首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Concentrations of Hg, Cd, Pb, Ag, Cu, Zn, Cr, Ni, Co, Mn, and Fe in soft tissues, shells and byssus of blue mussel (Mytilus edulis trossulus) from 23 sites along the Polish coast of the Baltic Sea were determined by AAS method. Byssus, as compared with the soft tissue, concentrated more effectively Pb, Cu, Cr, and especially Ag, Ni, Mn and Fe, moderately Hg and Zn and less effectively Cd. Significant inter-regional and inter-size differences in metal concentrations in both soft tissues and byssus were recorded. Highly significant correlations (P<0.01, P<0.05) were observed between tissue and byssal concentrations of Cd, Pb, Ni and Ag. Factor analysis showed clear separation of both the tissue and byssi samples based on their geographic distribution, possibly reflecting a different rate of deposition of clay minerals at the head of the Pomeranian Bay and the Gulf of Gdańsk. The Pomeranian Bay differs from the Gulf of Gdańsk in respect to geological structure of bottom sediments as a substrata for the M. edulis trossulus as well as in relation to various sources of metallic pollutants. From the data obtained in the present study and those reported previously the soft tissue and especially byssus of M. edulis, in contrast to shells, appear to be a significantly better bioindicator for identification of coastal areas exposed to metallic contaminants.  相似文献   

2.
Mussels (Mytilus galloprovincialis), clams (Venerupis decussatus) and oysters (Crassostrea gigas) were sampled seasonally during 2004-2005, from different coastal environments of Morocco in order to measure their accumulated heavy metal concentrations. The concentrations of Hg and Pb were determined by AFS and ICP-MS methods, respectively, whilst the remaining metals (Cd, Cr, Cu, Mn, Zn and Ni) were quantified by AAS. The soft tissue concentrations of the mussels were on average 7.2 mg kg(-1) (Cd), 9.6 mg kg(-1) (Pb), 0.6 mg kg(-1) (Hg), 26.8 mg kg(-1) (Cu), 8.8 mg kg(-1) (Cr), 292 mg kg(-1) (Zn), 20.8 mg kg(-1) (Mn) and 32.8 mg kg(-1) (Ni). The highest tissue heavy metal concentrations were recorded in the south from the industrial area of Jorf Lasfar. The relationships between metal concentration and season in each species showed very similar annual profiles with a peak observed around spring-summer. Statistical analysis indicated that different species showed different bioaccumulation of metals depending on study site and season.  相似文献   

3.
Larner BL  Seen AJ  Snape I 《Chemosphere》2006,65(5):811-820
This work has been the first application of DGT samplers for measuring metals in water and sediment porewater in the Antarctic environment, and whilst DGT water sampling was restricted to quantification of Cd, Fe and Ni, preconcentration using Empore chelating disks provided results for an additional nine elements (Sn, Pb, Al, Cr, Mn, Co, Cu, Zn, As). Although higher concentrations were measured for some metals (Cd, Ni, Pb) using the Empore technique, most likely due to particulate-bound or colloidal species becoming entrapped in the Empore chelating disks, heavy metal concentrations in the impacted Brown Bay were found to be comparable with the non-impacted O'Brien Bay. Sediment porewater sampling using DGT also indicated little difference between Brown Bay and O'Brien Bay for many metals (Cd, Al, Cr, Co, Ni, Cu), however, greater amounts of Pb, Mn, Fe and As were accumulated in DGT probes deployed in Brown Bay compared with O'Brien Bay, and a higher accumulation of Sn was observed in Brown Bay inner than any of the other three sites sampled. Comparison of DGT derived porewater concentrations with actual porewater concentrations showed limited resupply of Cd, Pb, Al, Cr, Mn, Co, Ni, Cu, Zn and As from the solid phase to porewater, with these metals appearing to be strongly bound to the sediment, however, resupply of Fe and Sn was apparent. Based upon our observations here, we suggest that Sn, and to a lesser extent Pb, are critical contaminants.  相似文献   

