaf water potential (psi(L)) were detected for all three species indicating no differing soil moisture conditions across the sites. Significant variation in stomatal conductance for water vapor (g(wv)) was found among species, soil moisture, time of day and sample date. When comparing cumulative ozone uptake and decreased photosynthetic activity (P(n)), red maple was the only species to show higher gas exchange under mesic vs. drier soil conditions (P < 0.05). The inconsistent differences in gas exchange response within the same crowns of ash and the uncoupling relationship between g(wv) and P(n) demonstrate the strong influence of heterogeneous environmental conditions within forest canopies.  相似文献   

8.
冬季垃圾填埋场渗滤液回灌水量平衡的实验研究   总被引:4,自引:0,他引:4  
渗滤液回灌的水量平衡是垃圾填埋场渗滤液回灌处理法工程应用的关键问题之一。着重研究了冬季渗滤水回灌的水量平衡状况。结果表明,冬季回灌水量仍可通过土壤蒸发得到大量削减,径流量、土壤渗出 水与下渗水的比值大于春夏秋三季,平均蒸发量小于些三季。回灌条件下,土壤湿润度提高,蒸发量增大。  相似文献   

9.
Forest soil organic horizons from 15 profiles in NE Scotland originally sampled in 1949/50, were resampled in 1987. Analyses of both sets of soils for organic C and N show that although concentrations of the two elements have decreased with time, there has been a large increase in storage due to an increase in O horizon thickness. In most cases surface organic horizons have become more acid between 1949/50 and 1987. Calculated mean accumulation rates for C and N are 353.4 kg ha(-1) year(-1) and 21.2 kg ha(-1) year(-1) respectively. Changes in the C/N ratio with time give no indication of progressive N saturation and suggest sudden breakthrough of N in drainage water is not imminent.  相似文献   

10.
Gupta S  Gajbhiye VT 《Chemosphere》2002,47(9):901-906
Effect of concentration, moisture and soil type on dissipation of flufenacet from soil has been studied under laboratory condition. The treated soil samples (1 and 10 microg/g levels) were incubated at 25+/-1 degrees C. The effect of moisture was studied by maintaining the treated soil samples (10 microg/g level) at field capacity and submerged condition. In general, flufenacet persisted for 60-90 days at lower and beyond 90 days at high rate. The dissipation of flufenacet from soil followed first order kinetics with half-life (DT50) values ranging from 10 to 31 days. The dissipation of flufenacet was faster at low rate than high rate of application. The slow dissipation at high rate could be attributed to inhibition of microbial activity at high rate. There was little overall difference in rate of dissipation in Ranchi and Nagpur soil maintained at field capacity and submerged condition moisture regimes. In Delhi soil net dissipation was faster under field capacity moisture than submerged condition. Soil types greatly influenced the dissipation of flufenacet. Dissipation was fastest in Delhi soil (DT50 10.1-22.3 days) followed by Ranchi soil (DT50 10.5-24.1 days) and least in Nagpur soil (DT50 29.2-31.0 days). The difference in dissipation could be attributed to the magnitude of adsorption and desorption of flufenacet in these soils.  相似文献   

11.
The application of pesticides to cultivated soil and crops is a major source of pesticides that are found in the atmosphere and which are transported and deposited to land and water surfaces over distances that range from local to global scales. In this first part of a two-part paper, a pesticide emission model (PEM) is proposed for estimating the exchange with the atmosphere of pesticides applied to soils and crops. The basis of PEM is a one-dimensional numerical solution of the dynamic equations describing the advection and diffusion of heat, moisture and pesticide within the soil column and exchange with the atmosphere through heat transfer, evapotranspiration and volatilization. The soil model is coupled with an atmospheric surface layer and a simple canopy model that includes: the interception of sprayed pesticide by the crop foliage; the partitioning of pesticide within a wet or dry canopy; and, the volatilization of pesticide to the atmosphere or the wash-off to the soil by precipitation. The finite-element technique used for solving the model equations is mass conservative and multi-year periods of simulation are possible while maintaining a proper mass balance of pesticide in the soil. The model is solved using 1200 s time-steps and 49 variably spaced levels in the soil to a depth of 2 m, with the highest vertical resolution (0.002 m spacing) near the soil surface. Similarity theory is used to parameterize the fluxes of heat, moisture and pesticide through the atmospheric surface layer with hourly meteorology being provided by either climate station observations or a meteorological model. In the second part to this paper, the results of an evaluation of PEM are reported.  相似文献   

