首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The Indian Bend Wash (IBW) flood-control project relies on a greenbelt to carry floods through Scottsdale, Arizona, USA. The greenbelt is characterized by a chain of shallow artificial lakes in a larger floodplain of irrigated turf, which has been protected from encroaching urban development. As such, this urban stream-floodplain complex can be divided into three subsystems: artificial lakes, channelized stream segments, and floodplain. We conducted experiments to evaluate which, if any, of these subsystems were important sites of denitrification, and to explore factors controlling denitrification rates. Denitrification enzyme activity (DEA) bioassays were conducted on sediments from eight lake and six stream segments as well as soil samples from eight floodplain transects. Mass-specific potential denitrification rates were significantly higher in lakes than in streams or floodplains. Nutrient limitation bioassays revealed that nitrate (NO3-) limited denitrification in lake sediments, a surprising finding given that NO3(-)-rich groundwater additions frequently raised lake NO3(-) concentration above 1 mg N/L. Experiments on intact lake cores suggested that denitrification was limited by the rate NO3(-) diffused into sediments, rather than its availability in overlying water. Floodplain denitrification was limited by water content, not NO3(-) or C, and irrigation of soils stimulated denitrification. We constructed a N budget for the IBW stream-floodplain complex based on our experimental results. We found that both lakes and floodplains removed large quantities of N, with denitrification removing 261 and 133 kg N ha(-1) yr(-1) from lake sediments and floodplain soils, respectively, indicating that lakes are hotspots for denitrification. Nevertheless, because floodplain area was >4.5 times that of lakes, floodplain soils removed nearly 2.5 times as much N as lake sediments. Given the desert's low annual precipitation, a finding that floodplain soils are active sites of denitrification might seem implausible; however, irrigation is common in urban landscapes, and it elevated annual denitrification in IBW. Based on our results, we conclude that construction of artificial lakes created hotspots while application of irrigation water created hot moments for denitrification in the stream-floodplain complex, demonstrating that management decisions can improve the ability of urban streams to provide critical ecosystem services like N retention.  相似文献   

2.
The enigma of progress in denitrification research.   总被引:4,自引:0,他引:4  
Humans have dramatically increased the amount of reactive nitrogen (primarily ammonium, nitrogen oxides, and organically bound N) circulating in the biosphere and atmosphere, creating a wide array of desirable products (e.g., food production) and undesirable consequences (e.g., eutrophication of aquatic ecosystems and air pollution). Only when this reactive N is converted back to the chemically unreactive dinitrogen (N2) form, do these cascading effects of elevated reactive N cease to be of concern. Among the quantitatively most important processes for converting reactive N to N2 gas is the biological process of classical denitrification, in which oxides of nitrogen are used as terminal electron acceptors in anaerobic respiration. This Invited Feature on denitrification includes a series of papers that integrate our current state of knowledge across terrestrial, freshwater, and marine systems on denitrification rates, controlling factors, and methodologies for measuring and modeling denitrification. In this paper, we present an overview of the role of denitrification within the broader N cycle, the environmental and health concerns that have resulted from human alteration of the N cycle, and a brief historical perspective on why denitrification has been so difficult to study. Despite over a century of research on denitrification and numerous recent technological advances, we still lack a comprehensive, quantitative understanding of denitrification rates and controlling factors across ecosystems. Inherent problems of measuring spatially and temporally heterogeneous N2 production under an N2-rich atmosphere account for much of this slow progress, but lack of interdisciplinary communication of research results and methodological developments has also impeded denitrification research. An integrated multidisciplinary approach to denitrification research, from upland terrestrial ecosystems, to small streams, river systems, estuaries, and continental shelf ecosystems, and to the open ocean, may yield new insights into denitrification across landscapes and waterscapes.  相似文献   

