首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the last few years, biodegradable polymers have been developed to replace petrochemical polymers. Until now, research devoted to these polymers essentially focused on their biodegradability. There is now a need to bear out their nontoxicity. To verify this, the biodegradation must be carried out in accelerated laboratory tests which allow the metabolites and residues to be recovered. To reproduce the natural conditions (compost, field) as closely as possible, degradation experiments must be run on solid-state substrates. We review studies of aerobic degradation in solid-state substrates. This article focuses in particular on the environmental, physical, and chemical parameters (such as substrate nature, moisture, temperature, C/N ratio, and pH) that influence biodegradation kinetics. This study also aims at finding the solid substrate most adapted to residues and metabolite recovery. The most significant parameters would appear to be the substrate type, moisture content, and temperature. Inert substrates such as vermiculite are well suited to residue extraction. This review also opens the field to new research aimed at optimizing conditions for aerobic solid-state biodegradation and at recovering the metabolites and residues of this degradation process.  相似文献   

2.
Organic mushroom cultivation is one of the fastest growing segments of agriculture. At the core of the organic philosophy lies a ban on the use of synthetic fertilizers, pesticides and herbicides, in addition to such tenets as animal welfare, energy efficiency, and social justice. Hypsizygus marmoreus (HM) is a highly praised cultivated culinary and medicinal mushroom. The objective of this paper was to assess the suitability of different spawn media and then the potential of various cultivation substrates to support HM mushroom production compatible with organic standards. This objective was met through the setup of a low-cost cultivation infrastructure. First, seven types of spawn media were tested; then we tested 24 substrates made from organic by-products for their biological efficiency (BE) with strain HM 830, using the liquid inoculation method. The best substrate in terms of BE was corn cob with bran and olive press cake, with a BE of 85.6%. The BE of the same composition but without olive press cake was only 67.5%. The next best substrates were cotton straw combinations with a BE of 31.5–53%. The spent mushroom substrate provides a good method for the disposal of solid waste. The guidance provided in this research complies with organic mushroom cultivation standards and can be used to produce certified organic mushrooms. In addition, it allows responsible and beneficial disposal of a large amount of solid agro-industrial waste.  相似文献   

3.
Fermentation can use renewable raw materials as substrate, which makes it a sustainable method to obtain H2. This study evaluates H2 production by a mixed culture from substrates such as glucose and derivatives from sugarcane processing (sucrose, molasses, and vinasse) combined with landfill leachate. The leachate alone was not a suitable substrate for biohydrogen production. However, leachate blended with glucose, sucrose, molasses, or vinasse increased the H2 production rate by 2.0-, 2.8-, 4.6-, and 0.5-fold, respectively, as compared with the substrates without the leachate. Determination of metals (Cu, Cd, Pb, Hg, Ni, and Fe) at the beginning and at the end of the fermentative assays showed how they were consumed during the fermentation and demonstrated improved H2 production. During fermentation, Cu, Fe, and Cd were the most consumed leachate metals. The best substrate combination to produce H2 was molasses and leachate, which gave high volumetric productivity—469 ml H2/l h. However, addition of the leachate to the substrates stimulated lactic acid formation pathways, which lowered the H2 yield. The use of leachate combined with sugarcane processing derivatives as substrates could add value to the leachate and reduce its polluting power, generating a clean energy source from renewable raw materials.  相似文献   

4.
Graft copolymers of polyacrylamide and various substrates were prepared by reactive extrusion in a twin screw extruder using ammonium persulfate as initiator. Substrates included unmodified starches (corn, waxy maize, wheat, and potato), cationic starches, dextrin, dextran, and polyvinyl alcohol (PVOH). The feed ratio of substrate to monomer was 2:1. Average conversion of monomer to polymer was 88.9% (±5.1%). Graft contents for the starch substrates were approximately 25% with grafting efficiencies of about 70%. Polyacrylamide graft molecular weights ranged from 317,000 to 769,000. Absorbencies at pH 7 for saponified graft copolymers prepared with unmodified starches were approximately 200 g/g and approximately 150 g/g for the cationic starches, dextran, and PVOH. In electrolyte solution (0.9% NaCl), absorbencies were in the range of 26–59 g/g, depending on substrate type. Saponified dextrin copolymers were essentially soluble with absorbencies of 6 g/g in water and 12 g/g in 0.9% NaCl.Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

