首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

In this paper, methane emissions from municipal wastewater treatment plants and municipal solid waste (MSW) landfills in Jordan for 1994 have been estimated using the methodology developed by the Intergovernmental Panel on Climate Change (IPCC). For this purpose, the 14 domestic wastewater treatment plants in the country were surveyed. Generation rates and characterization of MSW components as well as dumping and landfilling practices were surveyed in order to estimate 1994 CH4 emissions from these sites. Locally available waste statistics were used in cases where those of the IPCC guidelines were not representative of Jordan's statistics.

Methane emissions from domestic wastewater in Jordan were estimated at 4.66 gigagrams (Gg). Total 1994 CH4 emissions from MSW management facilities in Jordan are estimated at 371.76 Gg—351.12 Gg (94.45%) from sanitary landfills, 19.83 Gg (5.33%) from MSW open dumps, and 0.81 Gg (0.22%) from raw sewage-water dumping ponds. Uncertainties associated with these estimations are presented.  相似文献   

2.
To investigate the impacts of major factors on carbon loss via gaseous emissions, carbon dioxide (CO2) and methane (CH4) emissions from the ground of open dairy lots were tested by a scale model experiment at various air temperatures (15, 25, and 35 °C), surface velocities (0.4, 0.7, 1.0, and 1.2 m sec?1), and floor types (unpaved soil floor and brick-paved floor) in controlled laboratory conditions using the wind tunnel method. Generally, CO2 and CH4 emissions were significantly enhanced with the increase of air temperature and velocity (P < 0.05). Floor type had different effects on the CO2 and CH4 emissions, which were also affected by air temperature and soil characteristics of the floor. Although different patterns were observed on CH4 emission from the soil and brick floors at different air temperature-velocity combinations, statistical analysis showed no significant difference in CH4 emissions from different floors (P > 0.05). For CO2, similar emissions were found from the soil and brick floors at 15 and 25 °C, whereas higher rates were detected from the brick floor at 35 °C (P < 0.05). Results showed that CH4 emission from the scale model was exponentially related to CO2 flux, which might be helpful in CH4 emission estimation from manure management.

Implications: Gaseous emissions from the open lots are largely dependent on outdoor climate, floor systems, and management practices, which are quite different from those indoors. This study assessed the effects of floor types and air velocities on CO2 and CH4 emissions from the open dairy lots at various temperatures by a wind tunnel. It provided some valuable information for decision-making and further studies on gaseous emissions from open lots.  相似文献   

3.
Significant amounts of volatile organic compounds and greenhouse gases are generated from wastewater lagoons and tailings ponds in Alberta, Canada. Accurate measurements of these air pollutants and greenhouse gases are needed to support management and regulatory decisions. A mobile platform was developed to measure air emissions from tailings pond in the oil sands region of Alberta. The mobile platform was tested in 2015 in a municipal wastewater treatment lagoon. With a flux chamber and a CO2/CH4 sensor on board, the mobile platform was able to measure CO2 and CH4 emissions over two days at two different locations in the pond. Flux emission rates of CO2 and CH4 that were measured over the study period suggest the presence of aerobic and anaerobic zones in the wastewater treatment lagoon. The study demonstrated the capabilities of the mobile platform in measuring fugitive air emissions and identified the potential for the applications in air and water quality monitoring programs.

Implications: The Mobile Platform demonstrated in this study has the ability to measure greenhouse gas (GHG) emissions from fugitive sources such as municipal wastewater lagoons. This technology can be used to measure emission fluxes from tailings ponds with better detection of spatial and temporal variations of fugitive emissions. Additional air and water sampling equipment could be added to the mobile platform for a broad range of air and water quality studies in the oil sands region of Alberta.  相似文献   