3.
Denitrification, the reduction of the nitrogen (N) oxides, nitrate (NO3-) and nitrite (NO2-), to the gases nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N2), is important to primary production, water quality, and the chemistry and physics of the atmosphere at ecosystem, landscape, regional, and global scales. Unfortunately, this process is very difficult to measure, and existing methods are problematic for different reasons in different places at different times. In this paper, we review the major approaches that have been taken to measure denitrification in terrestrial and aquatic environments and discuss the strengths, weaknesses, and future prospects for the different methods. Methodological approaches covered include (1) acetylene-based methods, (2) 15N tracers, (3) direct N2 quantification, (4) N2:Ar ratio quantification, (5) mass balance approaches, (6) stoichiometric approaches, (7) methods based on stable isotopes, (8) in situ gradients with atmospheric environmental tracers, and (9) molecular approaches. Our review makes it clear that the prospects for improved quantification of denitrification vary greatly in different environments and at different scales. While current methodology allows for the production of accurate estimates of denitrification at scales relevant to water and air quality and ecosystem fertility questions in some systems (e.g., aquatic sediments, well-defined aquifers), methodology for other systems, especially upland terrestrial areas, still needs development. Comparison of mass balance and stoichiometric approaches that constrain estimates of denitrification at large scales with point measurements (made using multiple methods), in multiple systems, is likely to propel more improvement in denitrification methods over the next few years.  相似文献   

4.
River floodplains have the potential to remove nitrate from water through denitrification, the anaerobic microbial conversion of nitrate to nitrogen gas. An important factor in this process is the interaction of river water with floodplain soil; however, many rivers have been disconnected from their historic floodplains by levees. To test the effect of reflooding a degraded floodplain on nitrate removal, we studied changes in soil denitrification rates on the Baraboo River floodplain in Wisconsin, USA, as it underwent restoration. Prior to this study, the site had been leveed, drained, and farmed for more than 50 years. In late fall 2002, the field drainage system was removed, and a gate structure was installed to allow controlled flooding of this site with river water. Soil moisture was extremely variable among zones and months and reflected local weather. Soil organic matter was stable over the study period with differences occurring along the elevation gradient. High soil nitrate concentrations occurred in dry, relatively organic-poor soil samples and, conversely, all samples with high moisture soils characterized by low nitrate. We measured denitrification in static cores and potential denitrification in bulk samples amended with carbon and nitrogen, one year before and two years following the manipulation. Denitrification rates showed high temporal and spatial variability. Static core rates of individual sites ranged widely (from 0.00 to 16.7 microg N2O-N x [kg soil](-1) x h(-1), mean +/- SD = 1.10 +/- 3.02), and denitrification enzyme activity (DEA) rates were similar with a slightly higher mean (from 0.00 to 15.0 microg N2O-N x [kg soil](-1) x h(-1), 1.41 +/- 1.98). Denitrification was not well-correlated with soil nitrate, organic matter content, or moisture levels, the three parameters typically thought to control denitrification. Static core denitrification rates were not significantly different across years, and DEA rates decreased slightly the second year after restoration. These results demonstrate that restored agricultural soil has the potential for denitrification, but that floodplain restoration did not immediately improve this potential. Future floodplain restorations should be designed to test alternative methods of increasing denitrification.  相似文献   

5.
We investigated N cycling and denitrification rates following five years of N and dolomite amendments to whole-tree harvested forest plots at the long-term soil productivity experiment in the Fernow Experimental Forest in West Virginia, USA. We hypothesized that changes in soil chemistry and nutrient cycling induced by N fertilization would increase denitrification rates and the N2O:N2 ratio. Soils from the fertilized plots had a lower pH (2.96) than control plots (3.22) and plots that received fertilizer and dolomite (3.41). There were no significant differences in soil %C or %N between treatments. Chloroform-labile microbial biomass carbon was lower in fertilized plots compared to control plots, though this trend was not significant. Extractable soil NO3- was elevated in fertilized plots on each sample date. Soil-extractable NH4+, NO3-, pH, microbial biomass carbon, and %C varied significantly by sample date suggesting important seasonal patterns in soil chemistry and N cycling. In particular, the steep decline in extractable NH4+ during the growing season is consistent with the high N demands of a regenerating forest. Net N mineralization and nitrification also varied by date but were not affected by the fertilization and dolomite treatments. In a laboratory experiment, denitrification was stimulated by NO3- additions in soils collected from all field plots, but this effect was stronger in soils from the unfertilized control plots, suggesting that chronic N fertilization has partially alleviated a NO3- limitation on denitrification rates. Dextrose stimulated denitrification only in the whole-tree-harvest soils. Denitrification enzyme activity varied by sample date and was elevated in fertilized plots for soil collected in July 2000 and June 2001. There were no detectable treatment effects on N2O or N2 flux from soils under anaerobic conditions, though there was strong temporal variation. These results suggest that whole-tree harvesting has altered the N status of these soils so they are less prone to N saturation than more mature forests. It is likely that N losses associated with the initial harvest and high N demand by aggrading vegetation is minimizing, at least temporarily, the amount of inorganic N available for nitrification and denitrification, even in the fertilized plots in this experiment.  相似文献   

