首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pneumatic waste collection systems are becoming increasingly popular in new urban residential areas, and an attractive alternative to conventional vehicle-operated municipal solid waste (MSW) collection also in ready-built urban areas. How well pneumatic systems perform in ready-built areas is, however, an unexplored topic. In this paper, we analyze how a hypothetical stationary pneumatic waste collection system compares economically to a traditional vehicle-operated door-to-door collection system in an existing, densely populated urban area. Both pneumatic and door-to-door collection systems face disadvantages in such areas. While buildings and fixed city infrastructure increase the installation costs of a pneumatic system in existing residential areas, the limited space for waste transportation vehicles and containers cause problems for vehicle-operated waste collection systems. The method used for analyzing the cost effects of the compared waste collection systems in our case study takes into account also monetized environmental effects of both waste collection systems. As a result, we find that the door-to-door collection system is economically almost six times more superior. The dominant cost factor in the analysis is the large investment cost of the pneumatic system. The economic value of land is an important variable, as it is able to reverse the results, if the value of land saved with a pneumatic system is sufficiently high.  相似文献   

2.
This paper presents research concerning the environmental analysis of the selective collection management of municipal solid waste. The main goal of this study is to quantify and to compare, by means of Life Cycle Assessment (LCA), the potential environmental impacts of three selective collection systems modelled on densely populated urban areas. These systems are: the mobile pneumatic, the multi-container and the door-to-door. Impact assessment method based on CML 2 baseline 2000 is applied to the different systems. The study separates and analyzes the collection systems in substages: two urban substages and one inter-city substage. At the urban level, the multi-container system has the least environmental impact of all systems. The mobile pneumatic system has greater environmental impacts in terms of global warming, fresh water aquatic ecotoxicity, terrestrial ecotoxicity, acidification and eutrophication. In this system, the pipes and the pneumatic transport have the greatest impacts. The door-to-door system has a greatest environmental impact in terms of abiotic depletion, ozone layer depletion and human toxicity. An overall evaluation of the three substages, with a sensitivity analysis, indicates that the mobile pneumatic system at an inter-city distance of 20 km shows the greatest environmental impacts and the greatest energy demand. Inter-city transport is key; the results show that from an inter-city distance of 11 km onwards, this becomes the substage which most contributes to global warming impact and energy demand, in all the systems.  相似文献   

3.
Truck-based collection of municipal solid waste imposes significant negative externalities on cities and constrains the efficiency of separate collection of recyclables and organics and of unit-price-based waste-reduction systems. In recent decades, hundreds of municipal-scale pneumatic collection systems have been installed in Europe and Asia. Relatively few prior studies have compared the economic or environmental impacts of these systems to those of truck collection. A critical factor to consider when making this comparison is the extent to which the findings reflect the specific geographic, demographic, and operational characteristics of the systems considered. This paper is based on three case studies that consider the specific characteristics of three locations, comparing pneumatic systems with conventional collection on the basis of actual waste tonnages, composition, sources, collection routes, truck trips, and facility locations. In one case, alternative upgrades to an existing pneumatic system are compared to a potential truck-collection operation. In the other cases, existing truck operations are compared to proposed pneumatic systems which, to reduce capital costs, would be installed without new trenching or tunneling through the use of existing linear infrastructure. For the two proposed retrofit pneumatic systems, up to 48,000 truck kilometers travelled would be avoided and energy use would be reduced by up to 60% at an incremental cost of up to $400,000 USD per year over the total operating-plus-capital cost of conventional collection. In the location where a greenfield pneumatic system is already in operation, truck collection would be both less expensive and more energy-efficient than pneumatic collection. The results demonstrate that local geographic, demographic, and operational conditions play a decisive role in determining whether pneumatic collection will reduce energy requirements, produce more or fewer greenhouse gas emissions, and cost more or less over the long-term. These findings point to the local factors that will determine the relative economic and environmental costs and benefits in specific situations.  相似文献   

4.
Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios.  相似文献   

5.
This paper presents a system dynamics computer model to predict solid waste generation, collection capacity and electricity generation from solid waste and to assess the needs for waste management of the urban city of Dhaka, Bangladesh. Simulated results show that solid waste generation, collection capacity and electricity generation potential from solid waste increase with time. Population, uncleared waste, untreated waste, composite index and public concern are projected to increase with time for Dhaka city. Simulated results also show that increasing the budget for collection capacity alone does not improve environmental quality; rather an increased budget is required for both collection and treatment of solid wastes of Dhaka city. Finally, this model can be used as a computer laboratory for urban solid waste management (USWM) policy analysis.  相似文献   