4.
Gaseous methane (CH4) emissions from a swine waste holding lagoon were determined periodically during the year. Micrometeorological techniques were used in order that emission rates from the lagoon were measured under ambient conditions with little disturbance to the natural environment. During the cold winter measurement period, CH4 fluxes were linearly related to lagoon water temperature below 22°C (r=0.87). During warmer measurement periods, both water and air temperatures and windspeed affected emissions rates. In general, flux rates followed a diurnal pattern with greater fluxes during the day when both temperature and windspeed were greatest. Mathematical models using air and water temperature and windspeed factors could explain 47 to 75% of the variation in fluxes. Daily emission rates ranged from 1 to 500 kg CH4 ha−1 d−1. The average flux for the year was 52.3 kg CH4 ha−1 d−1 which corresponded to about 5.6 kg CH4 animal−1 yr−1 from the primary lagoon.  相似文献   

5.
Methane biofilter (MBF) technology, a cost effective method to control atmospheric emission of CH4, is usually developed as a passively aerated system to control low-volume point-source emissions such as those from landfills with gas collection systems. Actively aerated high-rate methane biofilter (HMBF) systems are designed to overcome the shortcomings of passively aerated systems by ensuring the entire filter bed is utilized for CH4 oxidation. Flow-through column experiments point to the fact that CH4 oxidation rates of actively aerated systems could be several times higher than that of passively aerated systems. However, reports of the performance of field HMBF systems are not available in literature. Furthermore, there are no studies that demonstrate the possibility of using laboratory data in the design and operation of field systems. The current study was conducted to fill this research gap and involve a comparative study of the performance of laboratory columns to field performance of a HMBF system using solution gas produced at an oil battery site as the CH4 source. The actively aerated column studies confirmed past results with high CH4 oxidation rates; one column received air at two injection points and achieved an oxidation rate of 1417 g/m3/d, which is the highest reported value to date for compost-filled columns. Subsequent studies at a specially designed field HMBF filled with compost showed a higher oxidation rate of 1919 g/m3/d, indicating the possibility of exceeding the high CH4 oxidation rates observed in the laboratory. The achievement of observed field oxidation rates being higher than those in the laboratory is attributed to the capability of maintaining higher temperatures in field HMBFs. Furthermore, results show that field HMBFs could operate at lower than stoichiometric air to CH4 ratios, and lower retention times than that of laboratory columns. Results indicated that laboratory columns may not truly represent field behavior, and said results could only be used in the preliminary design of field HMBFs.  相似文献   

6.

Great efforts have been devoted to assessing the effects of straw managements on greenhouse gas (GHG) emissions, global warming potential (GWP), and net economic budget in rice monoculture (RM). However, few studies have evaluated the effects of straw managements on GHG emissions and net ecosystem economic budget (NEEB) in integrated rice-crayfish farming (RC). Here, a randomized block field experiment was performed to comprehensively evaluate the effects of aquatic breeding practices (feeding or no feeding of forage) and straw managements (rice straw returning or removal) on soil NH4+–N and NO?3–N contents, redox potential (Eh), CH4 and N2O emissions, GWP, and NEEB of fluvo-aquic paddy soil in a rice-crayfish co-culture system in Jianghan Plain of China. We also compared the differences in CH4 and N2O emissions, GWP, and NEEB between RM and RC. Straw returning significantly increased CH4 and N2O emissions by 34.9–46.1% and 6.2–23.1% respectively compared with straw removal. Feeding of forage decreased CH4 emissions by 13.9–18.7% but enhanced N2O emissions by 24.4–33.2% relative to no feeding. Compared with RM treatment, RC treatment decreased CH4 emissions by 18.1–19.6% but increased N2O emissions by 16.8–21.0%. Moreover, RC treatment decreased GWP by 16.8–22.0% while increased NEEB by 26.9–75.6% relative to RM treatment, suggesting that the RC model may be a promising option for mitigating GWP and increasing economic benefits of paddy fields. However, the RC model resulted in a lower grain yield compared with the RM model, indicating that more efforts are needed to simultaneously increase grain yield and NEEB and decrease GWP under RC model.

