首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. E. Parsons 《Marine Biology》1996,126(3):403-414
The intertidal gastropods Bembicium vittatum and Austrocochlea constricta, which have direct and planktonic larval development, respectively, occur sympatrically at sites across a number of islands at the Houtman Abrolhos archipelago and two harbours at Albany in Western Australia. Their distribution provide an opportunity to examine the effect of dispersal ability on levels of genetic subdivision at a number of spatial scales. F ST (standardised variance in allelic frequencies) values in the range 0.361 to 0.396, determined from allozyme frequencies at 12 to 13 polymorphic loci, confirm isolation of Abrolhos and Albany populations, which are separated by 900 km of coastline, in both species. Within the Abrolhos and Albany, levels of subdivision in B. vittatum were high, but similar, as indicated by F ST values of 0.091 and 0.090, respectively. In A. constricta, a mean value of 0.160 at the Abrolhos suggests severe restrictions to gene flow, while 0.021 at Albany indicates much stronger connections among populations. F ST values at the Abrolhos support previous suggestions that this archipelago favours genetic subdivision in both direct and planktonic-developing species. The Albany harbours favoured subdivision only in B. vittatum, the low values of F ST in A. constricta being attributed to strong mixing between the harbours, thus facilitating gene flow via planktonic larvae. The isolation of A. constricta populations at the Abrolhos can be explained in terms of highly localised recruitment, the result of limited water movement in complex intertidal habitats. The study illustrates the value of examining sympatric direct and planktonic developers in assessing the role of larval dispersal in patterns of genetic subdivision, and concludes that planktonic larvae may not promote gene flow over broad or even some fine spatial scales.  相似文献   

2.
The probability of successful dispersal by sessile benthic invertebrates is thought to strongly influence their geographic distribution and population genetics. Generally, species with long-lived planktonic larvae are expected to exhibit wider distribution patterns than those species which brood their young, due to their presumably greater potential for dispersal. In some cases, however, brooding species exhibit broad distributions and show evidence of genetic exchange with geographically distant populations. One potential factor that has been invoked as an expianation is dispersal by floating and rafting of adults and egg masses. Several studies have shown that it is possible for sessile adults to disperse on the order of several to many thousand kilometers by rafting on debris in ocean currents. With very few exceptions, however, direct evidence of rafting in the open ocean has been lacking. We present evidence of long-distance (1300 to 2000 km) dispersal of a brooding pelecypod,Gaimardia trapesina (Lamarck, 1819), in the Southern Ocean in the vicinity of Cape Horn, the Falkland Islands, and the antarctic island South Georgia (54°S; 37°W). Data on survival and fecundity rates ofG. trapesina and the prevalence of kelp rafts collected during the austral winter of 1993 indicate that dispersal by rafting can occur over ecologically relevant time scales and could potentially serve as a significant means of genetic exchange between populations.  相似文献   

3.
In benthic invertebrates dispersal of planktotrophic larvae is generally considered more effective than is, for example, the rafting of adults or egg masses. It is certainly true that over short distances, viz., in the range of tens of kilometres or less, a moderately long-lived planktotrophic larva represents an effective mechanism of dispersal. However, turbulent mixing and mortality will decrease the concentration of planktotrophic larvae, and at some distance from the ancestral population the density of settlers may be too low to enable future matings between adults of low mobility. On the other hand, adults, juveniles or benthic egg masses drifted over long distances may colonize new habitats. The crucial point is the type of larval development of the organism. If the founder group belongs to a species with direct development or which produces very short-lived planktonic larvae, the low mobility of all life-stages will maintain a population within a restricted area so that mates will be likely to encounter each other even in a small population. Even if transport of benthic stages happens very rarely, this may be more influential than larval dispersal over long distances. To show that this may be true the detailed geographical distribution of two intertidal gastropod species with contrasting modes of development is presented and further support from the literature for this hypothesis is discussed.  相似文献   

