首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Fly ash of mineral coal as ceramic tiles raw material   总被引:1,自引:0,他引:1  
The aim of this work was to evaluate the use of mineral coal fly ash as a raw material in the production of ceramic tiles. The samples of fly ash came from Capivari de Baixo, a city situated in the Brazilian Federal State of Santa Catarina. The fly ash and the raw materials were characterized regarding their physical chemical properties, and, based on these results; batches containing fly ash and typical raw materials for ceramic tiles were prepared. The fly ash content in the batches varied between 20 and 80 wt%. Specimens were molded using a uniaxial hydraulic press and were fired. All batches containing ash up to 60 wt% present adequate properties to be classified as several kinds of products in the ISO 13006 standard () regarding its different absorption groups (pressed). The results obtained indicate that fly ash, when mixed with traditional raw materials, has the necessary requirements to be used as a raw material for production of ceramic tiles.  相似文献   

2.
This research was conducted to compare geopolymers made from fly ash and ground bottom ash. Sodium hydroxide (NaOH) and sodium silicate (Na(2)SiO(3)) solutions were used as activators. A mass ratio of 1.5 Na(2)SiO(3)/NaOH and three concentrations of NaOH (5, 10, and 15M) were used; the geopolymers were cured at 65 degrees C for 48 h. A Fourier transform infrared spectrometer (FT-IR), differential scanning calorimeter (DSC), and scanning electron microscope (SEM) were used on the geopolymer pastes. Geopolymer mortars were also prepared in order to investigate compressive strength. The results show that both fly ash and bottom ash can be utilized as source materials for the production of geopolymers. The properties of the geopolymers are dependent on source materials and the NaOH concentration. Fly ash is more reactive and produces a higher degree of geopolymerization in comparison with bottom ash. The moderate NaOH concentration of 10 M is found to be suitable and gives fly ash and bottom ash geopolymer mortars with compressive strengths of 35 and 18 MPa.  相似文献   

3.
Hydrogen generation from municipal solid waste incineration fly ash was investigated to understand the influences of contacting method, kinds of contact solution, liquid to solid ratio, and particle size distribution of materials. Redox properties of materials and hydrogen generation were also studied. The largest quantity of gas generated in contact with water was 29.1 ml/g-ash, most of which was hydrogen. Fluidized bed fly ash generated more gas than stoker fly ash. In order to calculate the hydrogen generation potential (the maximum quantity of gas generated in contact with water), a novel system using a Y-shaped test tube and NaOH was utilized. This method gives values which are related to the quantity of generated gas in contact with water. A relationship between the aluminum content and hydrogen generation potential was observed, especially for fluidized bed fly ash. The reducing potential of fluidized bed fly ash was higher than that of stoker fly ash. Only fluidized bed fly ash showed a positive correlation between aluminum content and reducing potential, and between reducing potential and hydrogen generation potential. These results suggest that fluidized bed fly ash contains more Al0 than stoker fly ash. Received: September 11, 1998 / Accepted: March 19, 1999  相似文献   

4.
By 2004, there were 19 municipal solid waste incinerators (MSWI) with a total yearly treatment capacity of 7.72 million tons in service in Taiwan. All 19 incinerators operated daily to generate about 1.05 million tons of incinerator ash, including bottom ash and stabilized fly ash in 2003, and the average ash yield is 18.67%. The total number of incinerators is expected to increase to 27, serving almost all cities in Taiwan by 2007. The authors have suggested a set of criteria based on the yield of incinerator ash (Phi) to study the ash recycle and reuse potential. The Taiwan Environmental Protection Administration has studied the treatment and reuse of MSWI ashes for many years and collected references on international experience accumulated by developed nations for establishing policies on treatment and reuse of MSWI ashes. These citations were analyzed as the basis for current governmental decision making on policies and factors to be considered for establishing policies on recycle and reuse of MSWI ashes. Feasible applications include utilization of ashes, which after sieving and separation of metal particles, produce granular materials. When granular materials comply with TCLP limitations, they can be utilized as cement additives or road base. The procedures of evaluation have been proposed in the performance criteria to be included in the proposed decision-making process of ash utilization.  相似文献   