5.
Anaerobic co-digestion of pig slurry with four agricultural substrates (tomato, pepper, persimmon and peach) was investigated. Each agricultural substrate was tested in co-digestion with pig slurry at four inclusion levels: 0%, 15%, 30% and 50%. Inclusion levels consisted in the replacement of the volatile solids (VS) from the pig slurry with the VS from the agricultural substrate. The effect of substrate type and inclusion level on the biochemical methane potential (BMP) was evaluated in a batch assay performed at 35 °C for 100 days. Agricultural substrate’s chemical composition was also analyzed and related with BMP. Additionally, Bacteria and Archaea domains together with the four main methanogenic archaeal orders were quantified using quantitative real-time TaqMan polymerase chain reaction (qPCR) at the end of the experiment to determine the influence of agricultural substrate on sludge’s microbial composition. Results showed that vegetable substrates (pepper and tomato) had higher lipid and protein content and lower carbohydrates than fruit substrates (persimmon and peach). Among substrates, vegetable substrates showed higher BMP than fruit substrates. Higher BMP values were obtained with increasing addition of agricultural substrate. The replacement of 50% of VS from pig slurry by tomato and pepper increased BMP in 41% and 44%, respectively compared with pig slurry only. Lower increments in BMP were achieved with lower inclusion levels. Results from qPCR showed that total bacteria and total archaea gene concentrations were similar in all combinations tested. Methanomicrobiales gene concentrations dominated over the rest of individual archaeal orders.  相似文献   

6.
Banana agricultural waste is one of the potential lignocellulosic substrates which are mostly un-utilized but sufficiently available in many parts of the world. In the present study, suitability of banana waste for biofuel production with respect to pretreatment and reducing sugar yield was assessed. The effectiveness of both acid and alkali pretreatments along with autoclaving, microwave heating and ultrasonication on different morphological parts of banana (BMPs) was studied. The data were statistically analyzed using ANOVA and numerical point prediction tool of MINITAB RELEASE 14. Accordingly, the optimum cumulative conditions for maximum recovery of reducing sugar through acid pretreatment are: leaf (LF) as the substrate with 25 min of reaction time and 180 °C of reaction temperature using microwave. Whereas, the optimum conditions for alkaline pretreatments are: pith (PH) as the substrate with 51 min of reaction time and 50 °C of reaction temperature using ultrasonication (US).  相似文献   

7.
Leaching characteristics and phytotoxic effects of sewage sludge biochar   总被引:1,自引:0,他引:1  
Biochar was prepared via the pyrolysis of sewage sludge at temperatures ranging from 300 to 900 °C and the physical–chemical compositions of the biochars obtained were analyzed. Leaching tests were conducted using the biochars to investigate the release of the constituents and their phytotoxic effects on wheat (Triticum aestivum) seeds in a germination test. Multivariate analyses were used to evaluate the contributions of the constituents to the germination index (GI). The results showed that the biochars were rich in micronutrient contents and they improved the germination of wheat. The heavy metal contents were higher in the biochars than the sewage sludge and their levels increased with the pyrolysis temperature, but they were within the acceptable limits for land application, thereby suggesting that sewage sludge is suitable for use as a biochar substrate. The different components of the biochar leachates could promote and inhibit the germination of wheat seeds, where the GI was promoted at lower concentrations but inhibited at higher concentrations. Our results suggest that biochar is an effective and environmentally friendly fixative for the immobilization of heavy metals in sewage sludge when applied to land or disposed of in landfill, but its ecotoxicity needs to be assessed to ensure its environmental safety.  相似文献   