4.
Zhou JL  Liu YP  Abrahams PW 《Chemosphere》2003,51(5):429-440
The distribution of trace metals Zn, Ni, Mn, Fe, Cu, Pb, Cd and Cr between suspended particulate matter (SPM) and water in the Conwy estuary, North Wales, has been studied in three surveys in 1998. Dissolved Cu and Mn showed some monthly variations. Most of the dissolved trace metals displayed a negative association with salinity, indicating rivers as a major source of inputs for them. Particulate Zn, Mn and Fe showed a decreasing concentration seaward, whilst the levels of Ni, Cu, Cr and Pb increased with salinity. SPM concentration was the most important variable significantly related to trace metal concentrations in SPM, with an inverse relationship between the two parameters. This was explained by the relative enrichment of trace metals in fine particles at low SPM concentrations and relative depletion of trace metals in coarse particles at high SPM concentrations. Particulate Zn, Mn and Pb were dominated by the fraction available to acetic acid (non-detrital), whilst particulate Ni, Fe and Cr were dominated by the fraction available to nitric acid (detrital). The partition coefficient of trace metals between SPM and water declined with increasing SPM concentration, consistent with the so-called "particle concentration effect". Such a phenomenon may be explained by the presence of fine particles (including colloids) enriched with trace metals at low SPM concentrations, and the salinity-induced desorption.  相似文献   

5.
The potential of Corbicula fluminea (Müller) as an indicator for trace metal pollution was investigated. Laboratory experiments show that Corbicula has the capability to accumulate and eliminate trace metals in relation to their concentrations in ambient water. However, an effect of individual size was observed. Seasonal variations in the concentrations of Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn in Corbicula, water and particulate matter from the upper section of the Shatt al-Arab River were studied. Sediment samples were also analysed. Metal concentrations were determined by means of flameless AAS. It was found that Corbicula is a suitable bio-indicator for monitoring of trace metal pollution. Metal concentrations in Corbicula tissues correlated better with their corresponding concentrations in particulate matter than with the dissolved form. Temporal variations in metal concentrations were attributed to several factors, including fluctuations in metal inputs, and in geochemical and hydrological characteristics of the water. The obtained levels of trace metals were comparable to those reported for control sites, with the exception of Cd, Cu and Zn whose concentrations were higher in both Corbicula and particulate matter.  相似文献   

6.
Concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the soft tissue of Crassostrea iridescens and the associated surface sediments (bulk and bioavailable metal concentrations) from an area influenced by a sewage outfall in Mazatlán Bay (southeast Gulf of California), were determined by atomic absorption spectrophotometry. Significant spatial differences in metal concentrations in both the bulk and bioavailable forms in the sediments were identified. An enrichment of Cu, Ni, Pb and Zn in sites located on a south-north transect was detected indicating a dominant influence of the sewage outfall toward the north. C. iridescens accumulated more Zn, Cu, Ni, Fe, Cd; and less Mn, Cr and Pb than were bioavailable in the sediments, as measured using conventional extraction analysis. The degree of enrichment and the bioavailable metal concentrations in the sediments of the south portion of Mazatlán Bay is discussed. The potential ability of C. iridescens as a biomonitor of metallic pollutants is postulated.  相似文献   

7.
Trace metals were examined in the muscle tissue of flatfish species of flounder, Platichthys flesus (Linnaeus, 1758), sediments from two southern Baltic Sea sites (Gdańsk Bay and Ustecko-?ebskie as a reference) and in two areas of the Portuguese Atlantic coast (Douro River estuary and Atlantic fishing ground as a reference) to evaluate spatial differences in trace metals. Additionally, the accumulation of trace metals in flounder of different length classes was assessed. Flounder from the Gdańsk Bay area contained twofold more cupper (Cu), lead (Pb) and mercury (Hg) than did flounder from the Douro River estuary, but zinc (Zn) and cadmium (Cd) were at similar concentrations. The sediments from Gdańsk Bay contained significantly more Zn and threefold more Cd, while concentrations of Cu and Pb were twofold lower. The concentrations of metals in the sediments did not correlate with those in the flounder. Spatial differences were noted in metal concentrations in flounder from the southern Baltic Sea and the Portuguese Atlantic coast as well as within these regions, with higher concentrations in the flounder from the Baltic Sea Gdańsk Bay. The flounder in length class 25–30 cm from Gdańsk Bay contained metal concentrations comparable to those of class 40–45 cm specimens from the Atlantic coast. The accumulation of metals in flounder length classes differed in the two regions.  相似文献   