  相似文献   

7.
Agriculture is an important source of NH3, which contributes to acidification and eutrophication, as well as emissions of the greenhouse gases CH4 and N2O. Because of their common sources, emission reduction measures for one of these gases may affect emissions of others. These interrelations are often ignored in policy making. This study presents an analysis of the effects of measures to reduce NH3 emissions on emissions of N2O and CH4 from agriculture in Europe. The analysis combines information from the NH3 module of the Regional Air pollution INformation and Simulation (RAINS) model for Europe with the IPCC method for national greenhouse gas inventories. The IPCC method for estimating agricultural emissions of N2O and CH4 is adjusted in order to use it in combination with the RAINS database for the European agricultural sector. As an example, we applied the adjusted method to the agricultural sector in the Netherlands and found that application of several NH3 abatement options may result in a substantial increase in N2O emissions while the effect on CH4 emissions is relatively small. In Part 2 of this paper we focus on the resulting emissions for all European countries for 1990 and 2010.  相似文献   

8.
The open lots and manure stockpiles of dairy farm are major sources of greenhouse gas (GHG) emissions in typical dairy cow housing and manure management system in China. GHG (CO2, CH4 and N2O) emissions from the ground level of brick-paved open lots and uncovered manure stockpiles were estimated according to the field measurements of a typical dairy farm in Beijing by closed chambers in four consecutive seasons. Location variation and manure removal strategy impacts were assessed on GHG emissions from the open lots. Estimated CO2, CH4 and N2O emissions from the ground level of the open lots were 137.5±64.7 kg hd-1 yr-1, 0.45±0.21 kg hd-1 yr-1 and 0.13±0.08 kg hd-1 yr-1, respectively. There were remarkable location variations of GHG emissions from different zones (cubicle zone vs. aisle zone) of the open lot. However, the emissions from the whole open lot were less affected by the locations. After manure removal, lower CH4 but higher N2O emitted from the open lot. Estimated CO2, CH4 and N2O emissions from stockpile with a stacking height of 55±12 cm were 858.9±375.8 kg hd-1 yr-1, 8.5±5.4 kg hd-1 yr-1 and 2.3±1.1 kg hd-1 yr-1, respectively. In situ storage duration, which estimated by manure volatile solid contents (VS), would affect GHG emissions from stockpiles. Much higher N2O was emitted from stockpiles in summer due to longer manure storage.

Implications: This study deals with greenhouse gas (GHG) emissions from open lots and stockpiles. It’s an increasing area of concern in some livestock producing countries. The Intergovernmental Panel on Climate Change (IPCC) methodology is commonly used for estimation of national GHG emission inventories. There is a shortage of on-farm information to evaluate the accuracy of these equations and default emission factors. This work provides valuable information for improving accounting practices within China or for similar manure management practice in other countries.  相似文献   

9.
Novel aerial methane (CH4) detection technologies were used in this study to identify anomalously high-emitting oil and gas (O&G) facilities and to guide ground-based “leak detection and repair” (LDAR) teams. This approach has the potential to enable a rapid and effective inspection of O&G facilities under voluntary or regulatory LDAR programs to identify and mitigate anomalously large CH4 emissions from a disproportionately small number of facilities. This is the first study of which the authors are aware to deploy, evaluate, and compare the CH4 detection volumes and cost-effectiveness of aerially guided and purely ground-based LDAR techniques. Two aerial methods, the Kairos Aerospace infrared CH4 column imaging and the Scientific Aviation in situ aircraft CH4 mole fraction measurements, were tested during a 2-week period in the Fayetteville Shale region contemporaneously with conventional ground-based LDAR. We show that aerially guided LDAR can be at least as cost-effective as ground-based LDAR, but several variable parameters were identified that strongly affect cost-effectiveness and which require field research and improvements beyond this pilot study. These parameters include (i) CH4 minimum dectectable limit of aerial technologies, (ii) emission rate size distributions of sources, (iii) remote distinction of fixable versus nonfixable CH4 sources (“leaks” vs. CH4 emissions occurring by design), and (iv) the fraction of fixable sources to total CH4 emissions. Suggestions for future study design are provided.

