首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Van Nuys Tunnel experiment conducted in 1987 by Ingalls et al. (see A&WMA Paper 89-137.3), to verify automotive emission inventories as part of the Southern California Air Quality Study (SCAQS), gave higher CO and HC emission-rate values than expected on the basis of automotive-emission models—by factors of approximately 3 and 4, respectively. The CO/NOX and HC/NOX emission-rate ratios moreover were higher than expected—by similar factors (NOX emission rates were about as expected). The purpose of the present paper is to review the literature on dynamometer and on-road (in tunnels and along roadways) testing of in-use vehicles, and on urban-air CO/HC/NOX concentration ratios, to see whether the Van Nuys Tunnel results are reasonable in terms of previous experience. The conclusions are that (1) on-road CO and HC emissions higher than expected have been reported before, (2) on-road CO and HC emissions consistent with the Van Nuys Tunnel results have been reported before, and (3) on-road CO/NOX and HC/NOX emission-rate ratios higher than expected have been reported before. The Van Nuys Tunnel NOX results actually are lower than in other on-road experiments, and the CO/NOX and HC/NOX ratios consequently are higher. The higher-than-predicted CO/NOX and HC/NOX ratios at Van Nuys and other on-road sites suggest richer operation on-road than predicted or than observed in the inuse- vehicle dynamometer tests which serve as the model inputs. Support for these suggestions and conclusions is found in comparison of urban-air and emission-inventory HC/NOX ratios.  相似文献   

2.
Abstract

A remote sensing device was used to obtain on-road and in-use gaseous emission measurements from three fleets of schools buses at two locations in Washington State. This paper reports each fleet’s carbon monoxide (CO), hydrocarbon (HC), nitric oxide (NO), and nitrogen dioxide (NO2) mean data. The fleets represent current emission retrofit technologies, such as diesel particulate filters and diesel oxidation catalysts, and a control fleet. This study shows that CO and HC emissions decrease with the use of either retrofit technology when compared with control buses of the same initial emission standards. The CO and HC emission reductions are consistent with published U.S. Environmental Protection Agency verified values. The total oxides of nitrogen (NOx), NO, and the NO2/NOx ratio all increase with each retrofit technology when compared with control buses. As was expected, the diesel particulate filters emitted significantly higher levels of NO2 than the control fleet because of the intentional conversion of NO to NO2 by these systems. Most prior research suggests that NOx emissions are unaffected by the retrofits; however, these previous studies have not included measurements from retrofit devices on-road and after nearly 5 yr of use. Two 2006 model-year buses were also measured. These vehicles did not have retrofit devices but were built to more stringent new engine standards. Reductions in HCs and NOx were observed for these 2006 vehicles in comparison to other non-retrofit earlier model-year vehicles.  相似文献   

3.
Motor vehicles are one of the largest sources of air pollutants worldwide. Despite their importance, motor vehicle emissions are inadequately understood and quantified, esp. in developing countries. In this study, the real-world emissions of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NO) were measured using an on-road remote sensing system at five sites in Hangzhou, China in 2004 and 2005. Average emission factors of CO, HC and NOx for petrol vehicles of different model year, technology class and vehicle type were calculated in grams of pollutant per unit of fuel use (g l−1) from approximately 32,260 petrol vehicles. Because the availability of data used in traditional on-road mobile source estimation methodologies is limited in China, fuel-based approach was implemented to estimate motor vehicle emissions using fuel sales as a measure of vehicle activity, and exhaust emissions factors from remote sensing measurements. The fuel-based exhaust emission inventories were also compared with the results from the recent international vehicle emission (IVE) model. Results show that petrol vehicle fleet in Hangzhou has significantly high CO emissions, relatively high HC and low NOx, with the average emission factors of 193.07±15.63, 9.51±2.40 and 5.53±0.48 g l−1, respectively. For year 2005 petrol vehicles exhaust emissions contributed with 182,013±16,936, 9107±2255 and 5050±480 metric ton yr−1 of CO, HC and NOx, respectively. The inventories are 45.5% higher, 6.6% higher and 53.7% lower for CO, HC and NOx, respectively, than the estimates using IVE travel-based model. In addition, a number of insights about the emission distributions and formation mechanisms have been obtained from an in-depth analysis of these results.  相似文献   