6.
The environmental impacts of municipal solid waste management in Beijing City were evaluated using a life-cycle-based model, EASEWASTE, to take into account waste generation, collection, transportation, treatment/disposal technologies, and savings obtained by energy and material recovery. The current system, mainly involving the use of landfills, has manifested significant adverse environmental impacts caused by methane emissions from landfills and many other emissions from transfer stations. A short-term future scenario, where some of the landfills (which soon will reach their capacity because of rising amount of waste in Beijing City) are substituted by incinerators with energy recovery, would not result in significant environmental improvement. This is primarily because of the low calorific value of mixed waste, and it is likely that the incinerators would require significant amounts of auxiliary fuels to support combustion of wet waste. As for the long-term future scenario, efficient source separation of food waste could result in significant environmental improvements, primarily because of increase in calorific value of remaining waste incinerated with energy recovery. Sensitivity analysis emphasized the importance of efficient source separation of food waste, as well as the electricity recovery in incinerators, in order to obtain an environmentally friendly waste management system in Beijing City.  相似文献   

7.
Recycling and reusing recyclables is an important way to solve the municipal solid waste (MSW) problem. As the collection of solid waste takes up the largest percentage of MSW management budgets, improving the collection of recyclables is important. Since the decline of government-run waste buying depots in the late 1980s, the collection of recyclables from households and waste deposit sites in China is done by buyers with small informal bases and waste pickers, who are usually unskilled rural people who have come to the cities. Because of this, the current system is seen to have social problems. So, the recyclable collection system has both social as well as economic significance. China is in the process of rapid industrialization and urbanization, and a new mode of community collection system is emerging. It operates by market mechanisms, with waste collection companies that are supported by the municipal government, establishing recycle service sites, and employing workers to buy recyclables door-to-door. This paper is a case study of the new system in the Haidian District, Beijing. It summarizes the system, compares it to experiences in other countries and discusses whether the new approach contributes to resources recycling in China.  相似文献   

8.
Urban waste management is becoming an increasingly complex task, absorbing a huge amount of resources, and having a major environmental impact. The design of a waste management system consists in various activities, and one of these is related to the location of waste collection sites. In this paper, we propose an integer programming model that helps decision makers in choosing the sites where to locate the unsorted waste collection bins in a residential town, as well as the capacities of the bins to be located at each collection site. This model helps in assessing tactical decisions through constraints that force each collection area to be capacitated enough to fit the expected waste to be directed to that area, while taking into account Quality of Service constraints from the citizens' point of view. Moreover, we propose an effective constructive heuristic approach whose aim is to provide a good solution quality in an extremely reduced computational time. Computational results on data related to the city of Nardò, in the south of Italy, show that both exact and heuristic approaches provide consistently better solutions than that currently implemented, resulting in a lower number of activated collection sites, and a lower number of bins to be used.  相似文献   

9.
This work proposes an innovative methodology for the reduction of the operation costs and pollutant emissions involved in the waste collection and transportation. Its innovative feature lies in combining vehicle route optimization with that of waste collection scheduling. The latter uses historical data of the filling rate of each container individually to establish the daily circuits of collection points to be visited, which is more realistic than the usual assumption of a single average fill-up rate common to all the system containers. Moreover, this allows for the ahead planning of the collection scheduling, which permits a better system management. The optimization process of the routes to be travelled makes recourse to Geographical Information Systems (GISs) and uses interchangeably two optimization criteria: total spent time and travelled distance. Furthermore, rather than using average values, the relevant parameters influencing fuel consumption and pollutant emissions, such as vehicle speed in different roads and loading weight, are taken into consideration. The established methodology is applied to the glass-waste collection and transportation system of Amarsul S.A., in Barreiro. Moreover, to isolate the influence of the dynamic load on fuel consumption and pollutant emissions a sensitivity analysis of the vehicle loading process is performed. For that, two hypothetical scenarios are tested: one with the collected volume increasing exponentially along the collection path; the other assuming that the collected volume decreases exponentially along the same path. The results evidence unquestionable beneficial impacts of the optimization on both the operation costs (labor and vehicles maintenance and fuel consumption) and pollutant emissions, regardless the optimization criterion used. Nonetheless, such impact is particularly relevant when optimizing for time yielding substantial improvements to the existing system: potential reductions of 62% for the total spent time, 43% for the fuel consumption and 40% for the emitted pollutants. This results in total cost savings of 57%, labor being the greatest contributor, representing over €11,000 per year for the two vehicles collecting glass-waste. Moreover, it is shown herein that the dynamic loading process of the collection vehicle impacts on both the fuel consumption and on pollutant emissions.  相似文献   