8.
Concentration of ten metals (Cd, Cr, Co, Cu, Fe, Li, Mn, Ni, Pb and Zn) were analyzed in the egg contents, prey and soil samples of little egret (Egretta garzetta) and cattle egret (Bubulcus ibis) from two Headworks to determine habitat and species-specific differences; to assess the importance of prey and habitat contamination as an exposure source for heavy metals. Concentration of Cu, Mn, Cr and Pb in egg contents, Fe, Co, Cu, Mn, Zn in prey and Fe, Co, Cu, Ni, Li in surface soils were significantly different (P < 0.05). Mean metal concentrations of Cr, Pb and Cd were relatively higher in little egret whereas Cu and Mn were higher in the egg contents of cattle egret. The mean concentrations of Cu, Mn and Zn were higher in prey samples of cattle egrets and Cr, Cd and Pb in prey samples of little egrets. In soil samples collected from little egret heronries metal concentrations were higher except Cu and Ni. Correlation Analysis and Hierarchical Agglomerative Cluster Analysis (HACA) identified relatively similar associations of metals and their source identification. Metals such as Fe, Cu, Mn, and Li were related with geochemical origin from parent rock material as well as anthropogenic input whereas Cr, Cd, Pb, Ni, Co and Zn were associated mostly with anthropogenic activities. The study suggested that eggs are useful bio-monitor of local heavy metal contamination.  相似文献   

9.
Zinc, Cu, Cd, Pb, Ag, Ni, Co, Cr, Fe and Mn concentrations in some tissues of crabeater seal (Lobodon carcinophagus), leopard seal (Hydrurga leptonyx) and Weddell seal (Leptonychotes weddelli) from the Antarctic were determined. Distinct inter-tissue differences in metal concentrations in seals were observed; liver contained maximum levels of Zn, Cu, Ag and Mn, whilst kidney showed the highest levels of Cd, Ni and Co. Muscle was characterized by low concentrations of all the elements analyzed. The metal concentrations in the vertebrates analyzed were compared with those for organisms originating from various aquatic areas. Significant correlations were found between the levels of several of the metals analyzed, e.g. between renal and hepatic concentrations of Zn and Cd. Strong relationships between the hepatic concentrations of some metals were found, e.g. Cd-Zn. These two metals also showed a significant coassociation in their renal concentrations. The slope of the regression line for renal Cd/Zn was about three times higher than the hepatic one and this may reflect a relatively high Cd exposure, probably from specific food (squid and krill) provenance, of the seals analyzed.  相似文献   

10.
Mussels are commonly used to monitor metal pollution despite high inter-individual variability in tissue concentrations. In this study, influences of body size, condition index and tidal height on concentrations of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were investigated. Body weight was inversely related to metal concentrations and for Cd, Mn, Pb and Zn the regression was affected by tidal height. Except for As, Fe and Mn metal concentrations were inversely related to physiological status though no differences between essential and non-essential metals were obvious. After correcting for body size, tidal height was related positively to As, Cd and Zn, negatively related to Cu, Fe and Mn while Co, Cr, Ni and Pb were independent of tidal height. The study recommends stringent measures during sampling for biomonitoring or metal concentrations at each location must be normalized to a common body size, CI and tidal height.  相似文献   

11.
Accumulation of Zn, Cu, Pb and Cd was studied in snails fed for 120 days on diets contaminated with each metal separately and with all metals mixed together. The concentrations of Zn in food were in the range 39 to 12 200 mg kg(-1), Cu 9-1640 mg kg(-1), Pb 0.4-12 700 mg kg(-1), and Cd 0.16-146 mg kg(-1) on a dry weight basis. At the highest concentrations of all metals the consumption rates decreased significantly. For the remaining concentrations, Zn and Cu were accumulated in soft tissue in proportion to their concentrations in food. The lowest treatments of Pb and Cd did not cause any increase in soft tissue concentrations of these metals but at average treatments, a clear increase was observed. Copper was accumulated especially efficiently, exceeding concentrations in food throughout the whole range of treatments. Except for the lower end of experimental treatments, Zn was accumulated approximately in direct proportion to its concentration in the diet. Lead was the most efficiently regulated metal, with soft tissue concentrations always substantially lower than in food. Approximately 60% of Zn, 90% of Cu, 43% of Pb and 68% of Cd on average was assimilated from food. The assimilation efficiency of food alone was ca 74%. The concentrations of metals in shells increased significantly with exposure, but (with one exception) the concentrations in shells did not exceed 5% of those found in soft tissue. We argue that snails are more important as agents of food-chain transport of Cu and Cd, than of Zn or Pb. Our results indicate also that snails are not able to deposit significant quantities of metals in their shells, at least during the time scale of our laboratory experiment.  相似文献   