4.
The Desert Research Institute conducted an on-road mobile source emission study at a traffic tunnel in Van Nuys, California, in August 2010 to measure fleet-averaged, fuel-based emission factors. The study also included remote sensing device (RSD) measurements by the University of Denver of 13,000 vehicles near the tunnel. The tunnel and RSD fleet-averaged emission factors were compared in blind fashion with the corresponding modeled factors calculated by ENVIRON International Corporation using U.S. Environmental Protection Agency's (EPA's) MOVES2010a (Motor Vehicle Emissions Simulator) and MOBILE6.2 mobile source emission models, and California Air Resources Board's (CARB's) EMFAC2007 (EMission FACtors) emission model. With some exceptions, the fleet-averaged tunnel, RSD, and modeled carbon monoxide (CO) and oxide of nitrogen (NOx) emission factors were in reasonable agreement (±25%). The nonmethane hydrocarbon (NMHC) emission factors (specifically the running evaporative emissions) predicted by MOVES were insensitive to ambient temperature as compared with the tunnel measurements and the MOBILE- and EMFAC-predicted emission factors, resulting in underestimation of the measured NMHC/NOx ratios at higher ambient temperatures. Although predicted NMHC/NOx ratios are in good agreement with the measured ratios during cooler sampling periods, the measured NMHC/NOx ratios are 3.1, 1.7, and 1.4 times higher than those predicted by the MOVES, MOBILE, and EMFAC models, respectively, during high-temperature periods. Although the MOVES NOx emission factors were generally higher than the measured factors, most differences were not significant considering the variations in the modeled factors using alternative vehicle operating cycles to represent the driving conditions in the tunnel. The three models predicted large differences in NOx and particle emissions and in the relative contributions of diesel and gasoline vehicles to total NOx and particulate carbon (TC) emissions in the tunnel.

Implications: Although advances have been made to mobile source emission models over the past two decades, the evidence that mobile source emissions of carbon monoxide and hydrocarbons in urban areas were underestimated by as much as a factor of 2–3 in past inventories underscores the need for on-going verification of emission inventories. Results suggest that there is an overall increase in motor vehicle NMHC emissions on hot days that is not fully accounted for by the emission models. Hot temperatures and concomitant higher ratios of NMHC emissions relative to NOx both contribute to more rapid and efficient formation of ozone. Also, the ability of EPA's MOVES model to simulate varying vehicle operating modes places increased importance on the choice of operating modes to evaluate project-level emissions.  相似文献   

5.
Abstract

To test the effectiveness of California’s vehicle inspection/ maintenance (I/M) program, exclusive of vehicle-owner intervention, a fleet of more than 1,100 vehicles that previously had failed California’s Smog Check test were sent to randomly selected Smog Check stations in the Los Angeles area for covert inspections and repairs. The two-speed idle test was used for repairs. For those vehicles that were repaired at the first inspection, their FTP emission reductions were 25%, 14%, and 11% for hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx), respectively, although emissions testing for NOx was not performed at the Smog Check stations. Idle HC and CO emissions increased for 35% and 43% of the vehicles, respectively, after repairs. This data set shows that most vehicles that fail the Smog Check inspection are only marginal emitters, with 61% and 44% of the total potential for HC and CO emission reductions, respectively, coming from only 10% of the vehicles that currently fail the inspection. When the vehicles were rank-ordered by idle emissions from dirtiest to cleanest, emission reduction costs for the highest-emitting 10% of the fleet averaged $l,100/ton and $250/ton for HC and CO, respectively, attributing all the costs to each pollutant exclusively. For the remaining vehicles, costs increased dramatically.  相似文献   

