首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human history of coastal regions around the world has been under assault for decades, from forces that include dam building, coastal modifications, the destruction of wetlands, marine erosion, population growth and rampant development, looting, and other processes. Global warming will exacerbate the destruction of cultural resources in coastal zones through accelerated sea level rise, intensified storm cycles, and related coastal erosion. Although average global sea levels have been rising for ∼20,000 years, they slowed dramatically about 7,000 years ago. Rates of sea level rise now appear to be increasing rapidly due to growing anthropogenic emissions of carbon dioxide and other greenhouse gases. Global warming and rising seas, especially when combined with population growth and the implementation of measures designed to protect endangered coastal properties, threaten the deep maritime history of human migrations, settlement, and adaptations in coastal areas around the world. Ranging in age from the mid-Pleistocene to recent historic times, coastal archaeological sites contain invaluable data on ancient coastal societies, fisheries, and ecosystems. Archaeologists, historians, and other cultural resource managers must do more to anticipate, evaluate, and mitigate the effects of global warming, sea level rise, and coastal erosion on the long history of human maritime cultures.  相似文献   

2.
Dune slack habitats are highly dependent on the availability of water to support flora and fauna. Typically this is provided by shallow groundwater. This paper describes the seasonal and long term variation in groundwater levels in part of the Sefton coastline between 1972 and 2007. The effects of climate change, vegetation management and coastline realignment on groundwater levels are modelled. The observed annual water table levels rise and fall with an amplitude of 1.5 m, but longer term variations and trends are apparent. A stochastic water balance model was used to describe the changes in water table levels in slack floors in the open dunes and also in areas afforested with pine trees. It was found that the pine trees evaporated 214 mm/year more than open dunes vegetation, resulting in the water table being 0.5–1.0 m lower under the trees than under the open dunes. The effects of climate change on the ground water was simulated using predictions of future climate conditions based on the UKCIP02 medium high emissions scenario. The increase in temperature and change in rainfall patterns will result in a decrease in mean ground water levels by 1.0–1.5 mm in the next 90 years. Typical patterns consist of sequences of 5–10 years of low water table levels interspersed by infrequent sequences consisting of 2–5 years of relatively high or “normal” levels. These results indicate that that flora and fauna that cannot survive a 5–10 year period of water table levels >2.5 m below ground level are unlikely to survive or persist in many slack areas and a change in the ecology of these slack may become inevitable. Other effects of climate change include sea level rise which will result in a gradual rise in water table levels. Coastal erosion will increase the water table gradient to the sea and result in a slight lowering of the ground water levels. Conversely coastal accretion will reverse this process. The spatial distribution of coastal erosion and accretion along the Sefton coastline and its likely impacts on groundwater levels are discussed. The modelling work described in this paper has identified the factors which have the largest effect on groundwater levels in temperate coastal dune systems.  相似文献   

3.
Vietnam’s coastal zone provides a diverse range of natural resources and favourable conditions for social and economic development. However, its coastal ecosystems are highly vulnerable, due to several natural coastal hazards, over-exploitation and other human activities. In spite of diverse interventions, Vietnam’s coastal zone continues to experience significant damage from floods, erosion and typhoons. These hazards are being intensified by climate change and associated rising sea levels. This paper assesses the potential vulnerability of Vietnam’s coast to climate change and discusses possible adaptation policies and plan to reduce the impacts. GIS analysis was used for the assessment of coastal vulnerability. Related literature was reviewed to develop detailed understanding of coastal adaptation to climate change. Adaptation policies and plans were appraised to identify potential coastal adaptation policies and plans that could be adapted by Vietnam. It was identified that vulnerability of the coastal zone of Vietnam could not be attributed only to climatic factors, but also to the physical condition of the coastline. Much of Vietnam’s coastline, particularly, areas around the Red River delta and the Mekong River have elevations below 1 m. These coastlines are largely developed and serve as economic centres of the country, which makes the coast more vulnerable to climate change and the rising sea level. The paper concluded that a non-structural approach (coastal buffer zones, building houses on stilts, storm warning systems, growing of flood-resistant crops and elevated storm shelters with medicine and food storage) could be used by Vietnam to adapt her low-lying coastline around the two deltas to climate change as this strategy enables vulnerable areas to be occupied for longer before eventual retreat. However, for these policies to be successful, it should be planned, implemented well in advance, monitored and evaluated over time.  相似文献   