12.
The objectives of this investigation were to examine the long-term residual effects of metal loading through sewage sludge applications on the total vs. diethylene triamine pentacetic acid (DTPA) extractable metal concentrations in soil and leaf accumulations in tobacco. Maryland tobacco (Nicotiana tabacum L.), cv. 'MD 609', was grown in 1983 and 1984 at two sites in Maryland that had been amended in 1972 with dewatered, digested sewage sludge from washington, DC, at rates equal to 0, 56, 112 and 224 mg ha(-1). The metal concentrations in the sludge, in mg kg(-1) dry weight, were: 1300 Zn, 570 Cu, 280 Pb, 45 Ni and 13 Cd. Soil samples collected from the surface horizon and composite leaf samples of cured tobacco were analyzed for total Zn, Cu, Mn, Fe, Pb, Ni and Cd concentrations. The soil samples were also examined for soil pH and DTPA extractable metals. Equations were generated using polynomic and stepwise regression analyses which described the relationships between total vs. DTPA extractable soil metals, and between DTPA soil and soil pH vs. plant metal concentrations, respectively. Significant increases were observed for both total and DTPA extractable metal concentrations for all metals, with all but total Mn and Ni being significant for linear and quadratic effects regarding sludge rates. However, linear relationships were found between DTPA extractable vs. total soil concentrations for all elements except Pb and Ni which were quadratic. Significant increases in plant Zn, Cu, Mn, Ni and Cd and decreases in Fe were observed with increased sludge rates. Plant Pb levels were unaffected by sludge applied Pb. Linear relationships were observed between plant Zn and Cd and DTPA soil metal levels: however, Mn and Cu levels were described by quadratic and cubic relationship, respectively. Relationships between plant Fe and Pb and DTPA extractable concentrations were nonsignificant. Additional safeguards to protect crop contamination from heavy metals such as Cd were discussed.  相似文献   

13.
We examined the concentrations of 11 trace metals in tissues from 10 body parts of Great Tits and Greenfinches collected at Badachu Park in the Western Mountains of Beijing, China to assess the metal accumulation level, distribution among body parts, and species and gender related variations. The highest concentrations of Hg, Ni, Zn, and Mn were found in the feather; Pb and Co in the bone; Cd, Cr, and Se in the kidney, and Cu in the liver and heart. Metal concentrations had substantial interspecific variation with Great Tits showing higher levels of Hg, Cr, Ni, and Mn than Greenfinches in tissues of most body parts. Gender related variations were body part and species specific. Meta-analyses using data from this study and other studies suggested that metal concentrations of Great Tits at our study site were relatively low and below the toxic levels.  相似文献   

14.
The concentrations of Cd, Co, Cu, Ni, Pb, Zn, Fe and Mn in different inorganic fertilizers (urea, calcium superphosphate, iron sulphate and copper sulphate) and in pesticides (two herbicides and one fungicide) are evaluated together with the contribution of these metals in soils from their use. The study was made in rice farming areas to the north of Albufera Natural Park (Valencia, Spain). The results obtained show that superphosphate is the fertilizer that contains the highest concentrations of Cd, Co, Cu and Zn as impurities. Copper sulphate and iron sulphate have the most significant concentrations of Pb, and are the only fertilizers in which Ni was detected. The three pesticides analysed show similar Cd contents and the highest levels of Fe, Mn, Zn, Pb and Ni are found in the herbicides. The most significant additions of heavy metals as impurities that soil receives from agricultural practices, are Mn, Zn, Co and Pb. Three contamination indexes have been applied to provide a basis for comparison of potential heavy metal toxicity. These results denote the potential toxicity of heavy metals in the studied soils.  相似文献   

15.
It is a great challenge to sample seawater across interfaces, for example the halocline or the redoxcline, to investigate trace metal distribution. With the use of 10l sampling bottles mounted to a wire or a CTD-Rosette it is possible to obtain a maximum vertical resolution of 5m. For the detection of small vertical structures in the vertical distribution of trace metals across the redoxcline, the CTD-Bottle-Rosette is not sufficient. Therefore, a PUMP-CTD-System was developed, which enables water sampling with high resolution (1m maximum) along a vertical profile. To investigate the suitability and possible contamination sources of this device two experiments were carried out in the Gotland Basin. The first experiment consisted of two separate profiles. The first profile was obtained with the CTD-Bottle-Rosette and the second with the PUMP-CTD-System. Both were taken from the bottom to the surface water layer. The second experiment was a combined profile obtained from the surface to the bottom with the PUMP-CTD-System attached to the CTD-Bottle-Rosette. Concentrations of dissolved Pb, Cd, Cu, Zn, Fe, Mn, Co and Ni from the "Niskin Bottles" and from the PUMP were measured and compared for each investigation. We demonstrate that it is useful to perform vertical sampling from lower to higher concentrations, e.g. surface to bottom in this environment, and that a longer flushing is required for sampling seawater in the anoxic bottom water. A comparison of the two systems for oxygen and hydrogen sulphide measurements showed an improvement of the precision and the quality of the sampling when using the PUMP. Thus, metal speciation at the oxic-anoxic gradient zone and on a high vertical resolution will be accessible. As concentrations of dissolved Pb, Cd, Cu, Zn, Co, Ni, Fe and Mn in seawater sampled with both devices were in the same range, we conclude that the PUMP-CTD-System is well suited to sample seawater for trace metal analyses.  相似文献   