6.
ABSTRACT

Fuel-based emission factors for 143 light-duty gasoline vehicles (LDGVs) and 93 heavy-duty diesel trucks (HDDTs) were measured in Wilmington, CA using a zero-emission mobile measurement platform (MMP). The frequency distributions of emission factors of carbon monoxide (CO), nitrogen oxides (NOx), and particle mass with aerodynamic diameter below 2.5 μm (PM2.5) varied widely, whereas the average of the individual vehicle emission factors were comparable to those reported in previous tunnel and remote sensing studies as well as the predictions by Emission Factors (EMFAC) 2007 mobile source emission model for Los Angeles County. Variation in emissions due to different driving modes (idle, low- and high-speed acceleration, low- and high-speed cruise) was found to be relatively small in comparison to intervehicle variability and did not appear to interfere with the identification of high emitters, defined as the vehicles whose emissions were more than 5 times the fleet-average values. Using this definition, approximately 5% of the LDGVs and HDDTs measured were high emitters. Among the 143 LDGVs, the average emission factors of NOx, black carbon (BC), PM2.5, and ultrafine particle (UFP) would be reduced by 34%, 39%, 44%, and 31%, respectively, by removing the highest 5% of emitting vehicles, whereas CO emission factor would be reduced by 50%. The emission distributions of the 93 HDDTs measured were even more skewed: approximately half of the NOx and CO fleet-average emission factors and more than 60% of PM2.5, UFP, and BC fleet-average emission factors would be reduced by eliminating the highest-emitting 5% HDDTs. Furthermore, high emissions of BC, PM2.5, and NOx tended to cluster among the same vehicles.

IMPLICATIONS This study presents the characterization of on-road vehicle emissions in Wilmington, CA, by sampling individual vehicle plumes. Approximately 5% of the vehicles were high emitters, whose emissions were more than 5 times the fleet-average values. These high emitters were responsible for 30% and more than 50% of the average emission factors of LDGVs and HDDVs, respectively. It is likely that as the overall fleet becomes cleaner due to more stringent regulations, a small fraction of the fleet may contribute a growing and disproportionate share of the overall emissions. Therefore, long-term changes in on-road emissions need to be monitored.  相似文献   

7.
ABSTRACT

A tunable infrared laser differential absorption spectrometer (TILDAS) was used to remotely sense the nitric oxide (NO) emissions from 1,473 on-road vehicles. The real-world measurement precision of this instrument in the limit of low NO concentration is 5 ppm of the vehicle exhaust, which corresponds to a 3o detection limit of 15 ppm. Our analysis of the distribution of negative concentration measurements produced during this experiment supports this claim, showing that the instrumental noise for this set of measurements was at most 8 ppm in the limit of low NO concentration. The high sensitivity of this instrument allowed us to measure the NO emissions of even the cleanest vehicles. The measured vehicle fleet NO emissions closely fit a gamma distribution with 10% of the fleet contributing about 50% of the total fleet emissions. Newer vehicles had lower NO emissions than older ones, but high NO emitters were found in every vehicle age cohort. On a vehicle-by-vehicle basis, NO emissions correlated very weakly with vehicle velocity, acceleration, power per unit mass, carbon monoxide (CO) emissions, and hydrocarbon (HC) emissions. High NO emitting vehicles could not be identified by remote sensing of CO or HC emissions and vice versa. When we compared the NO emissions for 117 vehicles measured more than one time, about half of the high NO emitters were found to be very consistent, while the other half varied significantly.  相似文献   

