首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sesbania rostrata is renowned for its stem nodulation, but the role of stem nodulation in the root nodulation and adaptation of S.rostrata to Pb/Zn-enriched tailings environment has been poorly understood.We investigated the effects of inoculating (with stem nodule treatment) and non-inoculating (without stem nodule treatment) Azorhizobium caulinodans on the growth, root nodulation, and N fixation of S.rostrata grown on three different types of soil substrata: Pb/Zn tailings, garden soil amended tailings, and garden soil.The results showed that plant height, stem basal diameter, biomass, chlorophyll content, nitrogen content and N-accumulation per plant were 2.3%-4.9%, 2.2%-7.7%, 27.8%-72.2%, 17.1%-23.5%, 12.3%-34.2%, and 43.1%-131.2% higher in treatments with stem nodule than those without stem nodule for the same soil substrate, respectively.With respect to soil substrata, all the measurements had consistently higher values in tailings than in amended tailings and garden soil, indicating that the poorer the soil condition, the greater the contribution of stem nodule.In contrast, the number and fresh weight of root nodules on plants without stem nodule were 6.9-11.6 times and 5.8-29.0 times higher than those with stem nodule, respectively, especially with respect to the plants grew on Pb/Zn tailings.In general, stem nodulation favored plant growth and nitrogen fixation of S.rostrata, but suppressed root nodulation.With the ability of stem and root nodulation, S.rostrata can be used as a pioneer plant species for remediation of Pb/Zn tailings.  相似文献   

2.
Sesbania rostrata is wellknown for its stem nodulation, but the roles of stem nodulation in root nodulation and adaptation of S. rostrata to Pb/Zn-enriched tailings environment has been poorly understood. We investigated the e ects of inoculating (with stem nodule treatment) and non-inoculating (without stem nodule treatment) Azorhizobium caulinodans on the growth, root nodulation, and N fixation of S. rostrata grown on three di erent types of soil substrata: Pb/Zn tailings, garden soil amended tailings, and garden soil. The results showed that plant height, stem basal diameter, biomass, chlorophyll content, nitrogen content and N-accumulation per plant were 2.3%–4.9%, 2.2%–7.7%, 27.8%–72.2%, 17.1%–23.5%, 12.3%–34.2%, and 43.1%–131.2%, respectively, higher in treatments with stem nodule than those without stem nodule for the same soil substrate. With respect to soil substrata, all measurements had consistently higher values in tailings than in amended tailings and garden soil, indicating that the poorer the soil condition, the greater the contribution of stem nodule. In contrast, the number and fresh weight of root nodules on plants without stem nodule were 6.9–11.6 times and 5.8–29.0 times higher than those with stem nodule, respectively, especially with respect to the plants grew on Pb/Zn tailings. In general, stem nodulation favored plant growth and nitrogen fixation of S. rostrata, but suppressed root nodulation. With the ability of stem and root nodulation, S. rostrata can be used as a pioneer plant species for remediation of Pb/Zn tailings.  相似文献   

3.
选择中国南方某铀尾矿库周边2条背景剖面(B1、B2)和3条潜在污染剖面土壤剖面(S1、S2、S3),通过比较各剖面中重金属元素分布,讨论铀尾矿库土壤中外源重金属元素的污染特征、迁移行为.研究表明:(1)相较于背景剖面,邻近铀尾矿库周缘土壤主、微量组分呈显著外源输入特征.(2)应用主成分法分析铀尾矿库周缘土壤外源重金属元素来源,发现尾矿库是该地区土壤重金属污染的直接来源,并向周缘土壤输送As、Pb、Sb、Cd、U等重金属污染元素.(3)分析铀尾矿库周缘土壤中尾矿库源重金属元素(As、Pb、Sb、Cd、U)同主、微量组分与理化参数的关系,发现潜在污染土壤中各金属元素与LOI(烧失量)、K、P呈较密切相关,与Na、Ca、Mn、pH、Fe存在次等相关性;由重金属淋溶迁移程度可知,重金属在潜在污染剖面(S1、S2)呈显著富集特征;各重金属横向迁出特征表明,其迁移至铀尾矿库周缘土壤具有不同的迁移方式.(4)铀尾矿库周缘近源土壤(距尾矿库30m左右)As、Pb、Sb、Cd、U呈显著污染,含量远大于国家农用地土壤环境质量评价标准和所在省份土壤元素背景值,应对该尾矿库潜在风险进行及时管控.  相似文献   

