首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The current status of the mathematical modeling of atmospheric particulate matter (PM) is reviewed in this paper. Simulating PM requires treating various processes, including the formation of condensable species, the gas/ particle partitioning of condensable compounds, and in some cases, the evolution of the particle size distribution. The algorithms available to simulate these processes are reviewed and discussed. Eleven 3-dimensional (3-D) Eulerian air quality models for PM are reviewed in terms of their formulation and past applications. Results of past performance evaluations of 3-D Eulerian PM models are presented. Currently, 24-hr average PM2.5 concentrations appear to be predicted within 50% for urban-scale domains. However, there are compensating errors among individual particulate species. The lowest errors tend to be associated with SO4 2-, while NO3 -, black carbon (BC), and organic carbon (OC) typically show larger errors due to uncertainties in emissions inventories and the prediction of the secondary OC fraction. Further improvements and performance evaluations are recommended.  相似文献   

2.
This paper presents the design and performance of a compact dilution sampler (CDS) for characterizing fine particle emissions from stationary sources. The sampler is described, along with the methodology adopted for its use. Dilution sampling has a number of advantages, including source emissions that are measured under conditions simulating stack gas entry and mixing in the ambient atmosphere. This is particularly important for characterizing the semivolatile species in effluents as a part of particulate emissions. The CDS characteristics and performance are given, along with sampling methodology. The CDS was compared with a reference dilution sampler. The results indicate that the two designs are comparable for tests on gas-fired units and a diesel electrical generator. The performance data indicate that lower detection limits can be achieved relative to current regulatory methods for particulate emissions. Test data for the fine particulate matter (PM2.5) emissions are provided for comparison with U.S. Environment Protection Agency (EPA) Conditional Test Method 040 for filterable particulate matter (FPM) and the EPA Method 202 for condensable particulate matter. This comparison showed important differences between methods, depending on whether a comparison is done between in situ FPM determinations or the sum of such values with condensable PM from liquid filled impingers chilled in an ice bath. These differences are interpretable in the light of semivolatile material present in the stack effluent and, in some cases, differences in detection and quantification limits. Determination of emissions from combustors using liquid fuels can be readily achieved using 1-hr sampling with the CDS. Emissions from gasfired combustors are very low, requiring careful attention to sample volumes. Sampling volumes corresponding with 6-hr operation were used for the combined mass and broad chemical speciation. Particular attention to dilution sampler operation with clean dilution air also is essential for gas-fired sources.  相似文献   

3.
Seasonal elemental carbon (EC) and organic carbon (OC) concentration levels in PM2.5 samples collected in Milan (Italy) are presented and discussed, enriching the world-wide database of carbonaceous species in fine particulate matter (PM). High-volume PM2.5 sampling campaigns were performed from August 2002 through December 2003 in downtown Milan at an urban background site. Compared to worldwide average concentrations, in Milan warm-season OC and both warm- and cold-season EC are relatively low; conversely, cold-season OC concentrations are rather high. Consequently, high values for the OC/EC ratio are observed, especially in the winter period. The relation between OC/EC ratio values and wind direction is investigated, pointing out that the highest ratios are associated to winds blowing from those nearby areas where wood consumption for domestic heating is larger. Information on the OC partitioning between its primary and secondary fraction are derived by means of the EC-tracer method and principal component analysis. In the warm-season, OC is mainly of secondary origin, secondary organic aerosol (SOA) accounting for about 84% of the particulate organic matter and 25–28% of the PM2.5 mass. For the cold season the full application of the EC-tracer method was not possible and the primary organic aerosol deriving from traffic could only be estimated. However, principal component analysis (PCA) suggest a prevailing primary origin for OC, thus raising the attention on space heating emissions, and on wood combustion in particular, for air quality control. The role of traffic emissions on PM2.5 concentration levels, as a primary source, are also assessed: EC and primary organic matter from traffic account for a warm-season 30% and a cold-season 7% of the total carbon in PM2.5, that is for about 10% and 6% of PM2.5 mass, respectively. This latter small primary contribution estimated for the cold-season points out that stationary sources, which were not thought to play a significant role on PM concentration levels, may conversely be as much responsible for ambient particulate pollution.  相似文献   