8.
ABSTRACT

The expense and inconvenience of enhanced-vehicle-emissions testing using the full 240-second dynamometer test has led states to search for ways to shorten the test process. In fact, all states that currently use the IM240 allow some type of fast-pass, usually as early in the test as second 31, and Arizona has allowed vehicles to fast-fail after second 93. While these shorter tests save states millions of dollars in inspection lanes and driver costs, there is a loss of information since test results are no longer comparable across vehicles. This paper presents a methodology for estimating full 240-second results from partial-test results for three pollutants: HC, CO, and NOx. If states can convert all tests to consistent IM240 readings, they will be able to better characterize fleet emissions and to evaluate the impact of inspection and maintenance and other programs on emissions over time. Using a random sample of vehicles in Arizona which received full 240-second tests, we use regression analysis to estimate the relationship between emissions at second 240 and emissions at earlier seconds in the test. We examine the influence of other variables such as age, model-year group, and the pollution level itself on this relationship. We also use the estimated coefficients in several applications. First, we try to shed light on the frequent assertion that the results of the dynamometer test provide guidance for vehicle repair of failing vehicles. Using a probit analysis, we find that the probability that a failing vehicle will pass the test on the first retest is greater the longer the test has progressed. Second, we test the accuracy of our estimates for forecasting fleet emissions from partial-test emissions results in Arizona. We find forecasted fleet average emissions to be very close to the actual fleet averages for light-duty vehicles, but not quite as good for trucks, particularly when NOx emissions are forecast.  相似文献   

9.
ABSTRACT

Idle emissions of total hydrocarbon (THC), CO, NOx, and particulate matter (PM) were measured from 24 heavy-duty diesel-fueled (12 trucks and 12 buses) and 4 heavy-duty compressed natural gas (CNG)-fueled vehicles. The volatile organic fraction (VOF) of PM and aldehyde emissions were also measured for many of the diesel vehicles. Experiments were conducted at 1609 m above sea level using a full exhaust flow dilution tunnel method identical to that used for heavy-duty engine Federal Test Procedure (FTP) testing. Diesel trucks averaged 0.170 g/min THC, 1.183 g/min CO, 1.416 g/min NOx, and 0.030 g/min PM. Diesel buses averaged 0.137 g/min THC, 1.326 g/min CO, 2.015 g/min NOx, and 0.048 g/min PM.

Results are compared to idle emission factors from the MOBILE5 and PART5 inventory models. The models significantly (45-75%) overestimate emissions of THC and CO in comparison with results measured from the fleet of vehicles examined in this study. Measured NOx emissions were significantly higher (30-100%) than model predictions. For the pre-1999 (pre-consent decree) truck engines examined in this study, idle NOx emissions increased with Health and Environment; June 30, 1999 (available from the authors).  相似文献   

10.
An updated assessment of fine particle emissions from light- and heavy-duty vehicles is needed due to recent changes to the composition of gasoline and diesel fuel, more stringent emission standards applying to new vehicles sold in the 1990s, and the adoption of a new ambient air quality standard for fine particulate matter (PM2.5) in the United States. This paper reports the measurement of emissions from vehicles in a northern California roadway tunnel during summer 1997. Separate measurements were made of uphill traffic in two tunnel bores: one bore carried both light-duty vehicles and heavy-duty diesel trucks, and the second bore was reserved for light-duty vehicles. Ninety-eight percent of the light-duty vehicles were gasoline-powered. In the tunnel, heavy-duty diesel trucks emitted 24, 37, and 21 times more fine particle, black carbon, and sulfate mass per unit mass of fuel burned than light-duty vehicles. Heavy-duty diesel trucks also emitted 15–20 times the number of particles per unit mass of fuel burned compared to light-duty vehicles. Fine particle emissions from both vehicle classes were composed mostly of carbon; diesel-derived particulate matter contained more black carbon (51±11% of PM2.5 mass) than did light-duty fine particle emissions (33±4%). Sulfate comprised only 2% of total fine particle emissions for both vehicle classes. Sulfate emissions measured in this study for heavy-duty diesel trucks are significantly lower than values reported in earlier studies conducted before the introduction of low-sulfur diesel fuel. This study suggests that heavy-duty diesel vehicles in California are responsible for nearly half of oxides of nitrogen emissions and greater than three-quarters of exhaust fine particle emissions from on-road motor vehicles.  相似文献   