10.
The contribution of existing municipal solid waste management to emission of greenhouse gases and the alternative scenarios to reduce emissions were analyzed for Data Ganj Bukhsh Town (DGBT) in Lahore, Pakistan using the life cycle assessment methodology. DGBT has a population of 1,624,169 people living in 232,024 dwellings. Total waste generated is 500,000 tons per year with an average per capita rate of 0.84kg per day. Alternative scenarios were developed and evaluated according to the environmental, economic, and social atmosphere of the study area. Solid waste management options considered include the collection and transportation of waste, collection of recyclables with single and mixed material bank container systems (SMBCS, MMBCS), material recovery facilities (MRF), composting, biogasification and landfilling. A life cycle inventory (LCI) of the six scenarios along with the baseline scenario was completed; this helped to quantify the CO2 equivalents, emitted and avoided, for energy consumption, production, fuel consumption, and methane (CH4) emissions. LCI results showed that the contribution of the baseline scenario to the global warming potential as CO2 equivalents was a maximum of 838,116 tons. The sixth scenario had a maximum reduction of GHG emissions in terms of CO2 equivalents of -33,773 tons, but the most workable scenario for the current situation in the study area is scenario 5. It saves 25% in CO2 equivalents compared to the baseline scenario.  相似文献   

11.
This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving.  相似文献   

12.
A number of LCA-based studies have reported on the environmental performance of landfilling of mixed waste, but little is known about the relative contributions of individual waste fractions to the overall impact potentials estimated for the mixed waste. In this paper, an empirical model has been used to estimate the emissions to the environment from landfilling of individual waste fractions. By means of the LCA-model EASEWASTE, the emissions estimated have been used to quantify how much of the overall impact potential for each impact category is to be attributed to the individual waste fractions. Impact potentials are estimated for 1 tonne of mixed waste disposed off in a conventional landfill with bottom liner, leachate collection and treatment and gas collection and utilization for electricity generation. All the environmental aspects are accounted for 100 years after disposal and several impact categories have been considered, including standard categories, toxicity-related categories and groundwater contamination.Amongst the standard and toxicity-related categories, the highest potential impact is estimated for human toxicity via soil (HTs; 12 mPE/tonne). This is mostly caused by leaching of heavy metals from ashes (e.g. residues from roads cleaning and vacuum cleaning bags), batteries, paper and metals. On the other hand, substantial net environmental savings are estimated for the categories Global Warming (GW; ?31 mPE/tonne) and Eco-Toxicity in water chronic (ETwc; ?53 mPE/tonne). These savings are mostly determined by the waste fractions characterized by a high content of biogenic carbon (paper, organics, other combustible waste). These savings are due to emissions from energy generation avoided by landfill gas utilization, and by the storage of biogenic carbon in the landfill due to incomplete waste degradation.  相似文献   

13.
This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.  相似文献   

14.
European waste legislation has been encouraging for years the incorporation of selective collection systems for the biowaste fraction. European countries are therefore incorporating it into their current municipal solid waste management (MSWM) systems. However, this incorporation involves changes in the current waste management habits of households. In this paper, the attitude of the public towards the incorporation of selective collection of biowaste into an existing MSWM system in a Spanish municipality is analysed. A semi-structured telephone interview was used to obtain information regarding aspects such as: level of participation in current waste collection systems, willingness to participate in selective collection of biowaste, reasons and barriers that affect participation, willingness to pay for the incorporation of the selective collection of biowaste and the socioeconomic characteristics of citizens who are willing to participate and pay for selective collection of biowaste. The results showed that approximately 81% of the respondents were willing to participate in selective collection of biowaste. This percentage would increase until 89% if the Town Council provided specific waste bins and bags, since the main barrier to participate in the new selective collection system is the need to use specific waste bin and bags for the separation of biowaste. A logit response model was applied to estimate the average willingness to pay, obtaining an estimated mean of 7.5% on top of the current waste management annual tax. The relationship of willingness to participate and willingness to pay for the implementation of this new selective collection with the socioeconomic variables (age, gender, size of the household, work, education and income) was analysed. Chi-square independence tests and binary logistic regression was used for willingness to participate, not being obtained any significant relationship. Chi-square independence tests, ordinal logistic regression and ordinary linear regression was applied for willingness to pay, obtaining statistically significant relationship for most of the socioeconomic variables.  相似文献   