4.
The potential of kenaf (Hibiscus cannabinus L.) for phytoremediation of lead (Pb) on sand tailings was investigated.A pot experiment employing factorial design with two main effects of fertilizer and lead was conducted in a nursery using sand tailings from an ex-tin mine as the growing medium.Results showed that Pb was found in the root,stem,and seed capsule of kenaf but not in the leaf.Application of organic fertilizer promoted greater biomass yield as well as higher accumulation capacity of Pb.In Pb-spike...  相似文献   

5.
A greenhouse pot experiment was conducted to evaluate the potential of selected woody plants for revegetation in copper (Cu) and lead/zinc (Pb/Zn) mine tailing areas. Five woody species (Amorpha fruticosa Linn, Vitex trifolia Linn: var. simplicifolia Cham, Glochidion puberum (Linn.) Hutch, Broussonetia papyrifera, and Styrax tonkinensis) and one herbaceous species (Sesbania cannabina Pers) were planted in Cu and Pb/Zn tailings to assess their growth, root morphology, nutrition uptake, metal accumulation, and translocation in plants. Amorpha fruticosa maintained normal growth, while the other species demonstrated stress related growth and root development. Sesbania cannabina showed the highest biomass among the plants, although it decreased by 30% in Cu tailings and 40% in Pb/Zn tailings. Calculated tolerance index (TI) values suggested that A. fruticosa, an N-fixing shrub, was the most tolerant species to both tailings (TI values 0.92–1.01), while S. cannabina had a moderate TI of 0.65–0.81 and B. papyrifera was the most sensitive species, especially to Pb/Zn tailings (TI values 0.15–0.19). Despite the high concentrations of heavy metals in the mine tailings and plants roots, only a small transfer of these elements to the aboveground parts of the woody plants was evident from the low translocation factor (TF) values. Among the woody plants, V. trifolia var. simplicifolia had the highest TF values for Zn (1.32), Cu (0.78), and Pb/Zn (0.78). The results suggested that A. fruticosa and S. cannabina, which have the highest tolerance and biomass production, respectively, demonstrated the potential for tailings revegetation in southern China.  相似文献   

6.
Responses of Sesbania rostrata and S. cannabina to Pb, Zn, Cu and Cd toxicities were assessed by a seed-suspending seedbed(SSS) approach. The results showed that the SSS approach was suitable for testing the tolerance of a plant to the stress of toxic metals. The endpoints include seed germination success, straightened radicle and hypocotyl of the seedlings from the seeds. The measurements could be done easily and accurately. It was found that the elongation of radicle was the most sensitive indicator to the stress of heavy metals among the endpoints. When exposure to lower or medium concentrations of Pb, Zn, and Cd, the development of the lateral roots were favorable. Species of S. rostrata was more tolerant than S. cannabina to the heavy metals, especially to Zn and Cd. The ED50 of Pb, Zn, Cu and Cd were 32.90, .5.32, 4.40 and 12.00 μg/ml for S. rostrata,respectively, and they were 30.11, 2.87, 4.0.5 and 4.94 μg/ml respectively for S. cannabina.  相似文献   