6.
Rates of benthic denitrification were measured using two techniques, membrane inlet mass spectrometry (MIMS) and isotope ratio mass spectrometry (IRMS), applied to sediment cores from two NO3(-)-rich streams draining agricultural land in the upper Mississippi River Basin. Denitrification was estimated simultaneously from measurements of N2:Ar (MIMS) and 15N[N2] (IRMS) after the addition of low-level 15NO3- tracer (15N:N = 0.03-0.08) in stream water overlying intact sediment cores. Denitrification rates ranged from about 0 to 4400 micromol N x m(-2) x h(-1) in Sugar Creek and from 0 to 1300 micromol N x m(-2) x h(-1) in Iroquois River, the latter of which possesses greater streamflow discharge and a more homogeneous streambed and water column. Within the uncertainties of the two techniques, there is good agreement between the MIMS and IRMS results, which indicates that the production of N2 by the coupled process of nitrification/denitrification was relatively unimportant and surface-water NO3- was the dominant source of NO3- for benthic denitrification in these streams. Variation in stream NO3- concentration (from about 20 micromol/L during low discharge to 1000 micromol/L during high discharge) was a significant control of benthic denitrification rates, judging from the more abundant MIMS data. The interpretation that NO3- concentration directly affects denitrification rate was corroborated by increased rates of denitrification in cores amended with NO3-. Denitrification in Sugar Creek removed < or = 11% per day of the instream NO3- in late spring and removed roughly 15-20% in late summer. The fraction of NO3- removed in Iroquois River was less than that of Sugar Creek. Although benthic denitrification rates were relatively high during periods of high stream flow, when NO3 concentrations were also high, the increase in benthic denitrification could not compensate for the much larger increase in stream NO3- fluxes during high flow. Consequently, fractional NO3- losses were relatively low during high flow.  相似文献   

7.
Denitrification is an important process in aquatic sediments, but its role has not been assessed in the N mass balance of upper-Midwestern (USA) reservoirs that receive large agricultural riverine N inputs. We used a 4400-ha reservoir to determine the role of denitrification in the N mass balance and effectiveness in reducing downstream transport of NO(3-)N. Sediment denitrification was (1) measured monthly (March 2002-March 2003) at eight sites in the Lake Shelbyville reservoir in central Illinois using the acetylene inhibition, chloramphenicol technique, (2) scaled to the overall reservoir and compared to N not accounted for in a mass balance, and (3) estimated indirectly using long-term (1981-2003) mass balances of N in the reservoir. Denitrification rates in the reservoir were high during spring and early summer of 2002, when maximum NO(3-)N concentrations were measured (10-14 mg NO(3-)N/L). We estimated that denitrification for the year was between 2580 and 5150 Mg N. Missing N from the mass balance was 3004 Mg N, suggesting that sediment denitrification was the sink. Areal rates of sediment denitrification in the reservoir ranged from 62 to 225 g N x m(-2) x yr(-1), with rates a function of both denitrification intensity (microg N x g dry mass x h(-1)) and the overall mass of sediment present. From 1981 to 2003 the average NO(3-)N inlet flux was 8900 Mg N/yr. About 58% of the total NO(3-)N input was removed, and annual NO(3-)N removed as a percentage of inputs was significantly related to reservoir retention time (average = 0.36 yr for the 23 years, range = 0.21-0.84 yr). By scaling denitrification in Lake Shelbyville to other reservoirs in Illinois, we estimated a sink of 48900 Mg N/yr. When combined with estimated in-stream denitrification, 60900 Mg N/yr was estimated to be removed by sediment denitrification. This reduces riverine export from Illinois to the Gulf of Mexico, where the flux during the 1990s was about 244000 Mg N/yr, and illustrates the importance of reservoir denitrification as an N sink in Midwestern agricultural landscapes.  相似文献   