11.
On-road vehicle emissions of carbon monoxide (CO), nitrogen oxides (NOx), and volatile organic compounds (VOCs) during 1995–2009 in the Atlanta Metropolitan Statistical Area were estimated using the Motor Vehicle Emission Simulator (MOVES) model and data from the National Emissions Inventories and the State of Georgia. Statistically significant downward trends (computed using the nonparametric Theil-Sen method) in annual on-road CO, NOx, and VOC emissions of 6.1%, 3.3%, and 6.0% per year, respectively, are noted during the 1995–2009 period despite an increase in total vehicle distance traveled. The CO and NOx emission trends are correlated with statistically significant downward trends in ambient air concentrations of CO and NOx in Atlanta ranging from 8.0% to 11.8% per year and from 5.8% to 8.7% per year, respectively, during similar time periods. Weather-adjusted summertime ozone concentrations in Atlanta exhibited a statistically significant declining trend of 2.3% per year during 2001–2009. Although this trend coexists with the declining trends in on-road NOx, VOC, and CO emissions, identifying the cause of the downward trend in ozone is complicated by reductions in multiple precursors from different source sectors.
Implications:Large reductions in on-road vehicle emissions of CO and NOx in Atlanta from the late 1990s to 2009, despite an increase in total vehicle distance traveled, contributed to a significant improvement in air quality through decreases in ambient air concentrations of CO and NOx during this time period. Emissions reductions in motor vehicles and other source sectors resulted in these improvements and the observed declining trend in ozone concentrations over the past decade. Although these historical trends cannot be extrapolated to the future because pollutant concentration contributions due to on-road vehicle emissions will likely become an increasingly smaller fraction of the atmospheric total, they provide an indication of the benefits of past control measures.  相似文献   

12.
Abstract

Ambient air measurements of N2O, NOx, CO, and HC based on grab sampling were conducted in a major traffic tunnel in Sweden, that carries up to 4,000 vehicles per hour, in order to estimate real-world emissions of N2O for road traffic. Two different methods—relative and mass balance—were used to calculate a N2O emission factor for the mixed vehicle fleet, which gave an average emission factor, at average speeds of 30-70 km/h, of approximately 25 mg N2O/ km, with a range of 7-56 mg/km.  相似文献   

13.
Flex fuel vehicles (FFVs) typically operate on gasoline or E85, an 85%/15% volume blend of ethanol and gasoline. Differences in FFV fuel use and tailpipe emission rates are quantified for E85 versus gasoline based on real-world measurements of five FFVs with a portable emissions measurement system (PEMS), supplemented chassis dynamometer data, and estimates from the Motor Vehicle Emission Simulator (MOVES) model. Because of inter-vehicle variability, an individual FFV may have higher nitrogen oxide (NOx) or carbon monoxide (CO) emission rates on E85 versus gasoline, even though average rates are lower. Based on PEMS data, the comparison of tailpipe emission rates for E85 versus gasoline is sensitive to vehicle-specific power (VSP). For example, although CO emission rates are lower for all VSP modes, they are proportionally lowest at higher VSP. Driving cycles with high power demand are more advantageous with respect to CO emissions, but less advantageous for NOx. Chassis dynamometer data are available for 121 FFVs at 50,000 useful life miles. Based on the dynamometer data, the average difference in tailpipe emissions for E85 versus gasoline is ?23% for NOx, ?30% for CO, and no significant difference for hydrocarbons (HC). To account for both the fuel cycle and tailpipe emissions from the vehicle, a life cycle inventory was conducted. Although tailpipe NOx emissions are lower for E85 versus gasoline for FFVs and thus benefit areas where the vehicles operate, the life cycle NOx emissions are higher because the NOx emissions generated during fuel production are higher. The fuel production emissions take place typically in rural areas. Although there are not significant differences in the total HC emissions, there are differences in HC speciation. The net effect of lower tailpipe NOx emissions and differences in HC speciation on ozone formation should be further evaluated.