7.
谢天志  陈永华  苏荣葵  刘慧  姚海松 《环境科学》2022,43(10):4687-4696
植物修复是尾矿区恢复的一项生态技术,添加基质改良剂可以减轻重金属对植物的胁迫,提高修复效率.以木本植物栾树(Koelreuteria paniculata)作为供试植物,分别在100%尾矿(S)、90%的尾矿+5%蘑菇渣(SMC)+5% CaCO3(MS)和天然红壤(RS)中进行盆栽试验.探究不同处理下栾树耐受Pb和Zn的生长富集效应、微观特征变化和基质中微生物多样性变化.结果表明,改良剂的添加相比于尾矿可以显著改善尾矿基质的理化结构,显著提升栾树的生物量、株高和叶绿素含量等相关生理指标,增加栾树中积累的重金属含量.处理组MS相较于对照组RS总根长增长达到69.3%,而对照组RS平均根径相较于对照组S下降118.7%.处理组MS与对照组S相比,Pb和Zn残渣态增加266.67%,弱酸可提取态和氧化物结合态显著降低,重金属对于植株迁移活性减弱.同时,多数重金属被栾树截留在根部,其根系构型的变化表明其在面对高浓度的Pb胁迫时具有较强的适应性.透射电镜(TEM)分析表明,对照组S中较高浓度的重金属含量会破坏细胞壁结构,对植物细胞造成毒害.改良剂的添加有效缓解了重金属胁迫对栾树各组织的影响,影响微生物群落的结构,显著提高微生物丰富度和多样性,增强栾树对重金属的适应性和植物修复能力.  相似文献   

8.
Whether plant coexistence can reduce the impacts of lead (Pb) on crops in agroecosystems has not been well understood. We conducted a factorial experiment to investigate the effects of weeds coexisting with maize (Zea mays L.) on Pb accumulation in maize and soil microbes at two Pb levels (ambient and 300 mg/kg). Elevated Pb tended to increase the Pb concentration in maize and decreased soil microbial activity (indicated by the average well color development, AWCD), functional group diversity, as well as arbuscular mycorrhizal (AM) colonization and vesicle number of maize. Compared to the monoculture, weeds coexisting with maize reduced the Pb concentrations in the root, leaf, sheath and stem of maize at both seedling and mature stages. In maize-weed mixtures, soil microbial activity and functional group diversity tended to increase for both Pb treatments relative to the monoculture. Furthermore, principal component analysis revealed that the soil microbial community structure changed with the introduction of weeds. The highest Pb accumulation in weeds occurred for the elevated Pb treatment in a three species mixture. The results suggest that multiple plant species coexistence could reduce lead accumulation in crop plants and alleviate the negative impacts on soil microbes in polluted land, thereby highlighting the significance of plant diversity in agroecosystems.  相似文献   

9.
氯和磷对土壤中水溶-可交换态铅的影响   总被引:6,自引:1,他引:5  
在实验室培养条件下研究了氯离子(C1-)对含磷物质KH2PO4降低污染土壤中铅毒作用的影响.结果表明,在铅锌矿污染土壤中添加KH2P04显著降低了土壤中铅(Pb)的水溶-可交换态含量,降低幅度为92.0%-95.1%,显著降低了铅的生物有效性.数据统计分析表明, KH2PO4用量在P/Pb摩尔比为0.6时已足够修复土壤的铅毒,并且在此磷添加量水平时,加氯与不加氯比较,显著降低了土壤中Pb的水溶-可交换态含量,说明了添加氯对含磷物质降低铅毒有促进作用运.用Visual MINTEQ模型模拟计算的结果表明,添加磷和氯处理土壤后,土壤中Pb的活度主要受P的控制,尤其是磷氯铅矿[pyromorphite, Pb5(PO4)3 Cl]沉淀.在使用含磷物质修复铅污染土壤技术时,添加适量的氯,以达到最佳修复效果.  相似文献   