8.
Spatial and temporal variations in nitrogen fixation and denitrification rates were examined between July 1991 and September 1992 in the intertidal regions of Tomales Bay (California, USA). Microbial mat communities inhabited exposed mudflat and vegetated marsh surface sediments. Mudflat and marsh sediments exhibited comparable rates of nitrogen fixation. Denitrification rates were higher in marsh sediments. Nitrogen fixation rates were lowest during January at both sites, whereas highest rates occurred during summer and fall. Denitrification rates were highest during fall and winter months in marsh sediments, while rates in mudflat sediments were highest during summer and fall. In mudflat sediments, nitrogen fixation and denitrification rates, integrated over 24 h, ranged from 6 to 79 mg N m-1 d-1 and 1 to 10 mg N m-2 d-1, respectively. Rates of denitrification represented between 6 and 20% of nitrogen fixation rates during the day, but exceeded or were equivalent to nitrogen fixation rates at night. The highest integrated rates of both nitrogen fixation and denitrification occurred during July, whereas, the highest percent loss occurred during spring when denitrification rates amounted to 20% of nitrogen fixation rates during the day. Over an annual cycle, inputs of fixed N to mudflat communities occurred exclusively during daylight. These results underscore the importance of determining integrated diel rates of both nitrogen fixation and denitrification when constructing N budgets. Using this approach, it was shown that microbial denitrification can represent a significant loss of combined nitrogen from mats on daily as well as monthly time scales.  相似文献   

9.
Extensive surveys of sediment burdens of radiocaesium, specifically 137Cs, and other radioactive contaminants in the Arctic during the 1990's, indicate that almost all anthropogenic radionuclides buried on continental shelves adjacent to Alaska are derived from global bomb fallout. the 137Cs (half-life: 30.2y) activities observed in surface (0-4 cm) marine sediments however, vary widely, albeit much less than the expected current inventory resulting from bomb fallout at this latitude (∼100mBq cm-2). This observed geographical variation provided the opportunity to evaluate physical and biological mechanisms that may affect caesium biogeochemistry on Arctic continental shelves. We investigated whether high biological productivity in portions of the Bering and Chukchi Seas is effective in removing dissolved radiocaesium from the water column, and whether biological production in overlying water affects total radiocaesium inventories in sediments. Based upon C/N ratios in the organic fraction of shallow sediments, we found no evidence that higher inventories or surface activities of radiocaesium are present in areas with higher deposition of particulate organic matter. Based upon stable carbon isotope ratios of organic matter in sediments, we found no evidence that terrestrial runoff contributes proportionally to higher surface activities, although terrestrial runoff may affect total inventories of the radionuclide. Radiocaesium content of surface sediments was significantly correlated with total organic carbon content of sediments and the proportion of sediments in the finest sediment fractions. Because high current flow can also be expected to influence distributions of those sedimentary parameters, we conclude that re-distribution of  相似文献   

10.
Abstract

Extensive surveys of sediment burdens of radiocaesium, specifically 137Cs, and other radioactive contaminants in the Arctic during the 1990′s, indicate that almost all anthropogenic radionuclides buried on continental shelves adjacent to Alaska are derived from global bomb fallout. the 137Cs (half-life: 30.2y) activities observed in surface (0–4 cm) marine sediments however, vary widely, albeit much less than the expected current inventory resulting from bomb fallout at this latitude (~100mBq cm?2). This observed geographical variation provided the opportunity to evaluate physical and biological mechanisms that may affect caesium biogeochemistry on Arctic continental shelves. We investigated whether high biological productivity in portions of the Bering and Chukchi Seas is effective in removing dissolved radiocaesium from the water column, and whether biological production in overlying water affects total radiocaesium inventories in sediments. Based upon C/N ratios in the organic fraction of shallow sediments, we found no evidence that higher inventories or surface activities of radiocaesium are present in areas with higher deposition of particulate organic matter. Based upon stable carbon isotope ratios of organic matter in sediments, we found no evidence that terrestrial runoff contributes proportionally to higher surface activities, although terrestrial runoff may affect total inventories of the radionuclide. Radiocaesium content of surface sediments was significantly correlated with total organic carbon content of sediments and the proportion of sediments in the finest sediment fractions. Because high current flow can also be expected to influence distributions of those sedimentary parameters, we conclude that re-distribution of  相似文献   