8.
The petroleum fuel is nearing the line of extinction. Recent research and technology have provided promising outcomes to rely on biodiesel as the alternative and conventional source of fuel. The use of renewable source - vegetable oil constitutes the main stream of research. In this preliminary study, Waste Cooking Oil (WCO) was used as the substrate for biodiesel production. Lipase enzyme producing fungi Rhizopus oryzae 262 and commercially available pure lipase enzyme were used for comparative study in the production of Fatty Acid Alkyl Esters (FAAE). The whole cell (RO 262) and pure lipase enzyme (PE) were immobilized using calcium alginate beads. Calcium alginate was prepared by optimizing with different molar ratios of calcium chloride and different per cent sodium alginate. Entrapment immobilization was done for whole cell biocatalyst (WCB). PE was also immobilized by entrapment for the transesterification reaction. Seven different solvents - methanol, ethanol, n-propanol, n-butanol, iso-propanol, iso-butanol and iso-amyl alcohol were used as the acyl acceptors. The reaction parameters like temperature (30°C), molar ratio (1:3 - oil:solvent), reaction time (24 h), and amount of enzyme (10% mass ratio to oil) were also optimized for methanol alone. The same parameters were adopted for the other acyl acceptors too. Among the different acyl acceptors - methanol, whose reaction parameters were optimized showed maximum conversion of triglycerides to FAAE-94% with PE and 84% with WCB. On the whole, PE showed better catalytic converting ability with all the acyl acceptor compared to WCB. Gas chromatography analysis (GC) was done to determine the fatty acid composition of WCO (sunflower oil) and FAAE production with different acyl acceptors.  相似文献   

9.
软锰矿浆催化氧化烟气中二氧化硫产酸过程研究   总被引:1,自引:1,他引:0  
采用软锰矿浆催化氧化烟气中的SO2,使其生成硫酸。考察了软锰矿浆液固比、软锰矿浆初始pH、气体流量、进口SO2浓度、气体中氧浓度和反应温度对硫酸浓度的影响。试验结果表明,软锰矿浆的液固比和气体中的氧浓度对产酸速率的影响最大。软锰矿浆与SO2反应生成硫酸的过程分为线性阶段和幂函数两个阶段,符合Pasiuk提出的反应动力学模型。  相似文献   

10.
Degradation of Polylactide by Commercial Proteases   总被引:2,自引:0,他引:2  
Fifty-six commercially available proteases were tested for polylactide-degrading activity. Little or no activity was found in acid and neutral proteases, while some alkaline proteases formed appreciable amounts of lactic acid from polylactide. These polylactide-degrading proteases were derived from Bacillus species and had catalytic activity even under neutral, as well as alkaline, conditions. Savinase (Novo Nordisk) degraded polylactide the fastest among the enzymes tested and its specific activity corresponded to about one-half of proteinase K. Polylactide-degrading activity was not always present in the enzymes that affected keratin, while polylactide-degrading proteases commonly hydrolyzed keratin. A significant correlation was observed between degrading activities of polylactide and keratin in alkaline proteases.  相似文献   

11.
A series of experimental runs were conducted from 1995 to 1999 in Madison (WI, USA) with the goal to investigate the biodegradation process of seven (7) solid waste components and mixtures of them under near optimal aerobic conditions. It was shown that substrates with high initial lignin contents or high initial HWSM contents were observed to have relatively low and high degradation extents, respectively. Two linear equations were derived that correlate degradation extent (as indicated by the volatile solids reduction) to initial lignin and initial HWSM contents separately. The lignin equation was compared to a similar equation previously developed for anaerobic environments by Chandler et al. (Predicting methane fermentation biodegradability. In: Biotechnology and Bioengineering Symposium No. 10 (1980) New York: John Wiley & Sons). With comparison to the Chandler formula, lignin was found to be less inhibitory to the overall substrate decomposition in aerobic environments compared to anaerobic ones. Cellulose loss contributed to a higher than 50% to the overall dry mass loss for all substrates studied. In addition, the cellulose to lignin (C/L) ratio appeared to be a relatively accurate compost maturity indicator, since it reduced to a value less than 0.5 for most substrates that had reached their degradation extent.  相似文献   

12.
In this paper, a mechanical filtering system to treat pig slurry is proposed. The filter was made from the aerobic decomposition product of the organic fraction of municipal wastes and wheat straw was used as the support.Using a pilot plant to treat 2100 liters of swine slurry, an adequate reduction in BOD5; COD, and other parameters was obtained. The organic matter content of the material trapped in the filter was similar to that of compost and farmyard manure, but the nitrogen and phosphorous levels and the C/N ratio were more similar to farmyard manure. After passing through a filtering system, the treated liquid can be used for fertirrigation and as a feed for algae ponds. After a period of stabilization, the solid material can be mixed to produce manure. Although wheat straw was used as the support in this experiment, other agricultural wastes such as rice straw, corn stalks, millet stems, banana, cotton, and coconut trash can be used. Rather than municipal solid waste compost, other kinds of compost obtained from agricultural wastes such as leaves, bark, husks, etc., can be used as the filter.  相似文献   