Implications: Reported comparisons of flex fuel vehicle (FFV) tailpipe emission rates for E85 versus gasoline have been inconsistent. To date, this is the most comprehensive evaluation of available and new data. The large range of inter-vehicle variability illustrates why prior studies based on small sample sizes led to apparently contradictory findings. E85 leads to significant reductions in tailpipe nitrogen oxide (NOx) and carbon monoxide (CO) emission rates compared with gasoline, indicating a potential benefit for ozone air quality management in NOx-limited areas. The comparison of FFV tailpipe emissions between E85 and gasoline is sensitive to power demand and driving cycles.  相似文献   

14.
An investigation into road transport exhaust emissions in the Genoa urban area was performed by comparing the quantities of carbon monoxide (CO), nitrogen oxides (NOx), nitrogen dioxide (NO2) and particulate matter (PM) emitted by different vehicle categories with air quality measurements referred to the same pollutants. Exhaust emissions were evaluated by applying the PROGRESS (computer PROGramme for Road vehicle EmiSSions evaluation) code, developed by the Internal Combustion Engines Group of the University of Genoa, to eight different years (from 1992 to 2010), considering spark ignition and Diesel passenger cars and light duty vehicles, heavy duty vehicles and buses, motorcycles and mopeds. Changes in terms of vehicles number, mileage and total emissions are presented together with relative distributions among the various vehicle categories. By comparing 1992 and 2010 data, calculated trends show a 7% increase in the number of vehicles, with total mileage growing at a faster rate (approx. 22%); total emissions decrease considerably, by approximately 50% for NOx and PM, 70% for HC and 80% for CO, due to improvements in engines and fuels forced by the stricter European legislation and the fleet renewal, while primary NO2 emission will be very close to 1992 level, after a decrease of about 18% in 2000.Air quality was analysed by selecting traffic and background measuring stations from the monitoring network managed by the Environmental Department of the Province of Genoa: average annual concentrations of considered pollutants from 1994 to 2007 were calculated in order to obtain the relative historical trends and compare them with European public health limits and with road vehicle emissions. Though an important reduction in pollutant concentrations has been achieved as a consequence of cleaner vehicles, some difficulties in complying with present and/or future NO2 and PM10 limits are also apparent, thus requiring suitable measures to be taken by the local authorities.  相似文献   

15.
Abstract

Heavy-duty diesel vehicle idling consumes fuel and reduces atmospheric quality, but its restriction cannot simply be proscribed, because cab heat or air-conditioning provides essential driver comfort. A comprehensive tailpipe emissions database to describe idling impacts is not yet available. This paper presents a substantial data set that incorporates results from the West Virginia University transient engine test cell, the E-55/59 Study and the Gasoline/Diesel PM Split Study. It covered 75 heavy-duty diesel engines and trucks, which were divided into two groups: vehicles with mechanical fuel injection (MFI) and vehicles with electronic fuel injection (EFI). Idle emissions of CO, hydrocarbon (HC), oxides of nitrogen (NOx), particulate matter (PM), and carbon dioxide (CO2) have been reported. Idle CO2 emissions allowed the projection of fuel consumption during idling. Test-to-test variations were observed for repeat idle tests on the same vehicle because of measurement variation, accessory loads, and ambient conditions. Vehicles fitted with EFI, on average, emitted [~20 g/hr of CO, 6 g/hr of HC, 86 g/hr of NOx, 1 g/hr of PM, and 4636 g/hr of CO2 during idle. MFI equipped vehicles emitted ~35 g/hr of CO, 23 g/hr of HC, 48 g/hr of NOx, 4 g/hr of PM, and 4484 g/hr of CO2, on average, during idle. Vehicles with EFI emitted less idleCO, HC, and PM, which could be attributed to the efficient combustion and superior fuel atomization in EFI systems. Idle NOx, however, increased with EFI, which corresponds with the advancing of timing to improve idle combustion. Fuel injection management did not have any effect on CO2 and, hence, fuel consumption. Use of air conditioning without increasing engine speed increased idle CO2, NOx, PM, HC, and fuel consumption by 25% on average. When the engine speed was elevated from 600 to 1100 revolutions per minute, CO2 and NOx emissions and fuel consumption increased by >150%, whereas PM and HC emissions increased by ~100% and 70%, respectively. Six Detroit Diesel Corp. (DDC) Series 60 engines in engine test cell were found to emit less CO, NOx, and PM emissions and consumed fuel at only 75%of the level found in the chassis dynamometer data. This is because fan and compressor loads were absent in the engine test cell.  相似文献   