12.
Slope failure has become a major concern in Malaysia due to the rapid development and urbanisation in the country. It poses severe threats to any highway construction industry, residential areas, natural resources and tourism activities. The extent of damages that resulted from this catastrophe can be lessened if a long-term early warning system to predict landslide prone areas is implemented. Thus, this study aims to characterise the relationship between Oxisols properties and soil colour variables to be manipulated as key indicators to forecast shallow slope failure. The concentration of each soil property in slope soil was evaluated from two different localities that consist of 120 soil samples from stable and unstable slopes located along the North-South Highway (PLUS) and East-West Highway (LPT). Analysis of variance established highly significant difference (P < 0.0001) between the locations, the total organic carbon (TOC), soil pH, cation exchange capacity (CEC), soil texture, soil chromaticity and all combinations of interactions. The overall CIELAB analysis leads to the conclusion that the CIELAB variables lightness L*, c* (Chroma) and h* (Hue) provide the most information about soil colour and other related soil properties. With regard to the relationship between colour variables and soil properties, the analysis detected that soil texture, organic carbon, iron oxide and aluminium concentration were the key factors that strongly correlate with soil colour variables at the studied area. Indicators that could be used to predict shallow slope failure were high value of L*(62), low values of c* (20) and h* (66), low concentration of iron (53 mg kg?1) and aluminium oxide (37 mg kg?1), low soil TOC (0.5%), low CEC (3.6 cmol/kg), slightly acidic soil pH (4.9), high amount of sand fraction (68%) and low amount of clay fraction (20%).  相似文献   

13.
The interactive effects of ozone and water stress on the yield of soybean (Glycine max (L.) Merr. 'Davis') were addressed with a growth model of soybean. Two simulations were conducted, using the data from the exposures of soybean to ozone in open-top chambers under two soil moisture regimes, and the results of the simulations were compared. In the original simulation, soil moisture content was calculated based on a water budget using the actual precipitation and irrigation data. In the modified simulation, the soil water content was given as input data. In this case, soil moisture content was maintained at the same level across the ozone treatments regardless of different water use by the plants. Both simulations included the effect of reduced ozone flux to the leaves due to water stress, whereas only the original simulation included the effect of mitigated water stress due to reduced water use by the plants under higher ozone concentration. The water stress reduced ozone impact on soybean yield in the original simulation on the basis of the ozone dosecrop yield response relationship, but not in the modified simulation. The ozone uptake rate was reduced by water stress in the original simulation, but the relationship between seasonal mean ozone uptake rate and relative yield still showed reduced impact of ozone due to water stress. These results indicated that the alleviation of water stress by ozone due to reduced plant water use in ozone-treated plots can be a contributing factor in the reduction of ozone impact by water stress. The above conclusion was partly confirmed by the actual data for soil water content, which was significantly lower in the lowest ozone treatment than in the higher ozone treatments. Further experimental and modelling studies are needed to elucidate the mechanism of the ozone X water stress interaction.  相似文献   

14.
Methane oxidation fluxes were monitored with the closed chamber method in eight treatment plots on a semi-wet grassland site near Giessen, Germany. The management regimes differed in the amount of nitrogen (NH4NO3) fertilizer applied and in the height of the in-ground water table. No inhibition of CH4 oxidation occurred, regardless of the amount of annual N fertilizer applied. Instead, the mean CH4 consumption rates were correlated with the mean soil moisture of the plots. However, the correlation between daily soil water content and corresponding CH4 oxidation rate was always weak. During drought period (late summer) water stress was observed to restrict CH4 oxidation rates. The findings led to the question whether methane production with soil depth might modify the CH4 fluxes measured at the surface. Therefore, two new methods were applied: (1) soil air sampling with silicone probes; and (2) anaerobic incubations of soil cores to test for the methane production potential of the grassland soil. The probe measurements revealed that the CH4 sink capacity of a specific site was related to the vertical length of its CH4 oxidizing column, i.e. the depth of the CH4 producing horizon. Anaerobically incubated soil cores produced large amounts of CH4 comparable with tropical rice paddy soil. Under field conditions, heavy autumnal rain in 1998 led to a dramatic increase of soil CH4 concentrations upto 51 microliters l-1 at a depth of 5 cm. Nevertheless, no CH4 was released when soil surface CH4 fluxes were measured simultaneously. The results thus demonstrate the high CH4 oxidation potential of the thin aerobic topsoil horizon in a non-aquatic ecosystem.  相似文献   

15.
Copper partitioning was studied in seven calcareous soils at moisture content corresponding to 1.2 times the field moisture content (soil water potential 7.84 J kg(-1)). Copper retention was accompanied by the release in soil solution of Ca(2+), Mg(2+), Na(+), and H(+), and the total amount of these cations released was 0.8 to 1.09 times the amount of Cu sorbed (mol(c):mol(c)). The relationships between Cu activity and pH, and the balance of cations in soils correspond with the surface precipitation of CuCO(3) as the main mechanism of Cu retention. The values of ion activity product of surface precipitate were close for all studied soils with the average log(IAP(CuCO(3)))=-15.51. The relationship between copper activity in soil solutions and soil properties is well fit by a regression relating pCu (-log copper ion activity) with soil pH, total Cu, and carbonate content.  相似文献   

16.
Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temporal changes across a wide range of hydro-climatic conditions. Model application is exemplified for two major Swedish hydrological basins, Norrström and Piteälven. These are located along a steep temperature gradient and have experienced different hydro-climatic changes over the time period of study, 1950–2009. Spatially, average intra-annual variability of soil moisture differs considerably between the basins due to their temperature-related differences in snow dynamics. With regard to temporal change, the long-term average state and intra-annual variability of soil moisture have not changed much, while inter-annual variability has changed considerably in response to hydro-climatic changes experienced so far in each basin.  相似文献   