4.
Ammonium nitrate and semivolatile organic material (SVOM) are significant components of fine particles in urban atmospheres. These components, however, are not properly determined with methods such as the fine particulate matter (PM2.5) Federal Reference Method (FRM) or other single filter samplers because of significant losses of semivolatile material (SVM) from particles collected on the filter during sampling. The R&P tapered element oscillating microbalance (TEOM) monitor also does not measure SVM, because this method heats the sample to remove particle bound water, which also results in evaporation of SVM. Recent advances in monitoring techniques have resulted in samplers for both integrated and continuous measurement of total PM2.5, including the particle concentrator-Brigham Young University organic sampling system (PC-BOSS), the real-time total ambient mass sampler (RAMS), and the R&P filter dynamics measurement system (FDMS) TEOM monitor. Results obtained using these samplers have been compared with those obtained with either a PM2.5 FRM sampler or a TEOM monitor in studies conducted during the past five years. These studies have shown the following: (1) the PC-BOSS, RAMS, and FDMS TEOM are all comparable. Each instrument measures both the nonvolatile material and the SVM. (2) The SVM is not retained on the heated filter of a regular TEOM monitor and is not measured by this sampling technique. (3) Much of the SVM is also lost during sampling from single filter samplers such as the PM2.5 FRM sampler. (4) The amount of SVM lost from single filter samplers can vary from less than one-third of that lost from heated TEOM filters during cold winter conditions to essentially all during warm summer conditions. (5) SVOM can only be reliably collected using an appropriate denuder sampler. (6) A PM2.5 speciation sampler can be easily modified to a denuder sampler with filters that can be analyzed for semivolatile organic carbon (OC), nonvolatile OC, and elemental carbon using existing OC/elemental carbon analytical techniques. The research upon which these statements are based for various urban studies are summarized in this paper.  相似文献   

5.
The objectives of this study were to examine the use of carbon fractions to identify particulate matter (PM) sources, especially traffic-related carbonaceous particle sources, and to estimate their contributions to the particle mass concentrations. In recent studies, positive matrix factorization (PMF) was applied to ambient fine PM (PM2.5) compositional data sets of 24-hr integrated samples including eight individual carbon fractions collected at three monitoring sites in the eastern United States: Atlanta, GA, Washington, DC, and Brigantine, NJ. Particulate carbon was analyzed using the Interagency Monitoring of Protected Visual Environments/Thermal Optical Reflectance method that divides carbon into four organic carbons (OC): pyrolized OC and three elemental carbon (EC) fractions. In contrast to earlier PMF studies that included only the total OC and EC concentrations, gasoline emissions could be distinguished from diesel emissions based on the differences in the abundances of the carbon fractions between the two sources. The compositional profiles for these two major source types show similarities among the three sites. Temperature-resolved carbon fractions also enhanced separations of carbon-rich secondary sulfate aerosols. Potential source contribution function analyses show the potential source areas and pathways of sulfate-rich secondary aerosols, especially the regional influences of the biogenic, as well as anthropogenic secondary aerosol. This study indicates that temperature-resolved carbon fractions can be used to enhance the source apportionment of ambient PM2.5.  相似文献   

6.
In an effort to better quantify wintertime particulate matter (PM) and the contribution of wood smoke to air pollution events in Fresno, CA, a field campaign was conducted in winter 2003-2004. Coarse and fine daily PM samples were collected at five locations in Fresno, including residential, urban, and industrial areas. Measurements of collected samples included gravimetric mass determination, organic and elemental carbon analysis, and trace organic compound analysis by gas chromatograph mass spectrometry (GC/MS). The wood smoke tracer levoglucosan was also measured in aqueous aerosol extracts using high-performance anion exchange chromatography coupled with pulsed amperometric detection. Sample preparation and analysis by this technique is much simpler and less expensive than derivatized levoglucosan analysis by GC/MS, permitting analysis of daily PM samples from all five of the measurement locations. Analyses revealed low spatial variability and similar temporal patterns of PM2.5 mass, organic carbon (OC), and levoglucosan. Daily mass concentrations appear to have been strongly influenced by meteorological conditions, including precipitation, wind, and fog events. Fine PM (PM2.5) concentrations are uncommonly low during the study period, reflecting frequent precipitation events. During the first portion of the study, levoglucosan had a strong relationship to the concentrations of PM2.5 and OC. In the later portion of the study, there was a significant reduction in levoglucosan relative to PM2.5 and OC. This may indicate a change in particle removal processes, perhaps because of fog events, which were more common in the latter period. Combined, the emissions from wood smoke, meat cooking, and motor vehicles appear to contribute approximately 65-80% to measured OC, with wood smoke, on average, accounting for approximately 41% of OC and approximately 18% of PM2.5 mass. Two residential sites exhibit somewhat higher contributions of wood smoke to OC than other locations.  相似文献   