Implications: Mitigation of methane leaks from existing oil and gas operations currently relies on on-site inspections of all applicable facilities at a prescribed frequency. This approach is labor- and cost-intensive, especially because a majority of oil and gas–related methane emissions originate from a disproportionately small number of facilities and components. We show for the first time in real-world conditions how aerial methane measurements can identify anomalously high-emitting facilities to enable a rapid, focused, and directed ground inspection of these facilities. The aerially guided approach can be more cost-effective than current practices, especially when implementing the aircraft deployment improvements discussed here.  相似文献   


10.
Land use conversion and fertilization have been widely reported to be important managements affecting the exchanges of greenhouse gases between soil and atmosphere. For comprehensive assessment of methane (CH4) and nitrous oxide (N2O) fluxes from hilly red soil induced by land use conversion and fertilization, a 14-month continuous field measurement was conducted on the newly converted citrus orchard plots with fertilization (OF) and without fertilization (ONF) and the conventional paddy plots with fertilization (PF) and without fertilization (PNF). Our results showed that land use conversion from paddy to orchard reduced the CH4 fluxes at the expense of increasing the N2O fluxes. Furthermore, fertilization significantly decreased the CH4 fluxes from paddy soils in the second stage after conversion, but it failed to affect the CH4 fluxes from orchard soils, whereas fertilizer applied to orchard and paddy increased soil N2O emissions by 68 and 113.9 %, respectively. Thus, cumulative CH4 emissions from the OF were 100 % lower, and N2O emissions were 421 % higher than those from the PF. Although cumulative N2O emissions were stimulated in the newly converted orchard, the strong reduction of CH4 led to lower global warming potentials (GWPs) as compared to the paddy. Besides, fertilization in orchard increased GWPs but decreased GWPs of paddy soils. In addition, measurement of soil moisture, temperature, dissolved carbon contents (DOCs), and ammonia (NH4 +-N) and nitrate (NO3 ?-N) contents indicated a significant variation in soil properties and contributed to variations in soil CH4 and N2O fluxes. Results of this study suggest that land use conversion from paddy to orchard would benefit for reconciling greenhouse gas mitigation and citrus orchard cultivation would be a better agricultural system in the hilly red soils in terms of greenhouse gas emission. Moreover, selected fertilizer rate applied to paddy would lead to lower GWPs of CH4 and N2O. Nevertheless, more field measurements from newly converted orchard are highly needed to gain an insight into national and global accounting of CH4 and N2O emissions.  相似文献   

11.
Manure-based soil amendments (herein “amendments”) are important fertility sources, but differences among amendment types and management can significantly affect their nutrient value and environmental impacts. A 6-month in situ decomposition experiment was conducted to determine how protection from wintertime rainfall affected nutrient losses and greenhouse gas (GHG) emissions in poultry (broiler chicken and turkey) and horse amendments. Changes in total nutrient concentration were measured every 3 months, changes in ammonium (NH4+) and nitrate (NO3?) concentrations every month, and GHG emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) every 7–14 days. Poultry amendments maintained higher nutrient concentrations (except for K), higher emissions of CO2 and N2O, and lower CH4 emissions than horse amendments. Exposing amendments to rainfall increased total N and NH4+ losses in poultry amendments, P losses in turkey and horse amendments, and K losses and cumulative N2O emissions for all amendments. However, it did not affect CO2 or CH4 emissions. Overall, rainfall exposure would decrease total N inputs by 37% (horse), 59% (broiler chicken), or 74% (turkey) for a given application rate (wet weight basis) after 6 months of decomposition, with similar losses for NH4+ (69–96%), P (41–73%), and K (91–97%). This study confirms the benefits of facilities protected from rainfall to reduce nutrient losses and GHG emissions during amendment decomposition.

Implications: The impact of rainfall protection on nutrient losses and GHG emissions was monitored during the decomposition of broiler chicken, turkey, and horse manure-based soil amendments. Amendments exposed to rainfall had large ammonium and potassium losses, resulting in a 37–74% decrease in N inputs when compared with amendments protected from rainfall. Nitrous oxide emissions were also higher with rainfall exposure, although it had no effect on carbon dioxide and methane emissions. Overall, this work highlights the benefits of rainfall protection during amendment decomposition to reduce nutrient losses and GHG emissions.  相似文献   