4.
For many sedentary or sessile benthic marine invertebrates the planktonic duration of the larval stage is believed to be a key determinant of the magnitude of genetic differences between populations. An obvious dichotomy in dispersal potential exists within cheilostome bryozoans that develop from either (1) a cyphonautes larva that spends several weeks in the plankton or (2) a brooded coronate larva that settles soon after release from the adult colony. This study characterises the pattern of variation at allozyme loci among British populations of four species of bryozoan—two species with cyphonautes and two with coronate larvae. There is some variation in the estimates of genetic differentiation among similarly separated populations that may be a consequence of non-equilibrium genetic conditions arising from sporadic migration, possibly through dispersal by rafting on macroalgae by mature colonies. Despite this, however, both the level of genetic differentiation between populations and the pattern of migrant exchange correlate with the larval developmental mode. Bryozoan species that brood coronate larvae show higher levels of genetic heterogeneity between populations and significant isolation by distance genetic structure while, by contrast, distance has little or no effect upon the amount of genetic differentiation among populations of bryozoans with cyphonautes larvae. For cheilostome bryozoans, therefore, it appears that genetic differentiation between populations is directly associated with the type of larval development. These data are discussed also with respect to levels of gene diversity and the geological pattern of cheilostome bryozoan species diversity.  相似文献   

5.
Are direct developers more locally adapted than planktonic developers?   总被引:6,自引:0,他引:6  
The hypothesis that populations of direct developers exhibit greater geographic differentiation in life history features than populations of planktonic developers, was tested with two species of grazing snails of the genus Littorina from 1986 to 1987. Littorina sitkana (direct developer) and L. scutulata (planktonic developer) coexist on sun- and wave-sheltered beaches from Alaska to Oregon, USA. Seasonal patterns in growth, survival and reproduction were monitored for samples from four geographically separated populations of each species grown in population cages at a common site, Friday Harbor, Washington, USA. The environmental and population effects on growth in the two species were determined in a four-way reciprocal transplant experiment with the same populations. Both the direct and planktonic developers exhibited geographic differentiation in life history features. Differentiation in the direct developer occurred over distances shorter than 30 km, while differentiation in the planktonic developer occurred over the 500 km distance examined (greater than their larvae would likely travel).  相似文献   

6.
T. Morgan  A. Rogers 《Marine Biology》2001,139(5):967-973
The identification of larval marine invertebrates to species or even higher taxonomic levels by morphological examination is notoriously difficult. Many diagnostic features are absent or poorly formed at early stages in development. This is particularly true for the larvae of bivalve molluscs, for which a routine and accurate method of identification would prove valuable to both ecologists and fishery managers. A simple molecular genetic method to identify specifically larvae of the European oyster, Ostrea edulis L., 1758, is presented. The test is based on PCR amplification of highly species-specific microsatellite loci and is sensitive enough to register the presence of a single larval individual (~200 µm width) in a mixed sample of 20 mg wet weight plankton (approximately 250 larval animals). This work demonstrates that microsatellite loci can be used as highly sensitive and specific taxonomic indicators, for studies of planktonic larvae. Details of three novel microsatellite loci are also given for O. edulis, increasing the suite of molecular tools available for use in population genetic studies of this commercially important species.  相似文献   

7.
Most species of benthic marine invertebrates have a single mode of larval development. Poecilogonous species are those that produce more than one type of larval offspring. Reports of variable development within one species, especially in combination with widely differing ecological habitat, are frequently attributed to cryptic species. The spionid polychaete Boccardia proboscidea Hartman, 1940 exhibits development that varies both within a single brood and among broods produced by different females. Some females have planktotrophic development and produce many small larvae with a 2 week planktonic period before metamorphosis. Other females produce broods containing both planktotrophic larvae as well as nurse-egg-ingesting (adelphophagic) offspring that hatch as juveniles. Molecular analysis (RAPD-PCR) showed that a significant proportion of genetic variance is attributable to geographic origin, and not to developmental type. Adults of both developmental types showed no consistent differences in taxonomically important features (e.g. type and arrangement of chaetae, modified fifth setiger, caruncle, branchiae, pygidium) when examined with SEM. These data support the hypothesis that developmental variability in this species is a case of poecilogony, and is not attributable to cryptic species. Received: 21 April 1998 / Accepted: 20 April 1999  相似文献   