7.
Characterization of particulate matter for three sites in Kuwait   总被引:1,自引:0,他引:1  
Many studies have shown strong associations between particulate matter (PM) levels and a variety of health outcomes, leading to changes in air quality standards in many regions, especially the United States and Europe. Kuwait, a desert country located on the Persian Gulf, has a large petroleum industry with associated industrial and urban land uses. It was marked by environmental destruction from the 1990 Iraqi invasion and subsequent oil fires. A detailed particle characterization study was conducted over 12 months in 2004-2005 at three sites simultaneously with an additional 6 months at one of the sites. Two sites were in urban areas (central and southern) and one in a remote desert location (northern). This paper reports the concentrations of particles less than 10 microm in diameter (PM10) and fine PM (PM2.5), as well as fine particle nitrate, sulfate, elemental carbon (EC), organic carbon (OC), and elements measured at the three sites. Mean annual concentrations for PM10 ranged from 66 to 93 microg/m3 across the three sites, exceeding the World Health Organization (WHO) air quality guidelines for PM10 of 20 microg/m3. The arithmetic mean PM2.5 concentrations varied from 38 and 37 microg/m3 at the central and southern sites, respectively, to 31 microg/m3 at the northern site. All sites had mean PM2.5 concentrations more than double the U.S. National Ambient Air Quality Standard (NAAQS) for PM2.5. Coarse particles comprised 50-60% of PM10. The high levels of PM10 and large fraction of coarse particles comprising PM10 are partially explained by the resuspension of dust and soil from the desert crust. However, EC, OC, and most of the elements were significantly higher at the urbanized sites, compared with the more remote northern site, indicating significant pollutant contributions from local mobile and stationary sources. The particulate levels in this study are high enough to generate substantial health impacts and present opportunities for improving public health by reducing airborne PM.  相似文献   

8.
Hourly indoor and outdoor fine particulate matter (PM2.5), organic and elemental carbon (OC and EC, respectively), particle number (PN), ozone (O3), carbon monoxide (CO), and nitrogen oxide (NOx) concentrations were measured at two different retirement communities in the Los Angeles, CA, area as part of the Cardiovascular Health and Air Pollution Study. Site A (group 1 [G1]) was operated from July 6 to August 20, 2005 (phase 1 [P1]) and from October 19 to December 10, 2005 (P2), whereas site B (group 2 [G2]) was operated from August 24 to October 15, 2005 (P1), and from January 4 to February 18, 2006 (P2). Overall, the magnitude of indoor and outdoor measurements was similar, probably because of the major influence of outdoor sources on indoor particle and gas levels. However, G2 showed a substantial increase in indoor OC, PN, and PM2.5 between 6:00 and 9:00 a.m., probably from cooking. The contributions of primary and secondary OC (SOA) to measured outdoor OC were estimated from collected OC and EC concentrations using EC as a tracer of primary combustion-generated OC (i.e., "EC tracer method"). The study average outdoor SOA accounted for 40% of outdoor particulate OC (40-45% in the summer and 32-40% in the winter). Air exchange rates (hr(-1)) and infiltration factors (Finf; dimensionless) at each site were also determined. Estimated Finf and measured particle concentrations were then used in a single compartment mass balance model to assess the contributions of indoor and/or outdoor sources to measured indoor OC, EC, PM2.5, and PN. The average percentage contributions of indoor SOA of outdoor origin to measured indoor OC were approximately 35% (during G1P1 and G1P2) and approximately 45% (for G2P1 and G2P2). On average, 36% (G2P1) to 44% (G1P1) of measured indoor OC was composed of outdoor-generated primary OC.  相似文献   

