首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A safety design approach for onshore modularized Liquefied Natural Gas (LNG) liquefaction plant is discussed in this paper. As onshore modularized LNG liquefaction plants have both onshore and offshore plants features, and the safety in design for the plant can only be achieved when the project environment and specific design features are properly understood, this paper identifies specific safety design features of each plant (onshore and offshore) and compares the typical “onshore” and “offshore” safety design approaches. Based on this comparison and consideration for modularization features, a safety design approach for onshore modularized LNG liquefaction plant is proposed.  相似文献   

2.
Many base load onshore LNG plants use large number of Air-Fin-Coolers normally mounted on the center pipe rack of the LNG process train. Further, the LNG plant modularized approach requires large, complex structures (modules) for supporting the LNG process equipment and for allowing sea and land transportation. This results in additional congestion of the plant and large voids under module-deck, which are confined by large girders. Thus, in case of leaks, the proper ventilation to reduce the accumulation of gas is critical for the safety of the plant.This paper evaluates the Air-Fin-Cooler induced air flow in modularized LNG plants using Computational Fluid Dynamics (CFD) analysis.The results of this evaluation show that the ventilation of the Air-Fin-Cooler induced air flow is influenced by the process train orientation. Further, a moderate increase is observed in specific design conditions or areas, such as shorter separation distances between modules. Based on the results of this evaluation, four design measures are proposed to optimize the use of Air-Fin-Cooler, such as train orientation against prevailing wind direction and use of the grating deck material.  相似文献   

3.
The growing demand for natural gas has pushed oil and gas exploration to more isolated and previously untapped regions around the world where construction of LNG processing plants is not always a viable option. The development of FLNG will allow floating plants to be positioned in remote offshore areas and subsequently produce, liquefy, store and offload LNG in the one position. The offloading process from an FLNG platform to a gas tanker can be a high risk operation. It consists of LNG being transferred, in hostile environments, through loading arms or flexible cryogenic hoses into a carrier which then transports the LNG to onshore facilities. During the carrier's offloading process at onshore terminals, it again involves risk that may result in an accident such as collision, leakage and/or grounding. It is therefore critical to assess and monitor all risks associated with the offloading operation. This study is aimed at developing a novel methodology using Bayesian Network (BN) to conduct the dynamic safety analysis for the offloading process of an LNG carrier. It investigates different risk factors associated with LNG offloading procedures in order to predict the probability of undesirable accidents. Dynamic failure assessment using Bayesian theory can estimate the likelihood of the occurrence of an event. It can also estimate the failure probability of the safety system and thereby develop a dynamic failure assessment tool for the offloading process at a particular FLNG plant. The main objectives of this paper are: to understand the LNG offloading process, to identify hazardous events during offloading operation, and to perform failure analysis (modelling) of critical accidents and/or events. Most importantly, it is to evaluate and compare risks. A sensitivity analysis has been performed to validate the risk models and to study the behaviour of the most influential factors. The results have indicated that collision is the most probable accident to occur during the offloading process of an LNG carrier at berth, which may have catastrophic consequences.  相似文献   

4.
This paper discusses the enhancement of inherent safety review and its implementation in the chemical process development and design. The aim is to update and improve the existing inherently safer design review (ISDR) practices during design of chemical process plant by exploiting major accident cases from the U.S. Chemical Safety Board (CSB) and Failure Knowledge Database (FKD). Although the basic guidelines to conduct ISDR during design phase are available, however they are too general and incomplete. The review criteria and their best timing for application are still missing. This paper attempts to develop the accident-based ISDR for chemical process plant design. The proposed accident-based ISDR is supported with detail review criteria for each phase of process design. The timing of ISDR application is corresponding to the common design tasks and decisions made in the design project. Therefore, timely design review could be done at the specific design task and the findings help designer to make a correct decision making.  相似文献   