8.
Benthic marine invertebrates with long-lived larvae are believed to have dispersal capabilities that contribute to maintaining genetic uniformity among populations over large geographical scales. However, both hydrological and biological factors may limit the actual dispersal of such larvae. We studied the population genetic structure of the edible common sea urchin Paracentrotus lividus (Lamarck, 1816), to explore its dispersal patterns in the Atlanto-Mediterranean region and, more specifically, to ascertain the role of the Strait of Gibraltar in shaping the genetic structure of this species. For this purpose, we analysed 158 individuals for the mitochondrial 16S rRNA gene and 151 of these for the nuclear single-copy intron adenine nucleotide transporter (ANT) from 16 localities from the Atlantic and Mediterranean basins, spanning over 4,000 km. Mitochondrial 16S rRNA shows higher genetic diversity in the Mediterranean than in the Atlantic and reveals a sharp break between the populations of both basins, probably as a consequence of the barrier imposed by the Almería–Orán hydrological front, situated east of the Strait of Gibraltar. Both markers suggest that a recent population expansion has taken place in both basins, most probably following the Messinian salinity crisis. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Nucleotide sequence polymorphism in the mitochondrial genomes of 132 adult lobsters (Jasus edwardsil) collected from widespread locales across southern Australia and from New Zealand (April 1989 to June 1990) was assayed, using six restriction endonucleases, to test the hypothesis of a lack of genetic subdivision in a marine species with a long-lived planktonic larva. The mean amount of mtDNA diversity among the 132 mitochondrial genomes was 0.77%. Phenetic clustering and gene-diversity analyses, as well as pairwise comparison of the genetics of specimens from each, or grouped, locales did not detect the presence of genetic subdivision across approx 4600 km of Southern Ocean habitats. The inability of this study to detect population subdivision does not preclude fortutitous, active or habitat-specific larval settlement from producing and maintaining hidden groupings. If genetic homogeneity is maintained in this species by larval dispersal in ocean currents flowing to the east, then westerly populations may deserve special conservation status.  相似文献   

10.
Strong genetic change over short spatial scales is surprising among marine species with high dispersal potential. Concordant breaks among several species signals a role for geographic barriers to dispersal. Along the coast of California, such breaks have not been seen across the biogeographic barrier of Point Conception, but other potential geographic boundaries have been surveyed less often. We tested for strong-population structure in 11 species of Sebastes sampled across two regions containing potential dispersal barriers, and conducted a meta-analysis including four additional species. We show two strong breaks north of Monterey Bay, spanning an oceanographic gradient and an upwelling jet. Moderate genetic structure is just as common in the north as it is in the south, across the biogeographic break at Point Conception. Gene flow is generally higher among deep-water species, but these conclusions are confounded by phylogeny. Species in the subgenus Sebastosomus have higher structure than those in the subgenus Pteropodus, despite having larvae with longer pelagic phases. Differences in settlement behavior in the face of ocean currents might help explain these differences. Across similar species across the same coastal environment, we document a wide variety of patterns in gene flow, suggesting that interaction of individual species traits such as settlement behavior with environmental factors such as oceanography can strongly impact population structure.  相似文献   

11.
The genetic structure of benthic marine invertebrates is often described as “chaotic” when genetic structure cannot be explained and barriers to dispersal and gene flow cannot be identified. Here, chaotic patterns of genetic structure for the polychaete Pygospio elegans (Claparède) sampled at 16 locations from the heterogeneous Isefjord–Roskilde Fjord estuary complex in Denmark were found. There was no isolation by distance, and the geography of the estuary complex did not seem to pose a barrier to dispersal and gene flow in this species. We investigated whether characteristics of the environment could be related to the genetic structure and possibly restrict gene flow in this species. Additionally, since P. elegans is poecilogonous, producing larvae with different pelagic developmental periods, we investigated whether observed developmental modes in the samples might clarify the genetic patterns. None of the tested factors explained the population genetic structure. However, a high degree of relatedness among individuals in almost all samples was found. Samples with a larger percentage of young individuals had more related individuals, suggesting that different cohorts could be comprised of individuals with different degrees of relatedness. Relatedness within a site could be increased by limited larval dispersal, collective dispersal of related larvae, sweepstakes reproductive success, or asexual reproduction, but distinguishing between these requires further study. Using a “seascape genetics” approach allowed us to investigate some of the numerous potential factors that could influence population genetic structure in a poecilogonous species.  相似文献   

12.
 Population genetic theory predicts that marine animal species with planktonic larvae will have less genetic structure than those with direct development. We compared the genetic structure of four species of littorinid snails – two with planktonic egg capsules that hatch as planktonic larvae and two with benthic egg masses that hatch as crawl-away juveniles. We used DNA sequencing and single stranded conformational polymorphism (SSCP) to assess sequence variation in a 480 bp fragment of the mitochondrial cytochrome b gene and then used an analysis of molecular variance (AMOVA) to estimate Φst for populations from the northeastern Pacific coast. One of the two direct-developing species, Littorina subrotundata, had a moderate amount of population structure (Φst=0.209) as expected but the other direct-developing species, L. sitkana, was nearly fixed for a single haplotype that made it impossible to precisely estimate Φst. One of the two planktonic-developing species, L. scutulata, did not show any significant population structure (Φst=0.004). In contrast to our expectations, the other planktonic-developing species, L. plena, showed some weak but statistically significant population structure (Φst=0.052). We discuss how differences in population genetic structure between species with the same type of development may reflect differences in their historical demography. Received: 22 December 1999 / Accepted: 24 July 2000  相似文献   