4.
This paper reports preliminary findings of a study in northern Viti Levu Island (Fiji) intended to test the model of the AD 1300 Event. This holds that around AD 1250–1350, during the transition between the Medieval Warm Period and the Little Ice Age, there was a rapid climate-driven sea-level fall of 70–80 cm which created a food crisis for coastal dwellers throughout the tropical Pacific Islands and led to conflict and the abandonment of open coastal settlements in favour of those in more defensible locations. Two main areas were targeted—the Ba River Valley and adjoining Vatia Peninsula (plus offshore islands)—and inland/offshore sites in defensible locations, particularly in caves, ridge-top rockshelters, and isolated hilltops, were surveyed and test excavations made. Results show that while some of these sites were established during the AD 1300 Event, most were established shortly afterwards, which is exactly what the model predicts. It is concluded that prehistoric populations in Fiji (and similar island groups) were affected by the food crisis during the AD 1300 Event and did respond in ways that profoundly and enduringly altered contemporary trajectories of societal evolution. This study has great implications for the preservation of the record of prehistoric settlement in Fiji (and other tropical Pacific Island groups) because, as a consequence of this climate-forced migration from coasts to inland/upland sites, large amounts of sediment were released from island interiors and carried to their coasts where they buried earlier settlements or redistributed their material signature. Since European arrival in such places around 150 years ago, a second wave of coastal sedimentation, largely driven by plantation agriculture development had similar effects. The current rise of sea level around Pacific Island coasts is the latest in a series of (largely human) threats to the preservation of their cultural heritage.  相似文献   

5.
The coastal wetlands of north-eastern New South Wales (NSW) Australia are increasingly being affected by anthropogenic factors such as urbanisation, residential development and agricultural development. However, little is known about their vulnerability to sea level rise as a result of climate change. The aim of this research is to predict the potential impact of sea level rise (SLR) on the coastal wetland communities. Sea Level Affecting Marshes Model (SLAMM) was used to predict the potential impacts of sea level rise. Geographic Information System (GIS) was used for mapping and analysis. It was found that a meter rise in sea level could decrease coastal wetlands such as Inland fresh marshes from about 225.67 km2 in February 2009 to about 168.04 km2 by the end of the century in north-eastern NSW, Australia. The outcomes from this research can contribute to enhancing wetland conservation and management in NSW.  相似文献   

6.
Historical records of sand drift and dune-building along the coastline of Western Europe provide insights into the natural processes of sand dune accretion and both the impacts of, and human responses to, sand incursions. The analysis of documentary records, instrumental data and proxy records over the last 1,000 years indicates that this period, which included the Little Ice Age (AD 1570–1900), featured numerous episodes of sand drift and dune development driven by strong winds associated with Atlantic storms. It is estimated that sand drift affected over a quarter of a million hectares of coastal land in Western Europe. The widespread use of vegetation to stabilise coastal dune systems and prevent sand drift is documented across Europe from AD 1100 and by the start of the 20th century all of the larger coastal dune systems in Portugal, France, Britain and Denmark were comparatively inactive. Given that Atlantic storminess has remained more or less unchanged over the last 200 years, modern dune management strategies which consider dune devegetation, driven by an increasing focus on ‘naturalness’, may give rise to a recurrence of sand drift problems. Predictions of increased storm frequencies by the end of the 21st century, coupled with sea level rise and potential changes in sand supply will present further challenges for the more ‘dynamic’ dune management strategies.  相似文献   

7.
Coastal archaeological resources around the world often coincide with dense contemporary human populations and a rapidly changing physical environment. Projected sea level rise and urban expansion during the 21st century threaten to destroy much of our global coastal archaeological heritage. In this study, we adapt an environmental vulnerability analysis to quantify the threats of modern development and sea level rise on archaeological sites in California’s Santa Barbara Channel region. Using spatial and statistical techniques, we create a Cultural Resource Vulnerability Index that combines environmental factors, current and projected urban footprints, and archaeological site positioning. We illustrate the importance of this method for targeting threatened archaeological sites for mitigation and salvage research. In the process, we highlight the significance of coastal archaeological sites for helping better understand contemporary environmental and cultural issues, underscoring the need to preserve or salvage these sites for their significant research value.  相似文献   