9.
A comprehensive indoor particle characterization study was conducted in nine Boston-area homes in 1998 in order to characterize sources of PM in indoor environments. State-of-the-art sampling methodologies were used to obtain continuous PM2.5 concentration and size distribution particulate data for both indoor and outdoor air. Study homes, five of which were sampled during two seasons, were monitored over week-long periods. Among other data collected during the extensive monitoring efforts were 24-hr elemental/organic carbon (EC/OC) particulate data as well as semi-continuous air exchange rates and time-activity information. This rich data set shows that indoor particle events tend to be brief, intermittent, and highly variable, thus requiring the use of continuous instrumentation for their characterization. In addition to dramatically increasing indoor PM2.5 concentrations, these data demonstrate that indoor particle events can significantly alter the size distribution and composition of indoor particles. Source event data demonstrate that the impacts of indoor activities are especially pronounced in the ultrafine (da < or = 0.1 micron) and coarse (2.5 < or = da < or = 10 microns) modes. Among the sources of ultrafine particles characterized in this study are indoor ozone/terpene reactions. Furthermore, EC/OC data suggest that organic carbon is a major constituent of particles emitted during indoor source events. Whether exposures to indoor-generated particles, particularly from large short-term peak events, may be associated with adverse health effects will become clearer when biological mechanisms are better known.  相似文献   

10.
The Positive Matrix Factorization (PMF) receptor model version 1.1 was used with data from the fine particulate matter (PM2.5) Chemical Speciation Trends Network (STN) to estimate source contributions to ambient PM2.5 in a highly industrialized urban setting in the southeastern United States. Model results consistently resolved 10 factors that are interpreted as two secondary, five industrial, one motor vehicle, one road dust, and one biomass burning sources. The STN dataset is generally not corrected for field blank levels, which are significant in the case of organic carbon (OC). Estimation of primary OC using the elemental carbon (EC) tracer method applied on a seasonal basis significantly improved the model's performance. Uniform increase of input data uncertainty and exclusion of a few outlier samples (associated with high potassium) further improved the model results. However, it was found that most PMF factors did not cleanly represent single source types and instead are "contaminated" by other sources, a situation that might be improved by controlling rotational ambiguity within the model. Secondary particulate matter formed by atmospheric processes, such as sulfate and secondary OC, contribute the majority of ambient PM2.5 and exhibit strong seasonality (37 +/- 10% winter vs. 55 +/- 16% summer average). Motor vehicle emissions constitute the biggest primary PM2.5 mass contribution with almost 25 +/- 2% long-term average and winter maximum of 29 +/- 11%. PM2.5 contributions from the five identified industrial sources vary little with season and average 14 +/- 1.3%. In summary, this study demonstrates the utility of the EC tracer method to effectively blank-correct the OC concentrations in the STN dataset. In addition, examination of the effect of input uncertainty estimates on model results indicates that the estimated uncertainties currently being provided with the STN data may be somewhat lower than the levels needed for optimum modeling results.  相似文献   

11.
The Models-3 Community Multiscale Air Quality (CMAQ) Modeling System and the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAMx) were applied to simulate the period June 29-July 10, 1999, of the Southern Oxidants Study episode with two nested horizontal grid sizes: a coarse resolution of 32 km and a fine resolution of 8 km. The predicted spatial variations of ozone (O3), particulate matter with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5), and particulate matter with an aerodynamic diameter less than or equal to 10 microm (PM10) by both models are similar in rural areas but differ from one another significantly over some urban/suburban areas in the eastern and southern United States, where PMCAMx tends to predict higher values of O3 and PM than CMAQ. Both models tend to predict O3 values that are higher than those observed. For observed O3 values above 60 ppb, O3 performance meets the U.S. Environmental Protection Agency's criteria for CMAQ with both grids and for PMCAMx with the fine grid only. It becomes unsatisfactory for PMCAMx and marginally satisfactory for CMAQ for observed O3 values above 40 ppb. Both models predict similar amounts of sulfate (SO4(2-)) and organic matter, and both predict SO4(2-) to be the largest contributor to PM2.5. PMCAMx generally predicts higher amounts of ammonium (NH4+), nitrate (NO3-), and black carbon (BC) than does CMAQ. PM performance for CMAQ is generally consistent with that of other PM models, whereas PMCAMx predicts higher concentrations of NO3-, NH4+, and BC than observed, which degrades its performance. For PM10 and PM2.5 predictions over the southeastern U.S. domain, the ranges of mean normalized gross errors (MNGEs) and mean normalized bias are 37-43% and -33-4% for CMAQ and 50-59% and 7-30% for PMCAMx. Both models predict the largest MNGEs for NO3- (98-104% for CMAQ 138-338% for PMCAMx). The inaccurate NO3- predictions by both models may be caused by the inaccuracies in the ammonia emission inventory and the uncertainties in the gas/particle partitioning under some conditions. In addition to these uncertainties, the significant PM overpredictions by PMCAMx may be attributed to the lack of wet removal for PM and a likely underprediction in the vertical mixing during the daytime.  相似文献   