13.
In many marine invertebrate species, larval development plays an important role in population connectivity and gene flow: species with direct benthic development generally show more genetic structure than those with planktonic development. We used nuclear markers (microsatellites) to determine population genetic structure of the direct-developing snail Crepidula convexa (Gastropoda: Calyptraeidae) in seven populations with 15–85 individuals each within its native range of the northwest Atlantic and compared it to Crepidula fornicata, a congener with planktonic development. Our results are consistent with general expectations and previous work in these species with other markers: C. convexa had greater population structure and even at a regional scale shows significant isolation-by-distance, in contrast to C. fornicata. We also genotyped a single population of C. convexa introduced to the northeastern Pacific to investigate the prediction of reduced genetic diversity following introduction (founder effect). We did not find a reduction in genetic diversity, suggesting that this non-native population may be characterized by multiple introductions. This pattern is consistent with many other introduced populations of marine invertebrates, including C. fornicata.  相似文献   

14.
Despite long planktonic durations, many species of broadcast spawning invertebrates exhibit genetic structure at small spatial and temporal scales. Amplified fragment length polymorphisms were used to assess genetic variation in the sea scallop, Placopecten magellanicus, among four inshore and one offshore location in the Gulf of Maine and temporal genetic variation among age classes of sea scallops at one site. Our results indicated that genetic structure for P. magellanicus exists on smaller spatial scales (tens to hundreds of kilometers) than expected given the 40-day planktonic larval period. In addition, genetic differences among age classes may be influenced by inter-annual differences in larval supply or reproductive success. Future genetic studies should sample multiple age classes prior to comparison among locations.  相似文献   

15.
Genetic analysis of the marine bryozoans Celleporella hyalina and Electra pilosa using the RAPD technique revealed population structuring corresponding to the contrasting modes of larval dispersal. Samples of C. hyalina exhibited genetic differentiation over distances as small as 10 m, concordant with the limited dispersal predicted by a simulation model, based on the short pelagic phase of the lecithotrophic larvae and the local hydrography. In contrast, E. pilosa showed high levels of genetic heterogeneity only over much larger spatial scales, commensurate with its production of comparatively long-lived planktotrophic larvae. The population differentiation observed between samples of E. pilosa, collected from sites 70 km apart, is reconcilable with coastal water currents and frontal systems that restrict the exchange of water masses between the two sites. Hydrographic conditions and discontinuous distribution of suitable substrata therefore are seen to constrain gene flow, creating opportunities for local genetic differentiation despite the high dispersal potential of pelagic larvae. Received: 9 August 2000 / Accepted: 18 November 2000  相似文献   

16.
Electrophoretic identification and genetic analysis of bivalve larvae   总被引:2,自引:0,他引:2  
Taxonomic identification and genetic analysis of larval marine invertebrates have been vexing problems. We describe a polyacrylamide mini-gel electrophoresis technique for resolving proteins from individual larval bivalves (shell length 250 to 350 m) and apply this technique to three species of laboratory-cultured larval oysters [Ostrea edulis L., 1758, Crassostrea gigas (Thunberg, 1793) and c. virginica (Gmelin, 1791)] reared during summer 1989. Electrophoretic patterns of proteins clearly discriminate among the three species and allow genetic analysis of a polymorphic allozyme locus (Pgi) in field-collected larvae and juveniles of C. virginica. This technique provides an economical tool for largescale taxonomic, ecologic, and genetic studies of meroplanktonic stages of various species.  相似文献   

17.
Increases in temperature can shorten planktonic larval durations, so that higher temperatures may reduce dispersal distances for many marine animals. To test this prediction, we first quantified how minimum time to settlement is shortened at higher temperatures for the ascidian Styela plicata. Second, using latitude as a correlate for ocean temperature and spatial genetic structure as a proxy for dispersal, we tested for a negative correlation between latitude and spatial genetic structure within populations, as measured by anonymous DNA markers. Spatial genetic structure was variable among latitudes, with significant structure at low and intermediate latitudes (high and medium temperatures) and there was no genetic structure within high-latitude (low temperature) populations. In addition, we found consistently high genetic diversity across all Australian populations, showing no evidence for recent local bottlenecks associated S. plicata’s history as an invasive species. There was, however, significant genetic differentiation between all populations indicating limited ongoing gene flow.  相似文献   