15.
Four systems for household food waste collection are compared in relation the environmental impact categories eutrophication potential, acidification potential, global warming potential as well as energy use. Also, a hotspot analysis is performed in order to suggest improvements in each of the compared collection systems. Separate collection of household food waste in paper bags (with and without drying prior to collection) with use of kitchen grinders and with use of vacuum system in kitchen sinks were compared. In all cases, food waste was used for anaerobic digestion with energy and nutrient recovery in all cases. Compared systems all resulted in net avoidance of assessed environmental impact categories; eutrophication potential (-0.1 to -2.4kg NO(3)(-)eq/ton food waste), acidification potential (-0.4 to -1.0kg SO(2)(-)eq/ton food waste), global warming potential (-790 to -960kg CO(2)(-)eq/ton food waste) and primary energy use (-1.7 to -3.6GJ/ton food waste). Collection with vacuum system results in the largest net avoidence of primary energy use, while disposal of food waste in paper bags for decentralized drying before collection result in a larger net avoidence of global warming, eutrophication and acidification. However, both these systems not have been taken into use in large scale systems yet and further investigations are needed in order to confirm the outcomes from the comparison. Ranking of scenarios differ largely if considering only emissions in the foreground system, indicating the importance of taking also downstream emissions into consideration when comparing different collection systems. The hot spot identification shows that losses of organic matter in mechanical pretreatment as well as tank connected food waste disposal systems and energy in drying and vacuum systems reply to the largest impact on the results in each system respectively.  相似文献   

16.
In the present paper, a new system of purpose built landfill (PBLF) has been proposed for the control of methane emissions from municipal solid waste (MSW), by considering all favourable conditions for improved methane generation in tropical climates. Based on certain theoretical considerations multivariate functional models (MFMs) are developed to estimate methane mitigation and energy generating potential of the proposed system. Comparison was made between the existing waste management system and proposed PBLF system. It has been found that the proposed methodology not only controlled methane emissions to the atmosphere but also could yield considerable energy in terms of landfill gas (LFG). Economic feasibility of the proposed system has been tested by comparing unit cost of waste disposal in conventional as well as PBLF systems. In a case study of MSW management in Mumbai (INDIA), it was found that the unit cost of waste disposal with PBLF system is seven times lesser than that of the conventional waste management system. The proposed system showed promising energy generation potential with production of methane worth of Rs. 244 millions/y ($5.2 million/y). Thus, the new waste management methodology could give an adaptable solution for the conflict between development, environmental degradation and natural resources depletion.  相似文献   

17.
Environmental impacts and gaseous emissions associated to home and industrial composting of the source-separated organic fraction of municipal solid waste have been evaluated using the environmental tool of life cycle assessment (LCA). Experimental data of both scenarios were experimentally collected. The functional unit used was one ton of organic waste. Ammonia, methane and nitrous oxide released from home composting (HC) were more than five times higher than those of industrial composting (IC) but the latter involved within 2 and 53 times more consumption or generation of transport, energy, water, infrastructures, waste and Volatile Organic Compounds (VOCs) emissions than HC. Therefore, results indicated that IC was more impacting than HC for four of the impact categories considered (abiotic depletion, ozone layer depletion, photochemical oxidation and cumulative energy demand) and less impacting for the other three (acidification, eutrophication and global warming). Production of composting bin and gaseous emissions are the main responsible for the HC impacts, whereas for IC the main contributions come from collection and transportation of organic waste, electricity consumption, dumped waste and VOCs emission. These results suggest that HC may be an interesting alternative or complement to IC in low density areas of population.  相似文献   

18.