12.
Because the particulate organic carbon (OC) concentrations reported in U.S. Environment Protection Agency Speciation Trends Network (STN) data were not blank corrected, the OC blank concentrations were estimated using the intercept in particulate matter < or = 2.5 microm in aerodynamic diameter (PM2.5) regression against OC concentrations. The estimated OC blank concentrations ranged from 1 to 2.4 microg/m3 showing higher values in urban areas for the 13 monitoring sites in the northeastern United States. In the STN data, several different samplers and analyzers are used, and various instruments show different method detection limit (MDL) values, as well as errors. A comprehensive set of error structures that would be used for numerous source apportionment studies of STN data was estimated by comparing a limited set of measured concentrations and their associated uncertainties. To examine the estimated error structures and investigate the appropriate MDL values, PM2.5 samples collected at a STN site in Burlington, VT, were analyzed through the application of the positive matrix factorization. A total of 323 samples that were collected between December 2000 and December 2003 and 49 species based on several variable selection criteria were used, and eight sources were successfully identified in this study with the estimated error structures and min values among different MDL values from the five instruments: secondary sulfate aerosol (41%), secondary nitrate aerosol (20%), airborne soil (15%), gasoline vehicle emissions (7%), diesel emissions (7%), aged sea salt (4%), copper smelting (3%), and ferrous smelting (2%). Time series plots of contributions from airborne soil indicate that the highly elevated impacts from this source were likely caused primarily by dust storms.  相似文献   

13.
A study of carbonaceous aerosol was initiated in Nanchang, a city in eastern China, for the first time. Daily and diurnal (daytime and nighttime) PM2.5 (particulate matter with aerodynamic diameter < or =2.5 microm) samples were collected at an outdoor site and in three different indoor environments (common office, special printing and copying office, and student dormitory) in a campus of Nanchang University during summer 2009 (5-20 June). Daily PM10 (particulate matter with aerodynamic diameter < or =10 microm) samples were collected only at the outdoor site, whereas PM2.5 samples were collected at both indoor and outdoor sites. Loaded PM2.5 and PM10 samples were analyzed for organic and elemental carbon (OC, EC) by thermal/optical reflectance following the Interagency Monitoring of Protected Visual Environments-Advanced (IMPROVE-A) protocol. Ambient mass concentrations of PM10 and PM2.5 in Nanchang were compared with the air quality standards in China and the United States, and revealed high air pollution levels in Nanchang. PM2.5 accounted for about 70% of PM10, but the ratio of OC and EC in PM2.5 to that in PM10 was higher than 80%, which indicated that OC and EC were mainly distributed in the fine particles. The variations of carbonaceous aerosol between daytime and nighttime indicated that OC was released and formed more rapidly in daytime than in nighttime. OC/EC ratios were used to quantify secondary organic carbon (SOC). The differences in SOC and SOC/OC between daytime and nighttime were useful in interpreting the secondary formation mechanism. The results of (1) OC and EC contributions to PM2.5 at indoor sites and the outdoor site; (2) indoor-outdoor correlation of OC and EC; (3) OC-EC correlation; and (4) relative contributions of indoor and outdoor sources to indoor carbonaceous aerosol indicated that OC indoor sources existed in indoor sites, with the highest OC emissions in I2 (the special printing and copying office), and that indoor EC originated from outdoor sources. The distributions of eight carbon fractions in emissions from the printer and copier showed obviously high OC1 (>20%) and OC2 (approximately 30%), and obviously low EC1-OP (a pyrolyzed carbon fraction) (<10%), when compared with other sources.  相似文献   

14.
Prescribed burning, in combination with mechanical thinning, is a successful method for reducing heavy fuel loads from forest floors and thereby lowering the risk of catastrophic wildfire. However, an undesirable consequence of managed fire is the production of fine particulate matter or PM(2.5) (particles ≤2.5 μm in aerodynamic diameter). Wood-smoke particulate data from 21 prescribed burns are described, including results from broadcast and slash-pile burns. All PM(2.5) samples were collected in situ on day 1 (ignition) or day 2. Samples were analyzed for mass, polycyclic aromatic hydrocarbons (PAHs), inorganic elements, organic carbon (OC), and elemental carbon (EC). Results were characteristic of low intensity, smoldering fires. PM(2.5) concentrations varied from 523 to 8357 μg m(-3) and were higher on day 1. PAH weight percents (19 PAHs) were higher in slash-pile burns (0.21 ± 0.08% OC) than broadcast burns (0.07 ± 0.03% OC). The major elements were K, Cl, S, and Si. OC and EC values averaged 66 ± 7 and 2.8 ± 1.4% PM(2.5), respectively, for all burns studied, in good agreement with literature values for smoldering fires.  相似文献   