10.
A pot experiment was conducted to investigate the influence of elemental sulfur to contaminated soil on plant uptake by a heavy metal hyperaccumulator, Indian mustard( Brassica juncea ) and a field crop, winter wheat( Triticum. aestivum). Elemental sulfur(S) with different rates was carried out, they were 0(S0 ), 20(S20 ), 40(S40 ), 80(S80 ), and 160(S160 ) mmol/kg respectively. Extra pots with the same rates of S but without plants were used for soil sampling to monitor pH and CaCl2-extractable heavy metal changes. The results showed that S enhanced phytoextraction of Pb and Zn from contaminated soil. Application S effectively decreased soil pH down to 1.1 as the most at the rate of Sl60. The concentrations of CaCl2-extractable Pb and Zn in soil and uptake of Pb and Zn by the plants were increased with soil pH decreased. A good correlation between CaCl2-extractable Pb/Zn and soil pH was found( Rpb^2 = 0.847 and RZn^2 = 0,991, n = 25). With S application, soil CaCl2-extractable Pb and Zn concentrations, concentration of Pb and Zn in plants and the amount of removal by plant uptake were significanfly higher than those without S. Under the treatment of S160, the highest CaCl2-extmctable Pb and Zn were observed, they were 4.23 mg/kg and 0.40 mg/kg, 2.7 and 2.0 times as that of the control(So ) respectively. At the highest rates of S( Sl~0 ), both Indian mustard and winter wheat reached the highest uptake of Pb and Zn. The highest Pb concentrations in wheat and Indian mustard were 32.8 mg/kg and 537.0 mg/kg, all 1.8 times as that of the control, and the highest Zn concentrations in wheat and Indian mustard were 215.5 mg/kg and 404.0 mg/kg, 2.4 and 2.0 times as that of the control respectively. The highest removals of Pb and Zn from the contaminated soil were 0.41 rag/pot and 0.31 nag/pot by Indian mustard in the treatment of S160 through 50 days growth.  相似文献   

11.
It is less known whether and how soil metal lead (Pb) impacts the invasion of exotic plants.A greenhouse experiment was conducted to estimate the effects of lead on the growth and mycorrhizae of an invasive species(Solidago canadensis L.)in a microcosm system. Each microcosm unit was separated into HOST and TEST compartments by a replaceable mesh screen that allowed arbuscular mycorrhizal (AM) fungal hyphae rather than plant roots to grow into the TEST compartments.Three Pb levels(control,300,and 600 mg/kg soil)were used in this study to simulate ambient soil and two pollution sites where S. canadensis grows.Mycorrhizal inoculum comprised five indigenous arbuscular mycorrhizal fungal species (Glomus mosseae,Glomus versiform,Glomus diaphanum,Glomus geosporum,and Glomus etunicatum).The 15N isotope tracer was used to quantify the mycorrhizally mediated nitrogen acquisition of plants.The results showed that S. canadensis was highly dependent on mvcOrrhizae.The Pb additions significantly decreased biomass and arbuscular mycorrhizal colonization(root length colonized,RLC%) but did not affect spore numbers,N(including total N and 15N) and P uptake.The facilitating efficiency of mycorrhizae on nutrient acquisition was promoted by Pb treatments.The Pb was mostly sequestered in belowground of plant (root and rhizome).The results suggest that the high efficiency of mycorrhizae on nutrient uptake mightgive S. canadensis a great advantage over native species in Pb polluted softs.  相似文献   

12.
以杭州市富阳区典型工矿企业附近农田为研究对象,基于单因子指数法及内梅罗指数法对土壤重金属污染状况进行了评价,并采用稳定同位素与多元素特征指纹结合多元统计定量解析研究区内农田土壤重金属铅污染的来源,建立基于铅稳定同位素与多元素特征指纹结合主成分-聚类分析的农田土壤铅污染源解析技术.结果表明:研究区域内电镀厂和冼矿场附近的农田土壤受重金属污染很严重,两个地区的铅污染均达到重度污染水平.根据不同污染源及土壤的铅同位素比值(207Pb/206Pb、208Pb/206Pb),利用源解析软件Isosource分析不同潜在污染源对土壤铅污染的贡献率,结果显示电镀废弃物、废水对电镀厂附近农田土壤铅污染的累计贡献率达70.5%,冼矿场堆放的矿石、尾矿对附近农田土壤铅污染的累计贡献率达71.7%.为了进一步解析土壤铅污染来源,对电镀厂和冼矿场污染源样品中28种多元素含量进行主成分-聚类分析,结果显示不同来源样品的多元素组成差别较大,电镀厂附近农田土壤的多元素组成与电镀废弃物和废水相似度最高,冼矿场附近农田土壤的多元素组成与矿石和尾矿相似度最高.因此,基于铅稳定同位素比值与多元素特征指纹结合主成分-聚类分析得出电镀厂排放的固废、废水和冼矿场堆放的矿石、尾矿是造成附近土壤铅污染的主要原因,也证明基于铅稳定同位素与多元素特征进行铅污染源解析具有较高的准确度和可靠性.  相似文献   