8.
The intentional and unintentional movement of plants and animals by humans has transformed ecosystems and landscapes globally. Assessing when and how a species was introduced are central to managing these transformed landscapes, particularly in island environments. In the Gulf of Alaska, there is considerable interest in the history of mammal introductions and rehabilitating Gulf of Alaska island environments by eradicating mammals classified as invasive species. The Arctic ground squirrel (Urocitellus parryii) is of concern because it affects vegetation and seabirds on Gulf of Alaska islands. This animal is assumed to have been introduced by historic settlers; however, ground squirrel remains in the prehistoric archaeological record of Chirikof Island, Alaska, challenge this timeline and suggest they colonized the islands long ago. We used 3 lines of evidence to address this problem: direct radiocarbon dating of archaeological squirrel remains; evidence of prehistoric human use of squirrels; and ancient DNA analysis of dated squirrel remains. Chirikof squirrels dated to at least 2000 years ago, and cut marks on squirrel bones suggested prehistoric use by people. Ancient squirrels also shared a mitochondrial haplotype with modern Chirikof squirrels. These results suggest that squirrels have been on Chirikof longer than previously assumed and that the current population of squirrels is closely related to the ancient population. Thus, it appears ground squirrels are not a recent, human‐mediated introduction and may have colonized the island via a natural dispersal event or an ancient human translocation.  相似文献   

9.
Sand dunes are complex systems that contain several habitats, often as mosaics or transitions between types. Several of these habitats are afforded protection under European Legislation and in the UK nationally within Special Areas of Conservation (SAC) and Sites of Special Scientific Interest (SSSI). Natural England has a statutory duty to report to Europe on the conservation status and condition of sand dunes; and is required to report to the UK Government on designated sites. To achieve this we have sought ways of capturing, analysing and interpreting data on the extent and location of sand dune habitats. This requires an ability to be able to obtain data over large areas of coastline in an efficient way. Natural England and Environment Agency Geomatics have worked collaboratively for over 16 years, sharing data and ecological knowledge. In 2012 work started to evaluate the use of remote sensing to map UK BAP and Annex I sand dune habitats. A methodology has now been developed and tested to map sand dune habitats. The key objective was to provide an operational tool that will help to map these habitats and understand change on sites around England. This has been achieved through analysis of LIDAR and Compact Airborne Spectrographic Imager (CASI) data using Object Orientated Image Analysis. Quality Control (QC) and accuracy assessments have shown this approach to be successful and 11 sites have been mapped to date. These techniques are providing a new approach to monitoring change in coastal vegetation communities and informing management of protected sites.  相似文献   

10.
Oyster reefs form over extensive areas and the diversity and productivity of sheltered coasts depend on them. Due to the relatively recent population growth of coastal settlements in Australia, we were able to evaluate the collapse and extirpation of native oyster reefs (Ostrea angasi) over the course of a commercial fishery. We used historical records to quantify commercial catch of O. angasi in southern Australia from early colonization, around 1836, to some of the last recorded catches in 1944 and used our estimates of catch and effort to map their past distribution and assess oyster abundance over 180 years. Significant declines in catch and effort occurred from 1886 to 1946 and no native oyster reefs occur today, but historically oyster reefs extended across more than 1,500 km of coastline. That oyster reefs were characteristic of much of the coastline of South Australia from 1836 to 1910 appears not to be known because there is no contemporary consideration of their ecological and economic value. Based on the concept of a shifted baseline, we consider this contemporary state to reflect a collective, intergenerational amnesia. Our model of generational amnesia accounts for differences in intergenerational expectations of food, economic value, and ecosystem services of nearshore areas. An ecological system that once surrounded much of the coast and possibly the past presence of oyster reefs altogether may be forgotten and could not only undermine progress towards their recovery, but also reduce our expectations of these coastal ecosystems. La Pérdida de una Línea de Base Ecológica por Medio de la Erradicación de Arrecifes de Ostión de los Ecosistemas Costeros y la Memoria Humana  相似文献   