18.
Pelagic dispersal of larvae in sessile marine invertebrates could in principle lead to a homogeneous gene pool over vast distances, yet there is increasing evidence of surprisingly high levels of genetic differentiation on small spatial scale. To evaluate whether larval dispersal is spatially limited and correlated with distance, we conducted a study on the widely distributed, viviparous reef coral Seriatopora hystrix from the Red Sea where we investigated ten populations separated between ~0.150 km and ~610 km. We addressed these questions with newly developed, highly variable microsatellite markers. We detected moderate genetic differentiation among populations based on both F ST and R ST (0.089 vs. 0.136, respectively) as well as considerable heterozygote deficits. Mantel tests revealed isolation by distance effects on a small geographic scale (≤20 km), indicating limited dispersal of larvae. Our data did not reveal any evidence against strictly sexual reproduction among the studied populations.  相似文献   

19.
Development mode in the ophiuroid genus Macrophiothrix includes an unusual diversity of planktonic larval forms and feeding types. The modes of development for seven congeners that coexist in coral reef habitats at Lizard Island, Australia were compared using larvae generated from crosses over several reproductive seasons from 1999 to 2003. Three species (Macrophiothrix koehleri Clark, Macrophiothrix longipeda Lamarck, Macrophiothrix lorioli Clark) develop from small eggs (<170 μm) into typical obligately feeding planktonic (planktotrophic) pluteus larvae with four larval arm pairs. The remaining four species develop from larger eggs (≥230 μm) into either facultatively-feeding or non-feeding (lecithotrophic) larval forms. The facultative planktotroph (Macrophiothrix rhabdota Clark) retains the ability to digest and benefit from food but does not require particulate food to complete metamorphosis. Among the lecithotrophic species, Macrophiothrix caenosa Hoggett retains the pluteus morphology with four pairs of larval arms, but is incapable of feeding, depending instead on maternal provisions for larval development. The remaining two lecithotrophs have simplified larval morphologies with only a single pair of full length (Macrophiothrix nereidina Lamarck) or highly reduced (Macrophiothrix belli Doderlein) larval arms and no functional mouth or gut. This genus includes the first example of facultative planktotrophy in ophiuroids, the first example in echinoderms of a complete pluteus morphology retained by a lecithotrophic larva, and three degrees of morphological simplification among lecithotrophic larval forms. Egg volume varies 20-fold among species and is related to variation in feeding mode, larval form, and development time, as predicted for the transition from planktotrophic to lecithotrophic development.  相似文献   

20.
In situ and in vitro observations indicate that brooding colonial ascidians commonly display limited larval dispersal, whilst the larvae of most solitary species are assumed to be widely dispersed. We used allozyme data to determine the population genetic consequences of reproduction and dispersal in a broadcast-spawning solitary ascidian and two brooding colonial species along the central and southern coast of New South Wales, Australia. We surveyed genetic variation at 2 to 9 variable loci for samples collected from 6 to 8 local populations of each of the stalked solitary species Pyura gibbosa gibbosa Heller, 1878; the social Stolonica australis Michaelsen, 1927 and the compound Botrylloides magnicoecum Hartmeyer, 1912. Samples from each local population displayed levels and patterns of genotypic diversity that were consistent with expectations for sexually-derived recruitment of both solitary zooids and separate colonies. However, we found clear differences in the structure of the populations of solitary and colonial species. Genotype frequencies within all nine samples of P. gibbosa gibbosa conformed to expectations for random mating (i.e. Hardy–Weinberg equilibria). Moreover, allele frequencies showed little variation among samples [mean standardised genetic variance (F S T ) =0.002], which implies that local populations are strongly connected by larval dispersal. We estimate (via Wright's “island model”) that gene flow (N e m) within this set of local populations is 125 effective migrants per generation, which is very similar to estimates obtained for other broadcast-spawning taxa in this region. In contrast, genotype frequencies within samples of both colonial species were characterised by large and statistically significant deficits of heterozygotes, consistent with expectations for highly limited dispersal of larvae or sperm. Moreover, local populations were highly differentiated (F S T =0.201 and 0.202 for S. australis and B. magnicoecum, respectively) and N e m was estimated to be ∼1.0 in each case. These values of F S T and subsequent estimates of N e m lie within the range of values reported for other New South Wales taxa with direct larval development, and imply that local populations are effectively closed to immigration. Received: 13 February 1997 / Accepted 18 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号