13.
Effectiveness of three bulking agents for food waste composting   总被引:3,自引:0,他引:3  
Rather than landfilling, composting the organic fraction of municipal solid wastes recycles the waste as a safe and nutrient enriched soil amendment, reduces emissions of greenhouse gases and generates less leachate. The objective of this project was to investigate the composting effectiveness of three bulking agents, namely chopped wheat (Triticum) straw, chopped mature hay consisting of 80% timothy (milium) and 20% clover (triphullum) and pine (pinus) wood shavings. These bulking agents were each mixed in duplicates at three different ratios with food waste (FW) and composted for 10 days using prototype in-vessel composters to observe their temperature and pH trends. Then, each mixture was matured in vertical barrels for 56 days to measure their mass loss and final nutrient content and to visually evaluate their level of decomposition. Chopped wheat straw (CWS) and chopped hay (CH) were the only two formulas that reached thermophilic temperatures during the 10 days of active composting when mixed with FW at a wet mass ratio of 8.9 and 8.6:1 (FW:CWS and FW:CH), respectively. After 56 days of maturation, these two formulas were well decomposed with no or very few recognizable substrate particles, and offered a final TN exceeding the original. Wood shavings (WS) produced the least decomposed compost at maturation, with wood particles still visible in the final product, and with a TN lower than the initial. Nevertheless, all bulking agents produced compost with an organic matter, TN, TP and TK content suitable for use as soil amendment.  相似文献   

14.
To improve the mechanical performance of natural lignocellulosic jute yarn, grafting with [3-(trimethoxysilyl) propylmethacrylate] (TMSPM) monomer has been performed on in situ UV radiation and optimized the monomer concentration (30%) and irradiation time (30 min). Effect of various amino acids (1%) as additives in TMSPM with photografted jute yarn at optimized system has been studied. The polymer loading (PL) and tensile properties like tensile strength (TS) and elongation at break (Eb) of treated samples were enhanced by incorporation of amino acids and the highest properties (TS = 300% and Eb = 386%) achieved by the sample treated with l-Arginine (Arg) with 32.5% PL value. Weak acid like 3% acetic acid and inorganic acid like 1% sulfuric acid were also incorporated in the optimized system of TMSPM grafting and compared their effect on the tensile properties with amino acid treated samples. Water absorption and weathering resistance of treated and untreated samples were also performed and treated sample showed lesser water uptake as well as less weight loss and mechanical properties as compared to untreated samples.  相似文献   

15.
Journal of Polymers and the Environment - Poor interfacial compatibility between wheat straw and polylactic acid (PLA) remains a problem that directly affects the overall performance of wheat...  相似文献   

16.
In this paper, the evolution of organic matter (OM) during composting of different mixtures of various organic wastes was assessed by means of chemical analyses and CPMAS 13C NMR spectroscopy measured during composting. The trends of temperatures and C/N ratios supported the correct evolution of the processes. The CPMAS 13C NMR spectra of all composting substrates indicated a reduction in carbohydrates and an increase in aromatic, phenolic, carboxylic and carbonylic C which suggested a preference by microorganisms for easily degradable C molecules. The presence of hardly degradable pine needles in one of the substrates accounted for the lowest increase in alkyl C and the lowest reduction in carbohydrates and carboxyl C as opposite to another substrate characterized by the presence of a highly degradable material such as spent yeast from beer production, which showed the highest increase of the alkyl C/O-alkyl C ratio. The highest increase of COOH deriving by the oxidative degradation of cellulose was shown by a substrate composed by about 50% of plant residues. The smallest increases in alkyl C/O-alkyl C ratio and in polysaccharides were associated to the degradation of proteins and lipids which are major components of sewage sludge. Results obtained were related to the different composition of fresh organic substrates and provided evidence of different OM evolution patterns as a function of the initial substrate composition.  相似文献   