15.
Hourly concentrations of ambient fine particle sulfate and carbonaceous aerosols (elemental carbon [EC], organic carbon [OC], and black carbon [BC]) were measured at the Harvard-U.S. Environmental Protection Agency Supersite in Boston, MA, between January 2007 and October 2008. These hourly concentrations were compared with those made using integrated filter-based measurements over 6-day or 24-hr periods. For sulfate, the two measurement methods showed good agreement. Semicontinuous measurements of EC and OC also agreed (but not as well as for sulfate) with those obtained using 24-hr integrated filter-based and optical BC reference methods. During the study period, 24-hr PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter) concentrations ranged from 1.4 to 37.6 microg/m3, with an average of 9.3 microg/m3. Sulfate as the equivalent of ammonium sulfate accounted for 39.1% of the PM2.5 mass, whereas EC and OC accounted for 4.2 and 35.2%, respectively. Hourly sulfate concentrations showed no distinct diurnal pattern, whereas hourly EC and BC concentrations peaked during the morning rush hour between 7:00 and 9:00 a.m. OC concentrations also exhibited nonpronounced, small peaks during the day, most likely related to traffic, secondary organic aerosol, and local sources, respectively.  相似文献   

16.
Diluted exhaust from selected military aircraft ground-support equipment (AGE) was analyzed for particulate mass, elemental carbon (EC) and organic carbon (OC), SO4(2-), and size distributions. The experiments occurred at idle and load conditions and utilized a chassis dynamometer. The selected AGE vehicles operated on gasoline, diesel, and JP-8. These military vehicles exhibited concentrations, size distributions, and emission factors in the same range as those reported for nonmilitary vehicles. The diesel and JP-8 emission rates for PM ranged from 0.092 to 1.1 g/kg fuel. The EC contributed less and the OC contributed more to the particulate mass than reported in recent studies of vehicle emissions. Overall, the particle size distribution varied significantly with engine condition, with the number of accumulation mode particles and the count median diameter (CMD) increasing as engine load increased. The SO4(2-) analyses showed that the distribution of SO4(2-) mass mirrored the distribution of particle mass.  相似文献   

17.
Particulate compositions including elemental carbon (EC), organic carbon (OC), water-soluble ionic species, and elemental compositions were investigated during the period from 2004 to 2006 in southern Taiwan. The correlation between the pollutant standard index (PSI) of ambient air quality and the various particle compositions was also addressed in this study. PSI revealed a correlation with fine (r = 0.74) and coarse (r = 0.80) particulate matter (PM). PSI manifested a significant correlation with the amount of analyzed ionic species (r approximately 0.80) in coarse and fine particles and a moderate correlation with carbon content (r = 0.63) in fine particles; however, it showed no correlation with elemental content. Although the ambient air quality ranged from good to moderate, the ionic species including chloride (Cl-), nitrate (NO3-), sulfate (SO4(2-)), sodium (Na+), ammonium (NH4+), magnesium (Mg2+), and calcium (Ca2+) increased significantly (1.5-3.7 times for Daliao and 1.8-6.9 times for Tzouying) in coarse PM. For fine particles, NO3-, SO4(2-), NH4+, and potassium (K+) also increased significantly (1.3-2.4 times for Daliao and 2.8-9.6 times for Tzouying) when the air quality went from good to moderate. For meteorological parameters, temperature evidenced a slightly negative correlation with PM concentration and PSI value, which implied a high PM concentration in the low-temperature condition. This reflects the high frequency of PM episodes in winter and spring in southern Taiwan. In addition, the mixing height increase from 980 to 1450 m corresponds to the air quality condition changing from unhealthy to good.  相似文献   