13.
我国稻田镉(Cd)污染治理刻不容缓.氮(N)、硫(S)和铁(Fe)的生物地球化学循环,以及Fe-N和Fe-S循环耦合体系,都与土壤-水稻系统中Cd运移密切相关.以N、S和Fe对水稻生长的营养供给为切入点,研发抑制稻米Cd累积的营养型阻控技术及产品,势必能为稻田Cd污染治理提供新的解决途径.本文在前期研究成果的基础上开展根际袋-盆栽试验,分析硫酸亚铁(FeSO4)和硝酸铁[Fe(NO33]处理条件下根际土壤中Cd活性变化与水稻体内Cd转运规律,探索糙米Cd累积的影响因素及制约机制.结果表明,FeSO4和Fe(NO33处理都显著减小了根际土壤中有效态Cd(NH4Ac-Cd)含量,且前者减小的幅度(55.6%)小于后者(76.0%);FeSO4和Fe(NO33处理都明显改变了水稻体内Cd分布特征,但前者增大了糙米Cd含量(0.6mg ·kg-1),而后者却减小了糙米Cd含量(0.1mg ·kg-1).根表铁膜对Cd的吸附或与Cd共沉淀、水稻根、茎和叶对Cd的累积量增大以及根、茎和结节对Cd的转运能力增强,是导致FeSO4处理中糙米Cd含量增大的重要原因;Fe(NO33处理中糙米Cd含量减小,则可归结为无定形铁矿物对Cd的吸附或与Cd共沉淀、铁硫化物与Cd共沉淀、茎和结节对Cd的累积量减小以及根、叶和结节对Cd的转运能力减弱.本研究成果将为后期营养型阻控产品及施用技术研发提供科学依据,并为我国稻田Cd污染治理提供重要参考.  相似文献   

14.
Arbuscular mycorrhizal fungal (AMF) colonization and nodulation of groundnut were examined in nine soils collected from subsistence farmers’ fields in Zimbabwe. Nodule number, shoot dry weight, shoot N and P contents, and AMF colonization were assessed after 6 weeks growth. Both nodule number and AMF colonization differed by an order of magnitude among the nine soils. Soil available P explained almost all the variability in nodule number (r2 = 0.98), but had no significant effect on percent AMF colonization. By adding P to one soil, nodule numbers increased four-fold resulting in a significantly higher N content in the shoots. Similar, but smaller, effects were obtained by increasing the abundance of AMF through an inoculation with Glomus intraradices, suggesting that nodulation in this soil was limited by AMF abundance and that the fungi could, to a limited extent, substitute for P fertilizer.  相似文献   

15.
广西刁江沿岸土壤As,Pb和Zn污染的分布规律差异   总被引:6,自引:0,他引:6  
分析了刁江流域矿区尾砂和上、中、下游地区土壤剖面重金属的含量. 结果表明:刁江流域上、中、下游地区都不同程度受到As,Pb和Zn的污染. 上游(距污染源16 km)表层土壤中w(As),w(Pb)和w(Zn)与尾砂相当,分别高达2.4×104,5.6×103 和1.2×104 mg/kg,下游拉烈和百旺(分别距污染源154和192 km)2个采样点表层土壤中w(As),w(Pb)和w(Zn)的平均值分别是《土壤环境质量标准》(GB15618—1995)三级标准的47.05,1.81和5.48倍. 表层土壤中w(As)和w(Pb)随采样点距污染源的距离增加呈幂函数下降,w(Zn)呈线性下降,表明Zn在流域内的迁移能力大于Pb和As. 土壤剖面中3种重金属的质量分数均随土层深度的增加呈降低趋势,在土壤剖面的迁移能力表现为Zn>Pb>As. 总体上看,刁江流域土壤污染与尾砂中重金属的形态及其迁移特征密切相关,尾砂的排放控制和治理应该是刁江流域污染整治的关键.   相似文献   