11.
亚热带可变电荷土壤化学性质与温带地区恒电荷土壤有诸多不同特点,使得反硝化具有一些与温带土壤不同的特性,进一步深入研究亚热带土壤反硝化气体产物的组成比例、主要影响因素和机理,将有助于加深对亚热带环境条件下土壤N循环的理解和认识,以及为正确评价亚热带土壤反硝化环境效应提高科学依据。因此,就亚热带土壤厌氧培养条件下反硝化的气态产物问题进行了探讨。土样采自江西典型亚热带红壤地区,在加入K15NO3(10 atom%15N,加入N量为200 mg·kg-1)条件下进行了7 d 30℃、密闭、淹水、充N2的严格厌氧培养试验。试验结果表明:随培养时间推移,15N回收率逐渐下降,土壤总残留的15NO3-质量分数和回收率之间存在显著正相关关系(p〈0.001),表明反硝化作用越弱的土样回收率越高。总气态氮损失率的估计值和实测值都随培养时间延长呈上升趋势,两者之间存在显著正相关性(p〈0.001)。根据稳定性同位素15N示踪试验结果初步估计,厌氧培养7 d内反硝化作用产生的气态产物中N2O占总气态氮损失的17.1%,N2占8.7%,估计NO可能是主要的反硝化产物之一。以未能回收的氮计算,NO约占总气态氮损失的67.5%~78.6%,平均为74.1%。反硝化气态产物中NO和N2O总量占总气态氮损失的91.3%。NO、N2O和N2分别占总施入氮量的18.6%、4.4%、2.0%。因此,亚热带土壤氮素反硝化过程中主要气态产物可能为NO和N2O,而非对环境无害的N2。  相似文献   

12.
In recent years, China has conducted considerable research focusing on the emission and effects of sulphur (S) on human health and ecosystems. By contrast, there has been little emphasis on anthropogenic nitrogen (N) so far, even though studies conducted abroad indicate that long-range atmospheric transport of N and ecological effects (e.g. acidification of soil and water) may be significant. The Sino-Norwegian project IMPACTS, launched in 1999, has established monitoring sites at five forest ecosystems in the southern part of PR China to collect comprehensive data on air quality, acidification status and ecological effects. Here we present initial results about N dynamics at two of the IMPACTS sites located near Chongqing and Changsha, including estimation of atmospheric deposition fluxes of NOx and NHx and soil N transformations. Nitrogen deposition is high at both sites when compared with values from Europe and North America (25-38 kg ha(-1) yr(-1)). About 70% of the deposited N comes as NH4, probably derived from agriculture. Leaching of N from soils is high and nearly all as NO3-. Transformation of N to NO3- in soils results in acidification rates that are high compared to rates found elsewhere. Despite considerable leaching of NO3- from the root zone of the soils, little NO3- appears in streamwater. This indicates that N retention or denitrification, both causing acid neutralization, may be important and probably occur in the groundwater and groundwater discharge zones. The soil flux density of mineral N, which is the sum of N deposition and N mineralization, and which is dominated by the N mineralization flux, may be a good indicator for leaching of NO3- in soils. However, this indicator seems site specific probably due to differences in land-use history and current N requirement.  相似文献   

13.
Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic "reconnection" of a stream to its floodplain could increase rates of denitrification at the riparian-zone-stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ 15N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 microg N x (kg sediment)(-1) x d(-1). Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 +/- 12.6 microg N x kg(-1) x d(-1) (mean +/- SE) as compared to the unrestored reach at 34.8 +/- 8.0 microg N x kg(-1) x d(-1). Concentrations of nitrate-N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically "connected" streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high "nonconnected" banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg NO3(-)-N could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian-zone-stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate-N in the restored reach were also considerable. Mass removal of nitrate-N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to "reconnect" stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate-N sources to streams.  相似文献   