18.
In December 1994, the South Coast Air Quality Management District (SCAQMD) initiated a comprehensive program, the PM10 Technical Enhancement Program (PTEP), to characterize fine PM in the South Coast Air Basin (SCAB). A 1-year special particulate monitoring project was conducted from January 1995 to February 1996 as part of the PTEP. Under this enhanced monitoring, HNO3, NH3, and speciated PM10 and PM2.5 concentrations were measured at five stations (Anaheim, downtown Los Angeles, Diamond Bar, Fontana, and Rubidoux) in the SCAB and at one background station at San Nicolas Island. PM2.5 and PM10 mass and 43 individual species were analyzed for a full chemical speciation of the particle data. The PTEP data indicate that the most abundant chemical components of PM10 and PM2.5 in the SCAB are NH4+ (8-9% of PM10 and 14-17% of PM2.5), NO3- (23-26% of PM10 and 28-41% of PM2.5), SO4- (6-11% of PM10 and 9-18% of PM2.5), organic carbon (OC) (15-19% of PM10 and 18-26% of PM2.5), and elemental carbon (EC) (5-8% of PM10 and 8-13% of PM2.5). On an annual average basis, PM2.5 comprises 52-59% of the SCAB PM10. Annual average PM10 and PM2.5 concentrations showed strong spatial variations, low at coastal sites and high at inland sites. Annual average PM10 concentrations varied from 40.8 micrograms/m3 at Anaheim to 76.8 micrograms/m3 at Rubidoux, while annual average PM2.5 concentrations varied from 21.7 micrograms/m3 at Anaheim to 39.8 micrograms/m3 at Rubidoux. The chemical characterizations of the PM2.5 and PM10 concentrations, as well as their spatial variations, were examined; the important findings are summarized in this paper, and the temporal variations are discussed in the companion paper.  相似文献   

19.
A study using two stack-sampling methodologies for collecting particulate matter (PM) emissions was conducted using a hot filter followed by a cold impinger sampling train and a dilution sampler. Samples were collected from ferrous iron metal casting processes that included pouring molten iron into a sand mold containing an organic binder, metal cooling, removal of the sand from the cooled casting (shakeout), and postshakeout cooling. The shakeout process contributed more to PM emissions than the metal pouring and cooling processes. Particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass emissions for the entire casting cycle ranged from 3.4 to 4.7 lb/t of metal for the hot filter/impinger method and from 0.8 to 1.8 lb/t of metal for the dilution method. Most of the difference was due to PM captured by the impingers, much of which was probably dissolved gases rather than condensable vapors. Of the PM fraction captured by the impingers, 96-98% was organic in nature. The impinger PM fraction contributed 32-38% to the total suspended particle mass and caused a factor of 2-4 positive bias for PM2.5 emissions. For the pouring and cooling processes only, the factor increased to over seven times.  相似文献   

20.
This paper presents the results of the first reported study on fine particulate matter (PM) chemical composition at Salamanca, a highly industrialized urban area of Central Mexico. Samples were collected at six sites within the urban area during February and March 2003. Several trace elements, organic carbon (OC), elemental carbon (EC), and six ions were analyzed to characterize aerosols. Average concentrations of PM with aerodynamic diameter of less than 10 microm (PM10) and fine PM with aerodynamic diameter of less than 2.5 microm (PM2.5) ranged from 32.2 to 76.6 [g m(-3) and 11.1 to 23.7 microg m(-3), respectively. OC (34%), SO4= (25.1%), EC (12.9%), and geological material (12.5%) were the major components of PM2.5. For PM10 geological material (57.9%), OC (17.3%), and SO4= (9.7%) were the major components. Coarse fraction (PM,, -PM2.5), geological material (81.7%), and OC (8.6%) were the dominant species, which amounted to 90.4%. Correlation analysis showed that sulfate in PM2.5 was present as ammonium sulfate. Sulfate showed a significant spatial variation with higher concentrations to the north resulting from predominantly southwesterly winds above the surface layer and by major SO2 sources that include a power plant and refinery. At the urban site of Cruz Roja it was observed that PM2.5 mass concentrations were similar to the submicron fraction concentrations. Furthermore, the correlation between EC in PM2.5 and EC measured from an aethalometer was r(2) = 0.710. Temporal variations of SO2 and nitrogen oxide were observed during a day when the maximum concentration of PM2.5 was measured, which was associated with emissions from the nearby refinery and power plant. From cascade impactor measurements, the three measured modes of airborne particles corresponded with diameters of 0.32, 1.8, and 5.6 microm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号