16.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

17.
The plant root-associated microbiomes, including both the rhizosphere and the root endosphere microbial community, are considered as a critical extension of the plant genome. Comparing to the well-studied rhizosphere microbiome, the understanding of the root endophytic microbiome is still in its infancy. Miscanthus sinensis is a pioneering plant that could thrive on metal contaminated lands and holds the potential for phytoremediation applications. Characterizing its root-associated microbiome, especially the root endophytic microbiome, could provide pivotal knowledge for phytoremediation of mine tailings. In the current study, M. sinensis residing in two Pb/Zn tailings and one uncontaminated site were collected. The results demonstrated that the metal contaminant fractions exposed strong impacts on the microbial community structures. Their influences on the microbial community, however, gradually decreases from the bulk soil through the rhizosphere soil and finally to the endosphere, which resulting in distinct root endophytic microbial community structures compared to both the bulk and rhizosphere soil. Diverse members affiliated with the order Rhizobiales was identified as the core microbiome residing in the root of M. sinensis. In addition, enrichment of plant-growth promoting functions within the root endosphere were predicted, suggesting the root endophytes may provide critical services to the host plant. The current study provides new insights into taxonomy and potential functions of the root-associated microbiomes of the pioneer plant, M. sinensis, which may facilitate future phytoremediation practices.  相似文献   

18.
广西环江铅锌矿尾砂坝坍塌对农田土壤的污染及其特征   总被引:24,自引:1,他引:23  
广西环江县因铅锌金属矿区尾砂坝坍塌导致大面积农田污染甚至绝收.为此,对矿区下游污染区和非污染区的农田土壤、尾砂和河流沉积物进行了系统调查和研究.调查结果表明,农田遭受As、Pb、Zn和cd污染,土壤酸化严重,pH值最低至2.5,全硫含量高达2.29%.X-衍射鉴定结果表明,受污染土壤中存在大量硫铁矿,这是导致土壤酸化的主要物质.由于强酸性淋溶作用的影响,污染农田中La、Ce和Nd等稀土元素发生明显的向下淋溶现象,导致表层土壤La、Ce和Nd元素含量明显低于未污染农田.从土壤剖面分布来看,污染点的土壤中As、Pb和Zn仍主要集中分布在表层0~30 cm范围,发生土壤酸化现象的土层深度仍局限于0~70 cm范围.  相似文献   

19.
通过土壤盆栽试验,研究了不同浓度梯度pb2+胁迫下南获整个生长发育周期的生长、土壤理化性状的变化以及不同生长阶段的根系固定重金属含量变化的过程,结果表明:(1)种植南获植物的土壤pH值随着月份的变化呈减小趋势;(2)种植南获的土壤中铅随植物的生长逐渐减少;(3)南获对重金属铅的积累顺序为:根〉叶〉茎,对土壤中重金属的修复机理主要是通过根系固定作用。  相似文献   

20.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils. Bidens maximowicziana is a new Pb hyperaccumulator, which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb. The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues. The Pb distribution order in the B. maximowicziana was: leaf > stem > root. The effect of amendments on phytoremediation was also studied. The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application. Compared with CK (control check), EDTA application promoted translocation of Pb to overground parts of the plant. The Pb concentrations in overground parts of plants was increased from 24.23–680.56 mg/kg to 29.07–1905.57 mg/kg. This research demonstrated that B. maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil, especially, combination with EDTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号