16.
Zebra and quagga mussels were collected from Lakes Erie and Ontario in 1997 and the soft mussel tissues were analyzed for Ca, Cd, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, Se, Sr, V and Zn. No consistent relationships were apparent when comparing element concentrations in soft mussel tissues and mussel type, size range or sampling location. Literature dealing with the absorption of metals by both mussel types is reviewed.  相似文献   

17.
The concentrations of metals in the buried marine sediment and groundwater were differently affected by land reclamation. Nine metals (V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) in sediment and coastal groundwater from reclamation areas in Shenzhen were examined. The gradually decreased concentrations (V, Cr, Mn, Ni, Cu, Zn) in sediment and relatively higher concentrations (V, Cr, Mn, Co, Ni, Cu and Cd) in groundwater within reclamation areas were observed. The increase of V, Cr, Mn, Ni, Cu and Cd concentrations in groundwater within reclamation areas subsequently after land reclamation should be resulted from the mobilization of these metals accumulated in the sediment. These metals appear to be easily mobilized from solid phase to solution phase after reclamation. The physico-chemical changes such as reduction in pH and salinity in water environment induced by land reclamation appear to be responsible for metal mobility in the sediment-groundwater system.  相似文献   

18.
Larner BL  Seen AJ  Palmer AS  Snape I 《Chemosphere》2007,67(10):1967-1974
Previous studies of impacted sites near Casey Station, Antarctica, have revealed elevated concentrations of metals and metalloids, particularly Cd, Cu, Fe, Pb, Sn and Zn in marine sediments. However, attempts to understand the availability and mobility of contaminant elements have not provided a true understanding of speciation. The current work shows, for the first time, that sediments in Brown Bay, an embayment adjacent to the Thala Valley waste disposal site, have elevated concentrations of sulfide, well in excess of that required to bind contaminant metals such as Cd, Cu, Pb and Zn. Furthermore, sediment characterisation using the BCR sequential extraction scheme has shown metal partitioning consistent with sulfides being the controlling factor in metal availability, thus explaining the low porewater concentrations of these metals. The speciation of Sn in Brown Bay, however, is still unclear with the BCR sequential extraction scheme partitioning Sn predominantly into the residual fraction despite Sn being readily extracted by dilute HCl.  相似文献   

19.
The concentrations of four macroelements (C, N, P, S) and eight trace metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) were measured in the leaves and roots of the emergent plant, Phragmites communis Trin., and in the shoots and roots of the submersed Najas marina L., taken from Lake Averno (Naples, Italy). Phragmites communis leaves showed higher concentrations of carbon, nitrogen and phosphorus than roots, while the roots exhibited significantly higher concentrations of sulphur and trace metals. Najas marina roots also showed higher concentrations of sulphur and trace metals than shoots, but these differences were less marked than in Phragmites communis except for sulphur. Sulphur was the only macronutrient to show the highest concentrations in the roots. Phragmites communis roots had higher values of Cr, Cu, Fe, Mn and Ni than Najas marina roots. By contrast, Cd, Cr, Fe, Ni, Pb and Zn concentrations were higher in Najas marina shoots than in Phragmites communis leaves. Phragmites communis, available through the year, showing high capability to accumulate trace metals in the roots, appears a good monitor of lake contamination, better than Najas marina.  相似文献   

20.
Existing data on metal concentrations in mussels from subarctic, temperate, subtropical and tropical waters were analyzed using multivariate statistics in order to assess regional variations in metal contamination. Potential errors were reduced by only analyzing data from surveys that employed the same protocols, analytical methodologies and analysts. Factor analysis demonstrated that mussels inhabiting extremely contaminated areas (e.g. from Japanese and Swedish metallurgy sources) could be separated from mussels from other contaminated areas, and that metals such as Cd, Pb, Cu and Zn could be used to identify heavily contaminated samples while Co, Fe, Cr and Ni concentrations were good markers for exposure to inputs from different industrial sources. Furthermore byssus, like soft tissue, selectively and sensitively reflects variations of certain metal concentrations in ambient waters and thus serves as a reliable biomonitor for these contaminants in a variety of coastal and estuarine areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号