11.
The southern Great Barrier Reef (GBR), a region that rarely experiences cyclones, was impacted by tropical cyclone (TC) Hamish in March 2009. We documented on-reef physical and habitat conditions before, during and after the cyclone at One Tree Reef (OTR) using data from environmental sensor instrumentation and benthic surveys. Over 5 years of monitoring, ocean mooring data revealed that OTR experienced large swells (4–8 m) of short duration (10–20 min) not associated with a cyclone in the area. These swells may have contributed to the physical disturbance of benthic biota and decline in coral cover recorded prior to and after TC Hamish. During the cyclone, OTR sustained southeasterly gale force winds (>61.2 km h−1) for 18.5 h and swells >6 m in height for 4 h. Benthic surveys of exposed sites documented a 20% drop in live coral cover, 30% increase in filamentous algae cover and the presence of dislodged corals and rubble after the storm. Leeward sites were largely unaffected by the cyclone. Benthic cover did not change in the lagoon sites. Significant rubble movement and infill of the lagoon occurred. Two years after the cyclone, algal cover remained high and laminar corals had not recovered. Total coral cover at impacted sites had continued to decline. Environmental conditions and habitat surveys supported Puotinen’s (Int J Geogr Inf Sci 21:97–120, 2007) model for cyclone conditions that cause reef destruction. While TC Hamish had a major impact on the reef, change in benthic cover over several years was due to multiple stressors. This on-reef scale integration of physical and biological data provided a rare opportunity to assess impacts of a major storm and other disturbances, showing the importance of considering multiple stressors (short-lived and sustained) in assessing change to reef habitats.  相似文献   

12.
Coastal erosion may be caused by natural causes as well as human factors. Karasu town of the city of Sakarya in Turkey which is a touristic region on the Black Sea coast has been experienced a drastic coastal erosion. In recent years, this erosion reached the threatening dimensions for the structures in the settlement. According to the temporal analyses of Landsat satellite images, the maximum erosion on the coastline was detected 100 m between 1987–2013. The results of the study show that the harbour construct on the Karasu coast has the major impact on this event. The secondary factor is that the amount of the sediment carried by the Sakarya River was decreased in time due to different reasons. To prevent the coastal erosion, a series of offshore breakwaters were planned after the failed application of groins on the coastline. In this study, temporal changes of the coastline are investigated by the Landsat satellite data and land surveys, possible reasons of the erosion are discussed and the solutions are proposed regarding the coastal structures.  相似文献   

13.
Spurilla neapolitana from the Eastern Mediterranean was cultured in a self-sustained, temperature-controlled laboratory culture system, and its life cycle is described. Adults were collected from three field sites situated 120 km apart, along the Israeli Mediterranean coastline, between March 2006 and August 2007. Cultures of the life-cycle stages were raised at 24°C. S. neapolitana deposited white, coiled, spiral egg masses containing zygotes. Veliger larvae hatched 3.0 ± 0.4 days post oviposition. The veliger larvae are obligatory planktotrophs, with a minimal larval phase of 22 days. In the lab, larvae settled and metamorphosed following exposure to metabolites derived from distinct prey sea anemone species. Reproductive maturity was reached 42 ± 5 days post metamorphosis, resulting in a laboratory generation time of 67 days (egg to egg). The average life span of reproductive specimens in this study was 157 ± 13 days post-oviposition and they reached a length of 7–10 cm. During this period, an average adult deposited ca. 40 × 106 zygotes. This species has several characteristics that suggest it will be a useful model for laboratory-oriented research. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Reef‐fish management and conservation is hindered by a lack of information on fish populations prior to large‐scale contemporary human impacts. As a result, relatively pristine sites are often used as conservation baselines for populations near sites affected by humans. This space‐for‐time approach can only be validated by sampling assemblages through time. We used archaeological remains to evaluate whether the remote, uninhabited Northwestern Hawaiian Islands (NWHI) might provide a reasonable proxy for a lightly exploited baseline in the Main Hawaiian Islands (MHI). We used molecular and morphological techniques to describe the taxonomic and size composition of the scarine parrotfish catches present in 2 archaeological assemblages from the MHI, compared metrics of these catches with modern estimates of reproductive parameters to evaluate whether catches represented by the archaeological material were consistent with sustainable fishing, and evaluated overlap between size structures represented by the archaeological material and modern survey data from the MHI and the NWHI to assess whether a space‐for‐time substitution is reasonable. The parrotfish catches represented by archaeological remains were consistent with sustainable fishing because they were dominated by large, mature individuals whose average size remained stable from prehistoric (AD approximately 1400–1700) through historic (AD 1700–1960) periods. The ancient catches were unlike populations in the MHI today. Overlap between the size structure of ancient MHI catches and modern survey data from the NWHI or the MHI was an order of magnitude greater for the NWHI comparison, a result that supports the validity of using the NWHI parrotfish data as a proxy for the MHI before accelerated, heavy human impacts in modern times. Evidencia Arqueológica de la Validez de Poblaciones de Peces en Arrecifes Sin Explotar como Objetivos de Apoderamiento para Poblaciones Actuales  相似文献   