16.
The emission factors of NOx, VOC and CO of a road tunnel study performed in September 1993 in the Gubrist tunnel, close to Zürich (Switzerland) are compared with results of emission calculations based on recent results of dynamometric test measurements. The emission calculations are carried out with a traffic emission model taking into account the detailed composition of the vehicle fleet in the tunnel, the average speed and the gradient of the road and the special aerodynamics in a tunnel. With the exception of NOx emission factors for heavy duty vehicles no evidence for a discrepancy between the results of the tunnel study and the emission modeling was found. The measured emission factors of individual hydrocarbons of light duty vehicles were in good agreement with the expectations for most components.  相似文献   

17.
ABSTRACT

In mid-1996, California implemented Phase 2 Reformulated Gasoline (RFG). The new fuel was designed to further decrease emissions of hydrocarbons (HCs), oxides of nitrogen (NOx), carbon monoxide (CO), sulfur dioxide (SO2), and other toxic species. In addition, it was formulated to reduce the ozone-forming potential of the HCs emitted by vehicles. Previous studies have observed that emissions from on-road vehicles can differ significantly from those predicted by mobile source emissions models, and so it is important to quantify the change in emissions in a real-world setting. In October 1995, prior to the introduction of California Phase 2 RFG, the Desert Research Institute (DRI) performed a study of vehicle emissions in Los Angeles' Sepulveda Tunnel. This study provided a baseline against which the results of a second experiment, conducted in July 1996, could be compared to evaluate the impact of California Phase 2 RFG on emissions from real-world vehicles. Compared with the 1995 experiment, CO and NOx emissions exhibited statistically significant decreases, while the decrease in non-methane hydrocarbon emissions was not statistically significant.

Changes in the speciated HC emissions were evaluated. The benzene emission rate decreased by 27% and the overall emission rate of aromatic compounds decreased by 22% comparing the runs with similar speeds. Emissions of alkenes were virtually unchanged; however, emissions of combustion related unsaturates (e.g., acetylene, ethene) increased, while heavier alkenes decreased. The emission rate of methyl tertiary butyl ether (MTBE) exhibited a larger increase. Overall changes in the ozone-forming potential of the emissions were not significantly different, with the increased contributions to reactivity from paraffins, ole-fins, and MTBE being offset by a large decrease in reactivity due to aromatics.  相似文献   

18.
This paper discusses results from a vehicular emissions research study of over 350 vehicles conducted in three communities in Los Angeles, CA, in 2010 using vehicle chase measurements. The study explores the real-world emission behavior of light-duty gasoline vehicles, characterizes real-world super-emitters in the different regions, and investigates the relationship of on-road vehicle emissions with the socioeconomic status (SES) of the region. The study found that in comparison to a 2007 earlier study in a neighboring community, vehicle emissions for all measured pollutants had experienced a significant reduction over the years, with oxides of nitrogen (NOX) and black carbon (BC) emissions showing the largest reductions. Mean emission factors of the sampled vehicles in low-SES communities were roughly 2–3 times higher for NOX, BC, carbon monoxide, and ultrafine particles, and 4–11 times greater for fine particulate matter (PM2.5) than for vehicles in the high-SES neighborhood. Further analysis indicated that the emission factors of vehicles within a technology group were also higher in low-SES communities compared to similar vehicles in the high-SES community, suggesting that vehicle age alone did not explain the higher vehicular emission in low-SES communities.