5.
The insulation material of electronic devices should offers high thermal conductivity whilst retaining suitable mechanical properties. Epoxy resin is an example of a material that is commonly used by industry for electronic insulation, despite the fact that neither the thermal conductivity nor the mechanical properties are particularly satisfying. These properties can be enhanced by incorporating filler, with silica flour representing the most popular filler. An economically appealing solution is to replace silica flour with fly ash as filler material, however it must be remembered that compatibility of fly ash and epoxy resin is not ideal. In order to improve the coupling between these two materials, fly ash particles covered with [3-(2-Aminoethylamino)propyl]trimethoxysilane were obtained with six different conditions of the silanization process, where the amount of silane, the temperature and the time of the reaction were changed. The presence of the silane layer was confirmed via Fourier Transform Infrared Spectroscopy, Thermogravimetric Analysis and Scanning Electron Microscopy. The mechanical properties, including tensile strength, Young Modulus and fracture toughness, as well as the thermal conductivity of the final samples were investigated. In the case of composites with silanized fillers, all of the mechanical properties were improved, and an enhancement of thermal conductivity was observed for several composites. Moreover, the differences in coupling between the silanized fly ash and the untreated fly ash, and the epoxy matrix were precisely recorded by means of SEM. The presented studies confirm that an effective silanization process can significantly improve the properties of composites, while also verifying the usefulness of waste material. The results highlight that fly ash may be utilized to create a more economically affordable insulation material.  相似文献   

6.
Stabilization/solidification (S/S) processes have been used as the final treatment step for hazardous wastes prior to land disposal. Fly ash is a by-product of coal-fired power generation; a significant proportion of this material is low-grade, reject material (rFA) that is unsuitable as a cement replacement due to its high carbon content and large particle size (>45 microm). Flue gas desulphurization (FGD) sludge is a by-product from the air pollution control systems used in coal-fired power plants. The objective of this work was to investigate the performance of S/S waste binder systems containing these two waste materials (rFA and FGD). Strength tests show that cement-based waste forms with rFA and FGD replacement were suitable for disposal in landfills. The addition of an appropriate quantity of Ca(OH)2 and FGD reduces the deleterious effect of heavy metals on strength development. Results of TCLP testing and the progressive TCLP test show that cement-rFA-Ca(OH)2 systems with a range of FGD additions can form an effective S/S binder. The Leachability Index indicates that cement-based waste forms with rFA replacement were effective in reducing the mobility of heavy metals.  相似文献   

7.
As the construction industry continues to recognise the importance of sustainable development, technologies such as controlled low-strength material (CLSM) have come to the forefront as viable means of safely and efficiently using by-product and waste materials in infrastructure applications. CLSM, also known as flowable fill, can be defined as an engineered backfill material containing fine aggregates, Portland cement, water and a by-product material. CLSM can provide an economically and technically feasible alternative to conventional fill materials because of potential cost savings related to its unique and often superior technical properties. In this present experimental study, three industrial by-products, namely fly ash (FA), rice husk ash (RHA) and quarry dust (QD), were used as constituent materials in CLSM. Mixture proportions were developed for CLSM containing these industrial by-products and were tested in the laboratory for various properties, such as flowability, unconfined compressive strength (UCS), stress-strain behaviour, density, water absorption and volume changes. Comparison between the two pozzolanic materials, namely FA and RHA, for their potential to produce an effective CLSM has been made. It can be observed from the results that by-product materials such as FA, RHA and QD can be successfully used in CLSM. This successful utilization of by-product materials is important to sustainable development and is the focus of this research.  相似文献   