17.
The amino acid sequence of a peptide containing an active serine was examined with poly(3-hydroxybutyrate) (PHB) depolymerase ofAlcaligenes faecalis T1. The sequence Cys-Asn-Ala-Trp-Ala-Gly-Ser-Asn-Ala-Gly-Lys was obtained. This amino acid sequence around the active serine does not fit any reported sequence of other esterases and proteases. On the other hand, a segment of the amino acid sequence of PHB depolymerase ofA. faecalis was homologous to the type III sequence of fibronectin. Similar sequences have been reported in some type of bacterial chitinase and cellulases, and PHB depolymerase seems to have an overall similarity to these bacterial extracellular hydrolases.  相似文献   

18.
A 4-year field trial was established in eastern Sweden to evaluate the effects of organic waste on soil chemical and microbiological variables. A simple crop rotation with barley and oats was treated with either compost from household waste, biogas residue from household waste, anaerobically treated sewage sludge, pig manure, cow manure or mineral fertilizer. All fertilizers were amended in rates corresponding to 100kgNha(-1)year(-1). The effects of the different types of organic waste were evaluated by subjecting soil samples, taken each autumn 4 weeks after harvest, to an extensive set of soil chemical (pH, Org-C, Tot-N, Tot-P, Tot-S, P-AL, P-Olsen, K-AL, and some metals) and microbiological (B-resp, SIR, microSIR active and dormant microorganisms, PDA, microPDA, PAO, Alk-P and N-min) analyses. Results show that compost increased pH, and that compost as well as sewage sludge increased plant available phosphorus; however, the chemical analysis showed few clear trends over the 4 years and few clear relations to plant yield or soil quality. Biogas residues increased substrate induced respiration (SIR) and, compared to the untreated control amendment of biogas residues as well as compost, led to a higher proportion of active microorganisms. In addition, biogas residues increased potential ammonia oxidation rate (PAO), nitrogen mineralization capacity (N-min) as well as the specific growth rate constant of denitrifiers (microPDA). Despite rather large concentrations of heavy metals in some of the waste products, no negative effects could be seen on either chemical or microbiological soil properties. Changes in soil microbial properties appeared to occur more rapidly than most chemical properties. This suggests that soil microbial processes can function as more sensitive indicators of short-term changes in soil properties due to amendment of organic wastes.  相似文献   

19.
It is well known that use of low cost and abundant waste materials in microbial fermentations can reduce product costs. Kitchen wastes disposed of in large amounts from cafeterias, restaurants, dining halls, food processing plants, and household kitchens contain high amounts of carbohydrate components such as glucose, starch, and cellulose. Efficient utilization of these sugars is another opportunity to reduce ethanol costs. In this study, the effect of pretreatment methods (hot water, acid solutions, and a control) on enzymatic hydrolysis of kitchen wastes was evaluated using a kinetic modeling approach. Fermentation experiments conducted with and without traditional fermentation nutrients were assessed at constant conditions of pH 4.5 and temperature of 30 °C for 48 h using commercial dry baker’s yeast, Saccharomyces cerevisiae. The control, which involved no treatment, and hot water treated samples gave close glucose concentrations after 6 h. The highest and lowest rates of glucose production were found as 0.644 and 0.128 (h?1) for the control (or no-pretreated (NPT)) and 1% acid solutions, respectively. The fermentation results indicated that final ethanol concentrations are not significantly improved by adding nutrients (17.2–23.3 g/L). Thus, it was concluded that product cost can be lowered to a large extent if (1) kitchen wastes are used as a substrate, (2) no fermentation nutrient is used, and (3) hydrolysis time is applied for about 6 h. Further optimization study is needed to increase the yield to higher levels.  相似文献   

20.
For raw organic wastes (ROWs) that are produced on a daily basis, a thermal treatment using an organo-iron catalyst with the ROW added in portion was examined for conversion to compost-like materials (CLMs). The mixture of initial materials (rice bran as a model ROW, red loam as a bulking agent, and an organo-iron catalyst) was incubated at 60?°C for 5?days. It was then heated at 170?°C for 8?h, and small portions of a mixture of rice bran and catalyst were added. This process was repeated a total of 45 times. The qualities of the CLMs were evaluated, based on the degree of humification of humic-like acids (HLAs) that were contained in the products. Thus, the HLAs were extracted from the prepared CLMs, and the levels of unsaturated carbons and oxygen- and nitrogen-containing compounds were analyzed and used as indices of the degree of humification. The influence of the initial materials on the degree of humification of the HLAs was investigated, and the highest degree of humification was obtained when red loam and the catalyst were both added with the initial materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号