Evaluation of the emission factor distribution found that emissions from 12% of the sampled vehicles were greater than five times the mean from all of the sampled fleet, and these vehicles were consequently categorized as “real-world super-emitters.” Low-SES communities had approximately twice as many super-emitters for most of the pollutants as compared to the high-SES community. Vehicle emissions calculated using model-year-specific average fuel consumption assumptions suggested that approximately 5% of the sampled vehicles accounted for nearly half of the total CO, PM2.5, and UFP emissions, and 15% of the vehicles were responsible for more than half of the total NOX and BC emissions from the vehicles sampled during the study.

Implications: This study evaluated the real-world emission behavior and super-emitter distribution of light-duty gasoline vehicles in California, and investigated the relationship of on-road vehicle emissions with local socioeconomic conditions. The study observed a significant reduction in vehicle emissions for all measured pollutants when compared to an earlier study in Wilmington, CA, and found a higher prevalence of high-emitting vehicles in low-socioeconomic-status communities. As overall fleet emissions decrease from stringent vehicle emission regulations, a small fraction of the fleet may contribute to a disproportionate share of the overall on-road vehicle emissions. Therefore, this work will have important implications for improving air quality and public health, especially in low-SES communities.  相似文献   


19.
This paper highlights the effect of emissions regulations on in-use emissions from heavy-duty vehicles powered by different model year engines. More importantly, fuel economy data for pre- and post-consent decree engines are compared.The objective of this study was to determine the changes in brake-specific emissions of NOx as a result of emission regulations, and to highlight the effect these have had on brake-specific CO2 emission; hence, fuel consumption. For this study, in-use, on-road emission measurements were collected. Test vehicles were instrumented with a portable on-board tailpipe emissions measurement system, WVU's Mobile Emissions Measurement System, and were tested on specific routes, which included a mix of highway and city driving patterns, in order to collect engine operating conditions, vehicle speed, and in-use emission rates of CO2 and NOx. Comparison of on-road in-use emissions data suggests NOx reductions as high as 80% and 45% compared to the US Federal Test Procedure and Not-to-Exceed standards for model year 1995–2002. However, the results indicate that the fuel consumption; hence, CO2 emissions increased by approximately 10% over the same period, when the engines were operating in the Not-to-Exceed region.  相似文献   

20.
A microscale emission factor model (MicroFacPM) for predicting real-time site-specific motor vehicle particulate matter emissions was presented in the companion paper titled "Development of a Microscale Emission Factor Model for Particulate Matter (MicroFacPM) for Predicting Real-Time Motor Vehicle Emissions". The emission rates discussed are in mass per unit distance with the model providing estimates of fine particulate matter (PM2.5) and coarse particulate matter. This paper complements the companion paper by presenting a sensitivity analysis of the model to input variables and evaluation model outputs using data from limited field studies. The sensitivity analysis has shown that MicroFacPM emission estimates are very sensitive to vehicle fleet composition, speed, and the percentage of high-emitting vehicles. The vehicle fleet composition can affect fleet emission rates from 8 mg/mi to 1215 mg/mi; an increase of 5% in the smoking (high-emitting) current average U.S. light-duty vehicle fleet (compared with 0%) increased PM2.5 emission rates by -272% for 2000; and for the current U.S. fleet, PM2.5 emission rates are reduced by a factor of -0.64 for speeds >50 miles per hour (mph) relative to a speed of 10 mph. MicroFacPM can also be applied to examine the contribution of emission rates per vehicle class, model year, and sources of PM. The model evaluation is presented for the Tuscarora Mountain Tunnel, Pennsylvania Turnpike, PA, and some limited evaluations at two locations: Sepulveda Tunnel, Los Angeles, CA, and Van Nuys Tunnel, Van Nuys, CA. In general, the performance of MicroFacPM has shown very encouraging results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号