8.
Coal-burning power plants in the United States (US) generate more than 70 million tons of fly ash as a by-product annually. Recycling large volumes of fly ash in geotechnical applications may offer an attractive alternative to the disposal problem as most of it is currently dumped in ponds or landfills. Class-F fly ash, resulting from burning of bituminous or anthracite coals, is the most common type of fly ash in the US. In the present study, the mechanical characteristics (compaction response, compressibility, and shear strength) of class-F fly ash were investigated by performing various laboratory tests (compaction test, one-dimensional compression test, direct shear test and consolidated-drained triaxial compression test) on fly ash samples collected from three power plants in the state of Indiana (US). Test results have shown that despite some morphological differences, class-F fly ash exhibits mechanical properties that are, in general, comparable to those observed in natural sandy soils.  相似文献   

9.
A study of disposed fly ash from landfill to replace Portland cement   总被引:1,自引:0,他引:1  
The landfills of fly ash are the problem of all power plants because this disposed fly ash is not used in any work. This research studies the potential of using disposed fly ashes which have disposal time of 6-24 months from the landfill of Mae Moh power plants in Thailand to replace Portland cement type I. Median particle sizes of disposed fly ashes between 55.4 and 99.3 microm were ground to reduce the sizes to about 7.1-8.4 microm. Both original and ground disposed fly ashes were investigated on physical and chemical properties. Compressive strengths of disposed fly ash mortars were determined when Portland cement type I was replaced by disposed fly ashes at the rate of 10%, 20%, and 30% by weight of cementitious material (Portland cement type I and disposed fly ash). The results presented that most particles of original disposed fly ashes were solid and sphere with some irregular shape while those of ground disposed fly ashes were solid and irregular shape. CaO and LOI contents of disposed fly ashes with different disposal times had high variation. The compressive strengths of original disposed fly ash mortars were low but those of ground disposed fly ash mortars at the age of 7 days were higher than 75% of the standard mortar and increased to be higher than 100% after 60 days. From the results, it could be concluded that ground disposed fly ashes were excellent pozzolanic materials and could be used as a partial replacement of cement in concrete, even though they were exposed to the weather for 24 months.  相似文献   

10.
This paper evaluates the use of waste products such as silica fume and fly ash in modification of the granular soils in order to remove some environmental problems and create new useful findings in the field of engineering. It is known that silica fume and fly ash, as well as clay material, are used in geotechnical engineering because of their pozzolanic reactivity and fineness to improve the soil properties needed with respect to engineering purposes. The main objective of this research project was to investigate the use of these materials in geotechnical engineering and to improve the hydraulic properties of soils by means of grouting. For this reason, firstly, suitable grouts in suspension forms were prepared by using silica fume, fly ash, clay and cement in different percentages. The properties of these cement-based grouts were then determined to obtain the desired optimum values for grouting. After that, these grouts were penetrated into the soil samples under pressure. The experimental work indicates that these waste materials and clay improved the physical properties and the fluidity of the cement-based grouts and they also decreased the hydraulic conductivity of the grouted soil samples by sealing the voids of the soil. The results of this study have important findings concerning the use of these materials in soil treatment and the improvement of hydraulic conductivity of the soils.  相似文献   

11.
Fly ash is a solid waste generated in huge quantities from coal fired thermal power stations during the combustion of coal. In India, less than half of this is used as a raw material for concrete manufacturing and construction; the remaining is directly dumped on land side as land fill or simply piled up. Only a small fraction of it is used in development of high valued product. Due to environmental regulations, new ways of utilizing fly ash are being explored in order to safeguard the environment and provide useful ways for its utilization and disposal. With its richness in various metal oxides, it has tremendous potential to be utilized as a filler material in polymer composites. These days glass reinforced polyester composites find widespread application in erosive environment due to several advantages like high wear resistance, strength-to-weight ratio, and low cost. The cost of the composites can be further brought down using cheaper filler materials. To this end, this work uses fly ash in composite making and thereby suggests a new way of better utility of this industrial waste. It includes the processing, characterization and study of the erosion behavior of a class of such fly ash filled polyester-glass fiber composites. The engineering application of composites demands that it should have high wear resistance, low density and high tensile strength. In order to assess the behavior of composites satisfying multiple performance measures, a grey-based Taguchi approach has been adopted. After thorough analysis of factors, optimal factor settings have been suggested to improve multiple responses viz., erosive wear rate, density, flexural strength and tensile strength. This technique eliminates the need for repeated experiments; thus saves time and material. The systematic experimentation leads to determination of significant process parameters and material variables that predominantly influence the multiple responses.  相似文献   