12.
Liquid manure storages are a significant source of methane (CH4) emissions. Farmers commonly agitate (stir) liquid manure prior to field application to homogenize nutrients and solids. During agitation, manure undergoes mechanical stress and is exposed to the air, disrupting anaerobic conditions. This on-farm study aimed to better understand the effects of agitation on CH4 emissions, and explore the potential for intentional agitation (three times) to disrupt the exponential increase of CH4 emissions in spring and summer. Results showed that agitation substantially increased manure temperature in the study year compared to the previous year, particularly at upper- and mid-depths of the stored manure. The temporal pattern of CH4 emissions was altered by reduced emissions over the subsequent week, followed by an increase during the second week. Microbial analysis indicated that the activity of archaea and methanogens increased after each agitation event, but there was little change in the populations of methanogens, archaea, and bacteria. Overall, CH4 emissions were higher than any of the previous three years, likely due to warmer manure temperatures that were higher than the previous years (despite similar air temperatures). Therefore, intermittent manure agitation with the frequency, duration, and intensity used in this study is not recommended as a CH4 emission mitigation practice.

Implications: The potential to mitigate methane emissions from liquid manure storages by strategically timed agitation was evaluated in a detailed farm-scale study. Agitation was conducted with readily-available farm equipment, and targeted at the early summer to disrupt methanogenic communities when CH4 emissions increase exponentially. Methane emissions were reduced for about one week after agitation. However, agitation led to increased manure temperature, and was associated with increased activity of methanogens. Overall, agitation was associated with similar or higher methane emissions. Therefore, agitation is not recommended as a mitigation strategy.  相似文献   

13.
This study investigated the effect of bulking agents on the maturity and gaseous emissions of composting kitchen waste. Three different bulking agents (cornstalks, sawdust, and spent mushroom substrate) were used to compost kitchen waste under aerobic conditions in 60-L reactors for a 28-d period. A control treatment was also studied using kitchen waste without a bulking agent. During the experiment, maturity indexes such as temperature, pH value, C/N ratio, and germination index were determined, and continuous measurements of leachate and gaseous emissions (CH4, N2O, and NH3) were taken. The results showed that all of the composts with bulking agents reached the required maturity standard, and the addition of spent mushroom substrate gave the highest maturity (C/N ratio decreased from 23 to 16 and germination index increased from 53% to 111%). The bulking agents also reduced leachate production and CH4 and N2O emissions, but had little impact on NH3 emissions. Composting with sawdust as a bulking agent was found to emit less total greenhouse gas (33 kg CO2-eq t−1 dry matter) than the other treatments.  相似文献   

14.
Landfill fugitive methane emissions were quantified as a function of climate type and cover type at 20 landfills using U.S. Environmental Protection Agency (EPA) Other Test Method (OTM)-10 vertical radial plume mapping (VRPM) with tunable diode lasers (TDLs). The VRPM data were initially collected as g CH4/sec emission rates and subsequently converted to g CH4/m2/day rates using two recently published approaches. The first was based upon field tracer releases of methane or acetylene and multiple linear regression analysis (MLRM). The second was a virtual computer model that was based upon the Industrial Source Complex (ISC3) and Pasquill plume stability class models (PSCMs). Calculated emission results in g CH4/m2/day for each measured VRPM with the two approaches agreed well (r 2 = 0.93). The VRPM data were obtained from the working face, temporary soil, intermediate soil, and final soil or synthetic covers. The data show that methane emissions to the atmosphere are a function of climate and cover type. Humid subtropical climates exhibited the highest emissions for all cover types at 207, 127, 102, and 32 g CH4/m2/day, for working face (no cover), temporary, intermediate, and final cover, respectively. Humid continental warm summers showed 67, 51, and 27 g CH4/m2/day for temporary, intermediate, and final covers. Humid continental cool summers were 135, 40, and 26 g CH4/m2/day for the working face, intermediate, and final covers. Mediterranean climates were examined for intermediate and final covers only and found to be 11 and 6 g CH4/m2/day, respectively, whereas semiarid climates showed 85, 11, 3.7, and 2.7 g CH4/m2/day for working face, temporary, intermediate, and final covers. A closed, synthetically capped landfill covered with soil and vegetation with a gas collection system in a humid continental warm summer climate gave mostly background methane readings and average emission rates of only 0.09 g CH4/m2/day flux when measurable.