5.
Like all hazardous installations, inherently safer design (ISD) is one of the key tools in offshore oil and gas projects to minimize risks in offshore facilities. As the life cycle of offshore facilities is relatively short compared with onshore counterparts and there are many projects running every year, the potential is high for raising inherent safety standards and lowering safety risks throughout the offshore industry as old facilities are phased out. This paper gives an overview of offshore facilities and examples of implementation of ISD. Good examples of ISD are numerous. Industry guidance on ISD implementation abound. Yet, the systematic implementation of it in the industry is patchy. There are many reasons for factors which impede the effective, efficient and consistent implementation of ISD in projects. This paper describes some of them and proposes solution to address them. They include (a) the effective integration of ISD into hazard management systems with appropriate language to engage all disciplines in projects, (b) the phasing of resources to enable the project to capture ISD measures which are only available during early phases, (c) application of appropriate ISD goals and ISD performance metrics at various stages and (d) the appropriate use of quantified risk assessment to support ISD.  相似文献   

6.
The functional safety requirement is widely applied in the process plant industry in accordance with the international standards, such as IEC and ISA. The requirement is defined as safety integrity level (SIL) based on the risk reduction concept for protection layers, from original process risk to tolerable risk level. Although the standards specify both, the Prevention System and the Emergency System, as level of protection layers, the standards specify in detail only the use of the Prevention System (i.e., Safety Instrumented System (SIS)). The safety integrity level is not commonly allocated to the Emergency System (e.g., Fire and Gas System, Emergency Shutdown System and Emergency Depressuring System). This is because the required risk reduction can be normally achieved by only the Prevention System (i.e., SIS and Pressure Safety Valve (PSV)). Further, the risk reduction level for the Emergency System is very difficult to be quantified by the actual SIL application (i.e., evaluated based on the single accident scenario, such as an accident from process control deviation), since the escalation scenarios after Loss of Containment (LOC) greatly vary depending on the plant design and equipment. Consequently, there are no clear criteria for evaluating the Emergency System design. This paper aims to provide the functional safety requirement (i.e., required risk reduction level based on IEC 61508 and 61511) as design criteria for the Emergency System.In order to provide clear criteria for the Emergency System evaluation, a risk reduction concept integrated with public’s perception of acceptable risk criteria is proposed and is applied to identify the required safety integrity level for the Emergency System design. Further, to verify the safety integrity levels for the Emergency Systems, the probabilistic model of the Emergency Systems was established considering each Emergency System (e.g., Fire and Gas System, Emergency Shutdown System and Emergency Depressuring System) relation as the Overall Emergency System. This is because the Overall Emergency System can achieve its goal by the combined action of each individual system, including inherent safe design, such as separation distance.The proposed approach applicability was verified by conducting a case study using actual onshore Liquefied Natural Gas Plant data. Further, the design criteria for Emergency Systems for LNG plants are also evaluated by sensitivity analysis.  相似文献   

7.
Concerns over public safety and security of a potential liquefied natural gas (LNG) spill have promoted the need for continued improvement of safety measures for LNG facilities. The mitigation techniques have been recognized as one of the areas that require further investigation to determine the public safety impact of an LNG spill. Forced mitigation of LNG vapors using a water curtain system has been proven to be effective in reducing the vapor concentration by enhancing the dispersion. Currently, no engineering criteria for designing an effective water curtain system are available, mainly due to a lack of understanding of the complex droplet–vapor interaction. This work applies computational fluid dynamics (CFD) modeling to evaluate various key design parameters involved in the LNG forced mitigation using an upwards-oriented full-cone water spray. An LNG forced dispersion model based on a Eulerian–Lagrangian approach was applied to solve the physical interactions of the droplet–vapor system by taking into account the various effects of the droplets (discrete phase) on the air–vapor mixture (continuous phase). The effects of different droplet sizes, droplet temperatures, air entrainment rates, and installation configurations of water spray applications on LNG vapor behavior are investigated. Finally, the potential of applying CFD modeling in providing guidance for setting up the design criteria for an effective forced mitigation system as an integrated safety element for LNG facilities is discussed.  相似文献   

8.
化工过程开发中本质安全化设计策略   总被引:2,自引:6,他引:2  
本质安全化设计是预防人为失误及设备失效、降低化工过程风险应优先采用的技术。在比较传统设计方法与本质安全化设计方法的基础上,讨论了化工过程开发各阶段实现本质安全的机会,认为在开发初期,实施本质安全化的成本低,难度小;通过分析可行性研究、工艺研究、概念设计、基础设计、工程设计等阶段本质安全化设计的影响因素、设计目标和设计方法,探索化工过程开发中本质安全化设计策略,提出了化工过程本质安全化设计流程。通过工艺过程本质安全设计、工艺流程的简化和优化、不同设计方案的本质安全度评估等措施,可提高化工过程本质安全水平。  相似文献   