12.
Use of rubber and bentonite added fly ash as a liner material   总被引:6,自引:0,他引:6  
In many countries regulations require all hazardous waste disposal facilities to be lined with suitable impermeable barriers to protect against contamination. In this study, a series of laboratory tests on rubber and bentonite added fly ash were conducted. The aim of the tests was to evaluate the feasibility of utilizing fly ash, rubber and bentonite as a low hydraulic conductivity liner material. Type C fly ash was obtained from Soma thermal power plant in Turkey; rubber in pulverized form was waste from the retreading industry. To investigate the properties of rubber and bentonite added fly ash, hydraulic conductivity, leachate analysis, unconfined compression, split tensile strength, one-dimensional consolidation, swell and freeze/thaw cycle tests were performed. The overall evaluation of results have revealed that rubber and bentonite added fly ash showed good promise and a candidate for construction of a liner.  相似文献   

13.
In this study, municipal solid waste incineration (MSWI) fly ash was used as a blending in making ceramic brick based on its characterization and an orthogonal test was performed to determine the optimal mixture ratio of the materials. Besides, the fired bricks made in accordance with the optimal mixture ratio were characterized for performance, phase transformation, microstructure, leaching toxicity of the heavy metals in accordance with GB/T 2542-92 (Detection methods for bricks analysis, China) and by means of XRD, SEM and leaching toxicity analysis. It was found that the optimal mixture ratio of materials (MSWI fly ash:red ceramic clay:feldspar:gang sand) was 20:60:10:10 by mass, and the optimal sintering temperature was 950 °C. Leaching results of heavy metals from sintered bricks were reduced considerably in comparison with those from green bricks prior to sintering process. The results as a whole suggested that utilization of MSWI fly ash in ceramic brick constituted a potential means of adding value.  相似文献   

14.
A step-wise treatment of Municipal Solid Waste (MSW) incinerator fly ash including washing, milling and sintering was investigated in order to manufacture ceramic materials with improved physical, mechanical and environmental properties and, possibly, to reduce the power input of the sintering process. An interpretation of the test results based on the microstructure of sintered products and sintering kinetic modeling was also attempted to identify the densification mechanisms. It was found that milling of washed fly ash represents a basic step for manufacturing high-density ceramic materials with very high compressive strengths (up to 500 N/mm2). A significant reduction in the power input of the sintering process (reduction of firing temperature from 1210 degrees C for washed fly ash to 1140 degrees C for milled-washed fly ash) is also achieved. A dense, well-sintered microstructure is formed through an intermediate-stage, liquid-phase sintering mechanism controlled by liquid-phase diffusion and grain shape accommodation. Such a microstructure is able to strongly immobilise heavy metals, thus giving good environmental properties to sintered product.  相似文献   

15.
In the present work, bottom and fly ash, generated from incinerated medical waste, was used as a raw material for the production of geopolymers. The stabilization (S/S) process studied in this paper has been evaluated by means of the leaching and mechanical properties of the S/S solids obtained. Hospital waste ash, sodium hydroxide, sodium silicate solution and metakaolin were mixed. Geopolymers were cured at 50 °C for 24 h. After a certain aging time of 7 and 28 days, the strength of the geopolymer specimens, the leachability of heavy metals and the mineralogical phase of the produced geopolymers were studied. The effects of the additions of fly ash and calcium compounds were also investigated. The results showed that hospital waste ash can be utilized as source material for the production of geopolymers. The addition of fly ash and calcium compounds considerably improves the strength of the geopolymer specimens (2–8 MPa). Finally, the solidified matrices indicated that geopolymerization process is able to reduce the amount of the heavy metals found in the leachate of the hospital waste ash.  相似文献   