Bad choices in municipal waste (MW) management cause negative effects on sustainability. Evolving regulation has identified prevention and recycling as the best strategies; nevertheless, disposal in landfilling sites plays an essential role since a complete zero-waste scenario is not realistic, currently. Nowadays, policies require a preliminary waste stabilization to decrease the putrescible content. Therefore, mechanical biological treatment (MBT) has replaced the previous crushing, aimed at simple volume reduction. Literature has proved the effectiveness of MBT when MW collection system is ineffective. The present paper considered a facility in an area with a high-performance MW collection system. A long-term (1999–2019) on-site sampling allowed the comparison between two sites of the facility: the old site (before the MBT activation) and the new area, where the stabilized waste is disposed of. Monitoring of biogas, leachate (analyzed parameters: pH, BOD5, COD, ammonia-nitrogen) and odorous emissions was performed to verify the effect of the stabilization process. The considered long period and the on-site sampling support the relevance of the results, compared to the available literature, often referred to as laboratory scale. The results proved the relatively low benefit of stabilization at the considered facility, which cannot justify the energy consumption of MBT.

  相似文献   

19.
This paper provides an overview of the state of municipal solid waste (MSW) management in the capital of Cameroon, Yaoundé, and suggests some possible solutions for its improvement. The institutional, financial, and physical aspects of MSW management, as well as the livelihoods of the population, were analyzed. Our study revealed that distances and lack of infrastructure have a major impact on waste collection. Garbage bins are systematically mentioned as the primary infrastructure needed by the population in all quarters, whether it be a high or low standard community. The construction of transfer stations and the installation of garbage bins are suggested as a solution to reduce distances between households and garbage bins, thus improving waste collection vehicle accessibility. Transfer stations and garbage bins would enable the official waste collection company to expand its range of services and significantly improve waste collection rates. Several transfer stations have already been set up by non-governmental organizations (NGOs) and community-based organizations (CBOs), but they require technical, institutional and funding support. Research is needed on the quality and safety of community-made compost, as well as on soil fertility in urban and peri-urban areas. Most of the stakeholders, municipalities, the official waste collection company and households acknowledge the need for better monitoring and regulation of MSW management. The urban community of Yaoundé also needs to maintain its support of MSW management and promote the sustainability of NGOs and CBOs operating in underserved areas not yet covered by adequate infrastructures. A major opportunity for implementation of such waste policy is the heavily indebted poor countries (HIPC) program dedicated to urban planning and good governance.  相似文献   

20.
Providing good solid waste management (SWM) services while also ensuring financial sustainability of the system continues to be a major challenge in cities of developing countries. Bahir Dar in northwestern Ethiopia outsourced municipal waste services to a private waste company in 2008. While this institutional change has led to substantial improvement in the cleanliness of the city, its financial sustainability remains unclear. Is the private company able to generate sufficient revenues from their activities to offset the costs and generate some profit?This paper presents a cost-revenue analysis, based on data from July 2009 to June 2011. The analysis reveals that overall costs in Bahir Dar’s SWM system increased significantly during this period, mainly due to rising costs related to waste transportation. On the other hand, there is only one major revenue stream in place: the waste collection fee from households, commercial enterprises and institutions. As the efficiency of fee collection from households is only around 50%, the total amount of revenues are not sufficient to cover the running costs. This results in a substantial yearly deficit. The results of the research therefore show that a more detailed cost structure and cost-revenue analysis of this waste management service is important with appropriate measures, either by the privates sector itself or with the support of the local authorities, in order to enhance cost efficiency and balance the cost-revenues towards cost recovery. Delays in mitigating the evident financial deficit could else endanger the public-private partnership (PPP) and lead to failure of this setup in the medium to long term, thus also endangering the now existing improved and currently reliable service.We present four options on how financial sustainability of the SWM system in Bahir Dar might be enhanced: (i) improved fee collection efficiency by linking the fees of solid waste collection to water supply; (ii) increasing the value chain by sales of organic waste recycling products; (iii) diversifying revenue streams and financing mechanisms (polluter-pays-, cross-subsidy- and business-principles); and (iv) cost reduction and improved cost-effectiveness.We argue that in a PPP setup such as in Bahir Dar, a strong alliance between the municipality and private enterprise is important so that appropriate solutions for improved financial sustainability of a SWM system can be sought and implemented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号