14.
Zeug SC  Winemiller KO 《Ecology》2008,89(6):1733-1743
Algal carbon has been increasingly recognized as the primary carbon source supporting large-river food webs; however, many of the studies that support this contention have focused on lotic main channels during low-flow periods. The flow variability and habitat-heterogeneity characteristic of these systems has the potential to significantly influence food web structure and must be integrated into models of large-river webs. We used stable-isotope analysis and IsoSource software to model terrestrial and algal sources of organic carbon supporting consumer taxa in the main channel and oxbow lakes of the Brazos River, Texas, USA, during a period of frequent hydrologic connectivity between these habitat types. Standardized sampling was conducted monthly to collect production sources and consumer species used in isotopic analysis. Predictability of hydrologic connections between habitat types was based on the previous 30 years of flow data. IsoSource mixing models identified terrestrial C3 macrophytes (riparian origin) as the primary carbon source supporting virtually all consumers in the main channel and most consumers in oxbow lakes. Small-bodied consumers (<100 mm) in oxbow lakes assimilated large fractions of algal carbon whereas this pattern was not apparent in the main channel. Estimates of detritivore trophic positions based on delta15N values indicated that terrestrial material was likely assimilated via invertebrates rather than directly from detritus. High flows in the river channel influenced algal standing stock, and differences in the importance of terrestrial and algal production sources among consumers in channel vs. oxbow habitats were associated with patterns of flooding. The importance of terrestrial material contradicts the findings of recent studies of large-river food webs that have emphasized the importance of algal carbon and indicates that there can be significant spatial, temporal, and taxonomic variation in carbon sources supporting consumers in large rivers.  相似文献   

15.
A simulation analysis of continental shelf food webs   总被引:3,自引:0,他引:3  
Energy flow through continental shelf food webs was examined using a simulation model. The model structure expands the two traditional marine food chains of phytoplankton-zooplankton-pelagic fish and benthos-demersal fish into a complex web which includes detritus, dissolved organic matter (DOM), bacteria, protozoa, and mucus net feeders. Simulation of energy flux for different shelf systems using the expanded web revealed that heterotrophic microorganisms and their predators account for a significant component of the energy flux in the continental shelf ecosystem. Contrary to previous models, where all phytoplankton were considered to be grazed by zooplankton, our simulation results indicate that only slightly more than 50% of the annual net primary production is grazed. A substantial quantity of the phytoplankton production directly becomes detritus. Bacteria mineralize detritus and DOM produced by phytoplankton and other components of the food web, converting these to biomass with high efficiency. Consequently, the model predicts that planktonic bacterial production is equivalent to zooplankton production. Exclusion of the bacteria requires the assumption that all DOM is either exported from the system or consumed by another component of the food web. Neither of these assumptions can be supported by present knowledge of the dynamics of DOM in the sea. Model simulations were also employed to test the hypothesis that production exceeds consumption on continental shelves, resulting in exports of 50% of the annual primary production. Simulations of shelves with high rates of primary production resulted in a particulate export of 27% and realistic estimates of secondary production. Results of other simulations suggest that shelves with lower primary production cannot export production and still maintain the macrobenthos and their predators. General properties about continental shelves can also be inferred from the model. From simulations of shelves of differing primary production, nanoplankton are predicted to account for a greater proportion of the primary production in nutrient limited systems. Benthic production appears to be related to both the quantity of primary production and the sinking rates of the phytoplankton. The model indicates that zooplankton fecal inputs to the shelf benthos are only a small portion of the total detrital flux, leading to the prediction that fecal pellets are of little significance in determining benthic production. Finally, the model generates production efficiencies that are highly variable depending on the type of system and kind of populations involved. We argue that the assumed ecological efficiency of 10% should be abandoned for continental shelves and other ecosystems.  相似文献   

16.
The isotopic signatures of 15N and 18O in N2O emitted from tropical soils vary both spatially and temporally, leading to large uncertainty in the overall tropical source signature and thereby limiting the utility of isotopes in constraining the global N2O budget. Determining the reasons for spatial and temporal variations in isotope signatures requires that we know the isotope enrichment factors for nitrification and denitrification, the two processes that produce N2O in soils. We have devised a method for measuring these enrichment factors using soil incubation experiments and report results from this method for three rain forest soils collected in the Brazilian Amazon: soil with differing sand and clay content from the Tapajos National Forest (TNF) near Santarém, Pará, and Nova Vida Farm, Rond?nia. The 15N enrichment factors for nitrification and denitrification differ with soil texture and site: -111 per thousand +/- 12 per thousand and -31 per thousand +/- 11 per thousand for a clay-rich Oxisol (TNF), -102 per thousand +/- 5 per thousand and -45 per thousand +/- 5 per thousand for a sandier Ultisol (TNF), and -10.4 per thousand +/- 3.5 per thousand (enrichment factor for denitrification) for another Ultisol (Nova Vida) soil, respectively. We also show that the isotopomer site preference (delta15Nalpha - delta15Nbeta, where alpha indicates the central nitrogen atom and beta the terminal nitrogen atom in N2O) may allow differentiation between processes of production and consumption of N2O and can potentially be used to determine the contributions of nitrification and denitrification. The site preferences for nitrification and denitrification from the TNF-Ultisol incubated soils are: 4.2 per thousand +/- 8.4 per thousand and 31.6 per thousand +/- 8.1 per thousand, respectively. Thus, nitrifying and denitrifying bacteria populations under the conditions of our study exhibit significantly different 15N site preference fingerprints. Our data set strongly suggests that N2O isotopomers can be used in concert with traditional N2O stable isotope measurements as constraints to differentiate microbial N2O processes in soil and will contribute to interpretations of the isotopic site preference N2O values found in the free troposphere.  相似文献   