17.
Three natural nonaggregated soil samples, with similar grain-size distributions, have been used to determine the dispersive behavior of porous media under steady, saturated and unsaturated flow conditions. Tritium was used as a tracer and was found to have no sorption on the solid matrix. Generated breakthrough curves (BTCs) for the unsaturated experiments were symmetrical with no evidence of tailing. The unsaturated experiments for two of the soils were adequately described by considering all the water in the pore volume as mobile. However, about 10% of the pore water, independent of the degree of saturation, was found to be immobile in the case of the third soil during unsaturated flow. For this soil, there was no mass transfer between the two water regions, indicating that the immobile water is essentially isolated from the flowing water fraction. For all three soils, dispersivity under unsaturated conditions was found to be higher, independent of the degree of water saturation, than the value determined for the saturated experiments. This is inconsistent with what would be expected from the simple bundle-of-capillary-tubes model and does not agree well with a more sophisticated conceptualization of the porous medium. The data, however, clearly indicate a wider range in pore-water velocities when these soils are desaturated.  相似文献   

18.
《Environmental Forensics》2013,14(4):313-317
Supercritical fluid extraction (SFE) was investigated to evaluate its potential for obtaining high quality chromatographic fingerprints from soils encountered in environmental investigations. While the volatile and semivolatile fractions of light nonaqueous phase liquid (LNAPL) samples can be “fingerprinted” in a single chromatographic run, it is commonly not possible to obtain samples of LNAPL in the locations of interest. For this and other reasons, it was desirable to develop this method (SFE) of soil extraction, which allows chromatographic fingerprinting of the same quality routinely obtained with LNAPL so that environmental forensic investigations could be extended to areas beyond those containing LNAPL in monitoring wells. In this study, SFE was compared to conventional dichloromethane extraction. Both artificially spiked soil and soil from petroleum release sites were tested. Since water can be a problem when using the SFE method, particular attention was given to handling soils with high moisture contents. The SFE extracts showed excellent retention of low molecular components, including pentanes. Gas chromatography of SFE extracts yielded molecular distributions that showed no significant bias toward either low or high molecular weight components. These results show that SFE can be used to obtain an unbiased, single-run chromatographic “fingerprint” of both volatile and semivolatile hydrocarbons in contaminated soil samples.  相似文献   

19.
Subsurface drip irrigation systems apply effluent from onsite wastewater systems in a more uniform manner at a lower rate than has been possible with other effluent dispersal methods. The effluent is dispersed in a biologically active part of the soil profile for optimal treatment and where the water and nutrients can be utilized by landscape plants. Container tests were performed to determine the fate of water and nitrogen compounds applied to packed loamy sand, sandy loam, and silt loam soils. Nitrogen removal rates measured in the container tests ranged from 63 to 95% despite relatively low levels of available carbon. A Hydrus 2D vadose zone model with nitrification and denitrification rate coefficients calculated as a function of soil moisture content fit the container test results reasonably well. Model results were sensitive to the denitrification rate moisture content function. Two-phase transport parameters were needed to model the preferential flow conditions in the finer soils. Applying the model to generic soil types, the greatest nitrogen losses (30 to 70%) were predicted for medium to fine texture soils and soils with restrictive layers or capillary breaks. The slow transport with subsurface drip irrigation enhanced total nitrogen losses and plant nitrogen uptake opportunity.  相似文献   

20.
A 20-m Asian dust monitoring tower was installed at Erdene in Dornogobi, Mongolia in later 2008, which is one of the high Asian dust source regions in the Asian domain, to investigate meteorological conditions for the dust events. The tower was equipped with meteorological sensors (temperature, humidity and wind speed at four levels, precipitation and pressure near the surface), radiation sensors (solar radiation, net radiation) and soil measurement sensors (soil moisture and soil temperature at three levels and soil heat flux at one level) and turbulent measurement (sonic anemometer) at the 8 m height and PM10 concentration measurement (beta guage) at the 3 m height. Measurement was made for a full year of 2009. The observed data indicated that dust events occur all year round with the maximum hourly mean maximum concentration of 4107 μg m?3 in the early May to a minimum of 92 μg m?3 in later August. It was found that the dust concentration at this site is directly related to the wind speed exceeding the threshold wind speed (likewise the corresponding friction velocity) during the winter to early spring. However, the observed dust concentration is not only related to the wind speed exceeding the threshold wind speed but also to the Normalized Difference Vegetation Index (NDVI) during the late spring to the late autumn due to the growth of vegetation. It was also found that the surface soil moisture content does not affect the dust concentration due to the relatively short residence time of the soil moisture in the surface soil. The presently monitored data can be used to verify parameters used in the Asian Dust Aerosol Model (ADAM) that is the operational forecasting dust model in the Korea Meteorological Administration (KMA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号