16.
Fly ash is abundantly produced from thermal power plants and is considered a hazardous waste. However, in recent years, fly ash has been widely utilized in the agricultural sector as a soil modifier. It is particularly important for wasteland/mine spoil reclamation due to its ability to provide a source of plant nutrients and improve physicochemical properties of soil. Although fly ash itself contains many plant nutrients, most nutrients, including phosphorus (P), are in a bound form not easily available to plants. This study analyzed the effect of farm manure on the solubility of P from fly ash. Incubation studies were conducted to determine the effect of farm manure on P solubilization to use as a potential option for remediation. © 2007 Wiley Periodicals, Inc.  相似文献   

17.
In Finland, the new limit values for heavy metals in fertilizers used in agriculture and in forestry came into force in March 2007, and for materials used as earth construction agents, in June 2006. From the utilization point of view, it was notable that the total heavy metal concentrations (Cd, Cu, Pb, Cr, Mo, Zn, As, Ni, Ba, and Hg) in fly ash from a coal-fired power plant were lower than those limit values. The concentrations of the easily soluble elements Ca, Mg, Na, P, and Zn in the fly ash were between 3.5 and 35 times higher than those found in the coarse mineral soils of Finland. Fly ash is a potential agent for soil remediation and for improving soil fertility. If inorganic materials and by-products are utilized in earthworks, the content of harmful compounds must be low and the harmful components must be tightly bound to the matrix. Therefore, a five-stage sequential extraction procedure was used to evaluate the extractability of different elements in fly ash into the following fractions: (1) the water-soluble fraction, (2) the exchangeable fraction (CH3COOH), (3) the easily reduced fraction (NH2OH-HCl), (4) the oxidizable fraction (H2O2 + CH3COONH4), and (5) the residual fraction (HF + HNO3 + HCl).  相似文献   

18.
粉煤灰综合利用研究进展   总被引:6,自引:0,他引:6  
介绍了粉煤灰的物理化学性质。综述了粉煤灰在建材制造、建筑工程、道路工程、农业、废水处理和催化反应中的应用现状以厦未来的应用前景。  相似文献   

19.
Fire resistance recycled blocks, containing fly ash and bottom ash from coal combustion power plants with a high fire resistance, are studied in this paper by testing different compositions using Portland cement type II, sand, coarse aggregate and fly ash (up to 50% of total weight) and bottom ash (up to 30% of total weight). The fire resistance, physical-chemical (density, pH, humidity, and water absorption capacity), mechanical (compressive and flexural strength), and leaching properties are measured on blocks made with different proportions of fly ash and bottom ash. The standard fire resistance test is reproduced on 28 cm-high, 18 cm-wide and 3 cm-thick units, and is measured as the time needed to reach a temperature of 180 °C on the non-exposed surface of the blocks for the different compositions.The results show that the replacement of fine aggregate with fly ash and of coarse aggregate with bottom ash have a remarkable influence on fire resistance and cause no detriment to the mechanical properties of the product. Additionally, according to the leaching tests, no environmental problems have been detected in the product. These results lead to an analysis of the recycling possibilities of these by-products in useful construction applications for the passive protection against fire.  相似文献   

20.
探索催化双氧水氧化去除间甲酚对开发炼油厂碱渣废水处理新技术意义重大。采用钛硅分子筛催化双氧水氧化水中间甲酚,考察了反应时间、反应温度、双氧水加入量、催化剂加入量和初始溶液pH对间甲酚去除率的影响。实验结果表明:钛硅分子筛对双氧水氧化间甲酚具有显著的催化作用;在反应时间为90 min、反应温度为80 ℃、n(H2O2)∶n(间甲酚)为4、催化剂加入量为1.5 g/L、初始溶液pH为1.0~11.0的条件下,间甲酚去除率约为94%,间甲酚溶液的BOD5/COD从氧化前的0.26提高到氧化后的0.38,可生化性显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号