Implications The OTM-10 method is being proposed by EPA to quantify surface methane emissions from landfill covers. This study of 20 landfills across the United States was done to determine the efficacy of using OTM-10 for this purpose. Two recently published models were used to evaluate the methane flux results found with VRPM optical remote sensing. The results should provide a sense of the practicality of the method, its limitations at landfills, and the impact of climate upon the cover's methane flux. Measured field data may assist landfill owners in refining previously modeled methane emission factor default values.  相似文献   

15.
Methane (CH4) formation under aerobic conditions has been intensely debated, especially since the discovery of CH4 generation by both dried plant material and living plants. In this study we test the hypothesis that non-microbial CH4 formation also occurs in soils. All lyophilised soil samples investigated under aerobic conditions released CH4 at temperatures ranging from 30 to 70 °C exceeding that allowing normal enzymatic activity to proceed. No emissions were observed for single mineral soil components such as quartz sand, clay mineral and iron oxide. Methane release rates from the soils investigated were found to increase both with increasing temperature and higher organic carbon content. Addition of water to dried soils increased CH4 release rates up to 8-fold those observed with the dried material. Our results suggest the existence of a chemical process in soils that produces CH4 under aerobic conditions, a finding which has not been hitherto reported.  相似文献   

16.
Conventional wastewater treatment plants (WWTPs) are not able to remove completely some emerging contaminants, such as residual pharmaceutical compounds (PCs) with potential ecotoxicity to water bodies. An advanced bio-oxidation process (ABOP) using white-rot fungi (WRF) has been proposed as alternative biological treatment for degradation of non-biodegradable compounds. A synthetic and real wastewater spiked with 12 PCs at 50 μg L?1 was treated by means of ABOP based on WRF in a rotating biological contactor (RBC) at 1 day of hydraulic retention time (HRT). The ABOP achieved a remarkable biological performance in terms of TOC removal and reduction of N-NH4 + and P-PO4 3? nutrients. Likewise, 5 of the 12 PCs were eliminated with removal efficiencies ranging from 80 to 95%, whereas 6 of 12 PCs were eliminated with removal values ranging from 50 to 70%. The anaerobic digestion of the fungal sludge generated upon the treatment was also evaluated, obtaining a methane yield of 250 mL CH4 gVS ?1. These results evidenced that the proposed ABOP is a promising alternative for the sustainable wastewater treatment of urban effluents, combining advanced oxidation with biological operation for the removal of emerging PCs and energy recovery.  相似文献   

17.
We studied the role of vegetated littoral area in the efflux of methane (CH4) in a southern boreal landscape (1600 km2), in Finland, covered by 619 lakes. A regression model was constructed to describe the relationship between lake area or lake shoreline length and total macrophyte or total emergent macrophyte coverage. Phragmites australis and Equisetum fluviatile were by far the most widely distributed emergent macrophytes in the area with a proportion of 40% of all zone-forming macrophytes. The zone-forming floating-leaved species Nuphar lutea, Potamogeton natans and Sparganium spp. covered 44% of all vegetated littoral areas. The strong temperature dependence of the emission rates was taken into consideration in the emission estimations for P. australis and E. fluviatile. The regional efflux, estimated for the growing seasons 1998–2002, varied between 0.8×105 and 1.1×105 kg CH4 and between 1.6×105 and 2.4×105 kg CH4, respectively. The emissions from the stands of floating-leaved species were negligible compared to the emissions from stands of P. australis and E. fluviatile. This indicates that species specific emission rates and areal coverage of the dominating species, as well as ambient temperature, should all be carefully considered when estimating the total regional emissions of CH4 from lake littorals. The natural open ombrogenous bogs and minerogenous fens in the study region covered a 2.5-fold larger area than P. australis and E. fluviatile littoral, but their emissions were estimated to be only 78% of the emissions of P. australis and E. fluviatile, indicating that vegetated lake littoral is an important natural CH4 source in the region.  相似文献   