15.
Between 1986 and 2009 nine submersible and remote-operated vehicle expeditions were carried out to study the population biology of the coelacanth Latimeria chalumnae in the Comoro Islands, located in the western Indian Ocean. Latimeria live in large overlapping home ranges that can be occupied for as long as 21 years. Most individuals are confined to relatively small home ranges, resting in the same caves during the day. One hundred and forty five coelacanths are individually known, and we estimate the total population size of Grande Comore as approximately 300–400 adult individuals. The local population inhabiting a census area along an 8-km section of coastline remained stable for at least 18 years. Using LASER-assisted observations, we recorded length frequencies between 100 and 200 cm total length and did not encounter smaller-bodied individuals (<100 cm total length). It appears that coelacanth recruitment in the observation areas occur mainly by immigrating adults. We estimate that the mean numbers of deaths and newcomers are 3–4 individuals per year, suggesting that longevity may exceed 100 years. The domestic fishery represents a threat to the long-term survival of coelacanths in the study area. Recent changes in the local fishery include a decrease in the abundance of the un-motorized canoes associated with exploitation of coelacanths and an increase in motorized canoes. Exploitation rates have fallen in recent years, and by 2000, had fallen to lowest ever reported. Finally, future fishery developments are discussed.  相似文献   

16.
The dynamic coastline of Soc Trang Province in the Mekong Delta of Viet Nam is in most parts protected from erosion, storms and flooding by a narrow belt of mangroves. However, the unsustainable use of natural resources and development in the coastal zone is threatening the protection function of this forest belt. This situation is exacerbated by the impacts of climate change, particularly by the increased intensity and frequency of storms, floods and by rising sea levels. Based on analysis of past experience of mangrove planting and historical changes in mangrove cover, an integrated and site-specific approach to adaptation to climate change has been put in place, which comprises mangrove planting and rehabilitation with emphasis on resilience to climate change, and participatory involvement of local communities in effective mangrove management and protection through co-management. To address uncertainties associated with the impacts of climate change, testing of new mangrove planting techniques has started. This includes mimicking successful natural regeneration for small-scale planting in sites with high wave energy and transformation of existing even-aged plantations into more diverse forests—both in terms of structure and species composition. The pre-requisite for mangrove rehabilitation in erosion sites has successfully been put in place: breakwaters made from bamboo have reduced erosion and stimulated sedimentation. The design and construction of the wave-breaking structures, which was based on a numerical model which simulates hydrodynamics and shoreline development, ensures that downdrift erosion can be avoided as far as possible. A comprehensive monitoring program has been established and initial results provide evidence for the effectiveness of the bamboo breakwaters. Early experience shows that co-management is an effective way of maintaining and enhancing the protection function of the mangrove forest belt and at the same time providing livelihood for local communities. Payment for ecosystem services contributes to sustainability of co-management as well as livelihood improvement.  相似文献   

17.
Conservation efforts to protect forested landscapes are challenged by climate projections that suggest substantial restructuring of vegetation and disturbance regimes in the future. In this regard, paleoecological records that describe ecosystem responses to past variations in climate, fire, and human activity offer critical information for assessing present landscape conditions and future landscape vulnerability. We illustrate this point drawing on 8 sites in the northwestern United States, New Zealand, Patagonia, and central and southern Europe that have undergone different levels of climate and land‐use change. These sites fall along a gradient of landscape conditions that range from nearly pristine (i.e., vegetation and disturbance shaped primarily by past climate and biophysical constraints) to highly altered (i.e., landscapes that have been intensely modified by past human activity). Position on this gradient has implications for understanding the role of natural and anthropogenic disturbance in shaping ecosystem dynamics and assessments of present biodiversity, including recognizing missing or overrepresented species. Dramatic vegetation reorganization occurred at all study sites as a result of postglacial climate variations. In nearly pristine landscapes, such as those in Yellowstone National Park, climate has remained the primary driver of ecosystem change up to the present day. In Europe, natural vegetation–climate–fire linkages were broken 6000–8000 years ago with the onset of Neolithic farming, and in New Zealand, natural linkages were first lost about 700 years ago with arrival of the Maori people. In the U.S. Northwest and Patagonia, the greatest landscape alteration occurred in the last 150 years with Euro‐American settlement. Paleoecology is sometimes the best and only tool for evaluating the degree of landscape alteration and the extent to which landscapes retain natural components. Information on landscape‐level history thus helps assess current ecological change, clarify management objectives, and define conservation strategies that seek to protect both natural and cultural elements.  相似文献   