17.
In recent years, China has conducted considerable research focusing on the emission and effects of sulphur (S) on human health and ecosystems. By contrast, there has been little emphasis on anthropogenic nitrogen (N) so far, even though studies conducted abroad indicate that long-range atmospheric transport of N and ecological effects (e.g. acidification of soil and water) may be significant. The Sino-Norwegian project IMPACTS, launched in 1999, has established monitoring sites at five forest ecosystems in the southern part of PR China to collect comprehensive data on air quality, acidification status and ecological effects. Here we present initial results about N dynamics at two of the IMPACTS sites located near Chongqing and Changsha, including estimation of atmospheric deposition fluxes of NOx and NHx and soil N transformations. Nitrogen deposition is high at both sites when compared with values from Europe and North America (25–38 kg ha–1 yr–1). About 70% of the deposited N comes as NH4, probably derived from agriculture. Leaching of N from soils is high and nearly all as NO3 –1. Transformation of N to NO3 –1 in soils results in acidification rates that are high compared to rates found elsewhere. Despite considerable leaching of NO3 –1 from the root zone of the soils, little NO3 –1 appears in streamwater. This indicates that N retention or denitrification, both causing acid neutralization, may be important and probably occur in the groundwater and groundwater discharge zones. The soil flux density of mineral N, which is the sum of N deposition and N mineralization, and which is dominated by the N mineralization flux, may be a good indicator for leaching of NO3 –1 in soils. However, this indicator seems site specific probably due to differences in land-use history and current N requirement.  相似文献   

18.
灰泥土中不同氮肥品种反硝化损失与N2O排放量的差异   总被引:4,自引:0,他引:4  
在实验室培养条件下,采用土壤培养-乙炔抑制法测定尿素、碳酸氢铵、硫酸铵和氯化铵4种氮肥品种在灰泥土中反硝化损失和N2O排放量的差异。结果表明,氮肥品种间的N2O排放量和反硝化损失量存在极显著差异。尿素、碳铵和氯化铵的N2O排放量极显著高于硫铵,占施肥量的3.88%-4.14%;尿素和碳铵的反硝化损失量分别为施肥量的5.8%和3.7%,极显著高于硫铵和氯化铵;但氯化铵的反硝化损失量显著低于CK。  相似文献   

19.
20.
In tropical areas, the relations between soil, rivers, and lakes are poorly understood as regard to the physicochemical transformation that occurs when solid materials are transferred among them. In order to ascertain the natural dynamics of Na, K, Mg, Ca, Al, Fe, Mn, Pb, Zn, Cu, Ni, Cr, and Co, as well as the perturbations by human activity, soils and sediments from a tropical catchment were studied. To accomplish the above mentioned objective, the Valencia Lake catchment was subdivided into three systems, i.e. soils, rivers and lakes. Original data and those previously published by Mogolló;n and Bifano (1994), and Mogolló;n et al. (1995, 1996) were used to establish the numerical relation between the average concentration in the three systems. The percentage labile fraction and metal distribution in different particle size fractions were studied in selected samples. A total of 410 samples was analysed.Lithology and topography are the main factors that differentiate the physicochemical characteristics of soils and sediments. Processes coupled with solid material transport from the upland to lowland area cause the increase of the HNO3 (1M) extractable metal concentration, and of the percentage labile fraction, metal redistribution towards fine particle fraction. In spite of the tropical climate, the pedogenesis of exposed sediments and the transport along the river courses, have very low influence. Most of the transformations seem to occur during the soils – river transfer of materials. The carbonate precipitation in the lake causes further increase of metal concentration and the percentage labile fraction. The pollutant input increases metal concentration, the percentage labile fraction and the trend of accumulation toward fine particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号