9.
Quantitative Risk Assessment (QRA) has been a very popular and useful methodology which is widely accepted by the industry over the past few decades. QRA is typically carried out at a stage where complete plant has been designed and sited. At that time, the opportunity to include inherent safety design features is limited and may incur higher cost. This paper proposes a new concept to evaluate risk inherent to a process owing to the chemical it uses and the process conditions. The risk assessment tool is integrated with process design simulator (HYSYS) to provide necessary process data as early as the initial design stages, where modifications based on inherent safety principles can still be incorporated to enhance the process safety of the plant. The risk assessment tool consists of two components which calculate the probability and the consequences relating to possible risk due to major accidents. A case study on the potential explosion due to the release of flammable material demonstrates that the tool is capable to identify potential high risk of process streams. Further improvement of the process design is possible by applying inherent safety principles to make the process under consideration inherently safer. Since this tool is fully integrated with HYSYS, re-evaluation of the inherent risk takes very little time and effort. The new tool addresses the lack of systematic methodology and technology, which is one of the barriers to designing inherently safer plants.  相似文献   

10.
科学构建化工园区安全生产长效机制的关键要素   总被引:1,自引:1,他引:0  
针对我国化工园区的发展现状和存在的问题,结合本质安全等现代先进安全管理理念,系统地分析了强化化工园区安全生产长效机制关键要素的手段和措施,为提高化工园区和相关行业的安全管理现状提供了科学依据。指出当前强化园区总体规划和布局论证以及严格执行园区准入制度的重要性;阐明建设项目本质安全化是重要关键所在,应通过在项目构建的不同阶段,分步实施本质安全化设计策略;考虑到园区重大事故多米诺效应概率显著增加,理论研究确定了爆炸和火灾触发多米诺效应的概率和临界距离;特别强调重大危险源的控制和管理是核心问题,提出了园区重大危险源的三级安全管理模式和园区应急资源评估模式。  相似文献   

11.
The safety issues of Liquefied Natural Gas (LNG) in production, storage, loading/unloading, transportation/shipping, and re-gasification have became a major concern, since an accident in the LNG industry would be very costly. Understanding the threat of LNG not only contributes to the process safety and reliability in the research and development (R&D) system, but improves the efficiency of loss prevention, fire protection and emergency responses. As of April 2019, in order to obtain the present status and trend of LNG safety research, basing 1122 documents of the Web of Science database about safety research of LNG as a data source, CiteSpace and VOS viewer were used for network knowledge map analysis. A comprehensive knowledge map of LNG safety field was obtained from several research aspects including scientific research power, research hot spots and trends, research knowledge base and frontier. According to the study results, the development of LNG safety research was divided into four stages from 1970s to 2019, China and South Korea made a lot of contributions, and the United States is the most influential. Among them, the research from 2005 to 2019 was the most representative. Current research results indicate that a combination of Formal Safety Assessment (FSA) methodology and Dynamic Procedure for Atypical Scenarios Identification (DyPASI) will fully identify risks; The PHAST and TerEx programs quickly define safety zones. Computational Fluid Dynamics (CFD) software package can provide accurate quantitative data for the study of LNG safety. Research on quantitative risk assessment (QRA) and LNG evaporated gas (BOG) has been a hot topic and trend in this field. The application of expansion foam in LNG accident mitigation covers most of the research content in this field, and the optimization of LNG liquefaction process has a great influence on this industry. As the international demand for LNG energy output increases, floating liquefied natural gas (FLNG) will have considerable development, and increasingly researchers attach vital importance to the safety of LNG offshore production integrated unit.  相似文献   