18.
Some of the most important demographic parameters underlying the resilience of coral communities are determined by their patterns of reproduction. In this study, a variety of methods were used to investigate the patterns of spawning, larval development and dispersal for scleractinian corals at an isolated reef system off northwestern Australia. Two distinct periods of gamete maturation and multi-specific spawning occurred each year, during Spring and Autumn, in contrast to the single season of mass spawning described on most other reefs around Australia. The subsequent rates of embryogenesis and larval development were among the fastest described for corals, with pre-competency periods of approximately 3 days. Within 3 days of spawning, slicks of spawn and current drifters had dispersed up to 5 km, and up to 10 km after 6 days, while the times taken for drifters to travel between adjacent (>240 km) reef systems were similar to or greater than the upper competency periods of most coral larvae. Thus, under these conditions, the entire reef system, and to some extent the reefs within the system, may largely be self-seeded; rates of immigration from other systems are probably insufficient to rapidly increase the recovery of communities within years of a major disturbance. These results have implications for the management of isolated reef systems, highlighting the need to minimize local stressors and maximize community resilience to the increasing scale of disturbance and habitat fragmentation.  相似文献   

19.
The size and structure of a photographically identified population of reef manta ray, Manta alfredi, were examined at aggregation sites over a four-year period in southern Mozambique. The use and standardisation of photo-ID techniques was examined as a minimally-intrusive means to study this species. Using these techniques, we report on the size, structure and seasonality of this population of M. alfredi. In total, 449 individuals were identified during this time period, 40.5% of which were re-sighted on at least one occasion. The longest period between re-sighting events was 1,252 days. During the study period, annual population size estimates for M. alfredi ranged from 149 to 454 individuals. The superpopulation size estimate for the entire study period was 802 individuals, the first reported for M. alfredi at a monitored aggregation site. A highly significant sex bias was evident with a female:male ratio of 3.55:1. The majority of rays (89.9% males; 49.7% females) were considered mature, with most individuals between 3.0 and 4.9 m in disc width. Manta alfredi were observed at the study sites in each month of the calendar year. The maximum number of individual rays seen per dive was 30. Large numbers of rays (20 + per dive) were seen in the months of November, December and January, which coincide with the breeding season. Natural markings were unique to individuals and did not change substantially with time, which provided further support for their use in the identification of individual M. alfredi over multiple years. Multiple re-sightings of individual M. alfredi suggest that many individuals in this population exhibit site fidelity to the examined aggregation sites. As target subsistence fishing for M. alfredi exists along the Mozambican coastline, management efforts to monitor and prevent overexploitation at these critical habitats should be a priority.  相似文献   

20.
Coastline management in The Netherlands: human use versus natural dynamics   总被引:1,自引:0,他引:1  
The boundary between land and sea in The Netherlands changes continuously. Every kilometre of the present position of the Dutch sandy coastline is the result of the interface between natural dynamics initiated by the sea and man-made action on land. Before 1990, each year ca. 20 ha of dunes disappeared through coastal retreat. In 1990 the Dutch government decided to stop any further long-term coastal recession and chose for ‘dynamic preservation’, which primarily aims, at ensuring safety against flooding and sustainable preservation of the values and interests attached to the dunes and beaches. Five years later, a first review of the benefits and bottlenecks of the new coastal defence policy could be presented. The overall conclusion is that the 1990-choice for dynamic preservation was right. The considerable losses of dunes and beaches do not occur any longer. Sand nourishment is an effective method of coastline maintenance, which also serves the functions of the beach and dune area for human society. However, serious erosion of the deeper part of the shoreface threatens the coastline of the 21st century. Nearly a doubling of the nourishment volume is necessary to prevent a renewed landward shift of the coastline. An anticipated accelerated sea level rise (ca. 60 cm/century) will increase the sand losses by another 25%. Plans are being finalized for large-scale land reclamation in front of the coastline as an answer to growing spatial problems on land. In other plans polders, now safely protected by sea dikes, will be returned to the sea in order to restore ecologically valuable salt marshes and mud flats. The position of the coastline will continue to change in the coming decades. Besides natural dynamics, human use of the coastal zone will certainly affect this process: measures to maintain the coastline at its 1990 position need to be seen in perspective: the coastline as a part of the coastalzone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号