18.
Methyl chloride (CH3Cl) is the most abundant natural chlorine containing compound in the atmosphere, and responsible for a significant fraction of stratospheric ozone destruction. Understanding the global CH3Cl budget is therefore of great importance. However, the strength of the individual sources and sinks is still uncertain. Leaf litter is a potentially important source of methyl chloride, but factors controlling the emissions are unclear. This study investigated CH3Cl emissions from leaf litter of twelve halophyte species. The emissions were not due to biological activity, and emission rates varied between halophyte species up to two orders of magnitude. For all species, the CH3Cl emission rates increased with temperature following the Arrhenius relation. Activation energies were similar for all investigated plant species, indicating that even though emissions vary largely between plant species, their response to changing temperatures is similar. The chloride and methoxyl group contents of the leaf litter samples were determined, but those parameters were not significantly correlated to the CH3Cl emission rate.  相似文献   

19.
Emissions of CH4 and N2O related to private pig farming under a tropical climate in Uvéa Island were studied in this paper. Physicochemical soil parameters such as nitrate, nitrite, ammonium, Kjeldahl nitrogen, total organic carbon, pH and moisture were measured. Gaseous soil emissions as well as physicochemical parameters were compared in two private pig farming strategies encountered on this island on two different soils (calcareous and ferralitic) in order to determine the best pig farming management: in small concrete pens or in large land pens. Ammonium levels were higher in control areas while nitrate and nitrite levels were higher in soils with pig slurry inputs, indicating that nitrification was the predominant process related to N2O emissions. Nitrate contents in soils near concrete pens were important (≥55 μg N/g) and can thus be a threat for the groundwater. For both pig farming strategies, N2O and CH4 fluxes can reach high levels up to 1 mg N/m2/h and 1 mg C/m2/h, respectively. CH4 emissions near concrete pens were very high (≥10.4 mg C/m2/h). Former land pens converted into agricultural land recover low N2O emission rates (≤0.03 mg N/m2/h), and methane uptake dominates. N2O emissions were related to nitrate content whereas CH4 emissions were found to be moisture dependent. As a result relating to the physicochemical parameters as well as to the gaseous emissions, we demonstrate that pig farming in large land pens is the best strategy for sustainable family pig breeding in Uvéa Islands and therefore in similar small tropical islands.  相似文献   

20.
High-density polyethylene (HDPE) membranes are commonly used as a cover component in sanitary landfills, although only limited evaluations of its effect on greenhouse gas (GHG) emissions have been completed. In this study, field GHG emission were investigated at the Dongbu landfill, using three different cover systems: HDPE covering; no covering, on the working face; and a novel material-Oreezyme Waste Cover (OWC) material as a trial material. Results showed that the HDPE membrane achieved a high CH4 retention, 99.8% (CH4 mean flux of 12 mg C m-2 h-1) compared with the air-permeable OWC surface (CH4 mean flux of 5933 mg C m-2 h-1) of the same landfill age. Fresh waste at the working face emitted a large fraction of N2O, with average fluxes of 10 mg N m-2 h-2, while N2O emissions were small at both the HDPE and the OWC sections. At the OWC section, CH4 emissions were elevated under high air temperatures but decreased as landfill age increased. N2O emissions from the working face had a significant negative correlation with air temperature, with peak values in winter. A massive presence of CO2 was observed at both the working face and the OWC sections. Most importantly, the annual GHG emissions were 4.9 Gg yr-1 in CO2 equivalents for the landfill site, of which the OWC-covered section contributed the most CH4 (41.9%), while the working face contributed the most N2O (97.2%). HDPE membrane is therefore, a recommended cover material for GHG control.

Implications: Monitoring of GHG emissions at three different cover types in a municipal solid waste landfill during a 1-year period showed that the working face was a hotspot of N2O, which should draw attention. High CH4 fluxes occurred on the permeable surface covering a 1- to 2-year-old landfill. In contrast, the high-density polyethylene (HDPE) membrane achieved high CH4 retention, and therefore is a recommended cover material for GHG control.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号