12.
Inherent safety is a proactive approach for hazard/risk management during process plant design and operation. It has been proven that, considering the lifetime costs of a process and its operation, an inherently safer approach is a cost-optimal option. Inherent safety can be incorporated at any stage of design and operation; however, its application at the earliest possible stages of process design (such as process selection and conceptual design) yields the best results.Although it is an attractive and cost-effective approach to hazard/risk management, inherent safety has not been used as widely as other techniques such as HAZOP and quantitative risk assessment. There are many reasons responsible for this; key among them are a lack of awareness and the non-availability of a systematic methodology and tools.The inherent safety approach is the best option for hazard/risk management in offshore oil and gas activities. In the past, it has been applied to several aspects of offshore process design and operation. However, its use is still limited. This article attempts to present a complete picture of inherent safety application in offshore oil and gas activities. It discuses the use of available technology for implementation of inherent safety principles in various offshore activities, both current and planned for the future.  相似文献   

13.
该文提出了一种在设计初期进行化工过程本质安全化设计的策略。首先进行危险物质与危险能量两类共计11种危险类型的危险辨识。针对辨识出的危险类型,通过与相应的临界条件比较进行快速的危险评价,对于不可接受的危险必须采取本质安全化措施,可接受的危险可有选择性地进行本质安全化设计。在设计初期可以使用的本质安全化原则主要是消除、最小化、替代和缓和,针对11种危险类型可以应用不同的本质安全化设计模型,以使实际进行本质安全化设计时更加简单与快捷。该文把提出的本质安全化设计策略应用到一个甲苯硝化制硝基甲苯的工艺,形成了多种本质安全化措施,可以用来在设计初期消除或减少危险。  相似文献   

14.
This paper is the second installment of a paper published on Process Safety and Environment Protection in 2013, which evaluates the Air-Fin-Cooler (AFC) forced ventilation effect over natural ventilation inside congested LNG process train, i.e., modularized LNG, considering the Air Change per Hour (ACH) using Computational Fluid Dynamics (CFD) analysis. This second paper evaluates the effect of forced ventilation on gas cloud dispersion using CFD in order to evaluate possible design measures, such as safety distance in trains and whether to shut down the AFC in case of releases. The results of this evaluation show that gas cloud accumulation is reduced by AFC induced air flow in the case of shorter separation distances between modules. Based on the results, two design measures are proposed, i.e., keep AFC running during emergency and train orientation against prevailing wind direction.  相似文献   

15.
Conventional hazard evaluation techniques such as what-if checklist and hazard and operability (HAZOP) studies are often used to recognise potential hazards and recommend possible solutions. They are used to reduce any potential incidents in the process plant to as low as reasonably practicable (ALARP) level. Nevertheless, the suggested risk reduction alternatives merely focus on added passive and active safety systems rather than preventing or minimising the inherent hazards at source through application of inherently safer design (ISD) concept. One of the attributed reasons could be the shortage of techniques or tools to support implementation of the concept. Thus, this paper proposes a qualitative methodology that integrates ISD concept with hazard review technique to identify inherent hazards and generate ISD options at early stage of design as proactive measures to produce inherently safer plant. A modified theory of inventive problem solving (TRIZ) hazard review method is used in this work to identify inherent hazards, whereby an extended inherent safety heuristics tool is developed based on established ISD principles to create potential ISD options. The developed method namely Qualitative Assessment for Inherently Safer Design (QAISD) could be applied during preliminary design stage and the information required to apply the method would be based on common process and safety database of the studied process. However, user experiences and understanding of inherent safety concept are crucial for effective utilisation of the QAISD. This qualitative methodology is applied to a typical batch reactor of toluene nitration as a case study. The results show several ISD strategies that could be considered at early stage of design in order to prevent and minimise the potential of thermal runaway in the nitration process.  相似文献   

16.
One of the most important points in the design of inherently safe processes is to estimate reliable distances among process units at preliminary stages of the plant project to minimize losses and damages caused by the potential occurrence of technological accidents. Therefore, in this paper the achievement of simple, general, dimensionless and reliable equations (Simple Dimensionless Models SDMs) for the direct estimation of safety distances considering the occurrence of BLEVE (Boiling Liquid Expanding Vapour Explosion) event, is proposed. The developed models directly relate safety distances with critical design/operation variables (involved substance, vessel volume, target vulnerability and explosion temperature), which are easily accessible at early stages of the plant project. SDMs are achieved by analysing the influence of these simple variables on the safety distances, which are estimated using a selected rigorous model (Reference Model RfM). This task is simplified by the incorporation of the Jakob Number as an input variable, allowing to obtain dimensionless models and simultaneously an adequate representation of the explosion conditions and the involved substances. As result, the achieved SDMs demonstrate a particularly good fit with respect to the RfM estimations and, at the same time, reliability and versatility. As it is shown in the analysed study cases (involving critical decision variables for the process design and the system safety), the SDMs prove to be also accurate, general, and easily incorporable into more complex optimization problems (QRA analysis, design of emergency plans, safety distance estimation to minimize the probability of domino effects, optimal layout designs, among others).  相似文献   

17.
Pd/alloy-based (Pd/Cu, Pd/Au) membrane reactors embedded into Integrated Gasification Combined Cycle (IGCC) plants (IGCC-MR) enable the storage and/or use of the energy value of H2 to produce electricity while the CO2 enriched retentate exit stream becomes particularly suitable for high pressure CO2 capture-sequestration. There is undoubtedly a lack of operating experience associated with IGCC-MR plants, and therefore, sound process intensification principles/practices should be followed not only to enhance process system performance but also to ensure process safety and economic feasibility of an IGCC-MR plant. Motivated by the above considerations, a comprehensive process economic assessment framework for an inherently safe membrane Pd/alloy-based reactor integrated into an IGCC plant is proposed. In particular, a detailed Net Present Value (NPV) model has been developed to evaluate the economic viability of an IGCC-MR plant where the membrane reactor module design conforms to basic inherent safety principles. Sources of irreducible uncertainty (market, regulatory and technological) are explicitly recognized such as the power plant capacity factor, Pd price, membrane life time and CO2-taxes due to future regulatory action/policies. The effect of the above uncertainty drivers on the project's/plant's value is studied through Monte Carlo methods resulting in detailed NPV-distribution and process economic outcome profiles. The simulation results derived suggest that in the presence of (operational, economic and regulatory) uncertainties, inherently safe membrane reactor technology options integrated into IGCC plants could become economically viable. In particular, comparatively more attractive NPV distribution profiles are obtained when concrete safety risk-reducing measures are taken into account through pre-investment in process safety (equipment).  相似文献   

18.
应急照明是现代建筑安全保障的重要设施之一,它同人身安全和建筑物安全紧密相关。根据建筑电气设计规范对应急照明的具体规定,对应急照明的设计要求做了进一步探讨和归纳总结,并结合具体问题对应急照明设置场所、供电时间、电源供电方式、控制方式、施工设计及设计要点等方面进行了阐述,对应急照明的设计和实践应用中出现的问题进行了分析,并提出了整改措施。  相似文献   

19.
Effective support of inherent safety implementation in process design requires a quantitative metric for monitoring and communicating the expected safety performance of alternative design options. The Inherent Safety Key Performance Indicators (IS-KPIs) methodology was developed to provide both a flexible procedure for the identification of the hazards, and a sound consequence-based quantification of the safety performance. The integration of different hazard identification techniques yields the relevant accident scenarios for each unit in the plant. The calculation of credible damage distances by consolidate consequence simulation models provides a sound basis for the definition of the KPIs based on worst case effects. Specific indicators were devoted to hazards from external actions, as natural events and intentional malicious acts. The methodology was demonstrated by the comparison of alternative technological options for LNG regasification. The application evidenced the potential of the IS-KPI method in pinpointing the critical issues related to each alternative configuration.  相似文献   

20.
为提高LNG储存的安全性,基于QRA(定量风险评价),利用应急危险定位分析软件分别进行了LNG中小型储罐及大型储槽泄漏事故分析和LNG带压储罐充注压力专项对比分析。结果表明:立式圆柱常压储罐应选择高径比接近于1的罐体而压力罐的选择受高径比的影响很小;当对常压储罐高度有要求时,球形罐是比立式圆柱罐更好的选择;在大型LNG储槽中,常压储槽自身压力很大,可以起到抑制BOG(蒸发气体)产生的作用;在饱和状态下,压力罐的充注压力并非越小越好,需进行针对性分析计算,选取最适合的充注与设计压力。掌握LNG储罐事故后果与罐体形状与类型之间的关系可加强并丰富对其储罐类型选择的认识,可较好的为提高其储存安全性提供数据支撑与理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号