首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is the first detailed study of metabolite production during degradation of the herbicide 2,6-dichlorobenzonitrile (dichlobenil). Degradation of dichlobenil and three potential metabolites: 2,6-dichlorobenzamide (BAM), 2,6-dichlorobenzoic acid (2,6-DCBA) and ortho-chlorobenzamide (OBAM) was studied in soils either previously exposed or not exposed to dichlobenil using a newly developed HPLC method. Dichlobenil was degraded in all four soils; BAM and 2,6-DCBA were only degraded in soils previously exposed to dichlobenil (100% within 35-56 days and 85-100% in 56 days, respectively), and OBAM in all four soils (25-33% removal in 48 days). BAM produced from dichlobenil was either hydrolyzed to 2,6-DCBA or dechlorinated to OBAM, which was further hydrolyzed to ortho-chlorobenzoic acid. BAM was rapidly mineralized in previously exposed soils only. All potential metabolites and the finding that BAM was a dead-end metabolite of dichlobenil in soils not previously exposed to dichlobenil needs to be included in risk assessments of the use of dichlobenil.  相似文献   

2.
BAM (2,6-dichlorobenzamide) is a metabolite of pesticide dichlobenil and a common groundwater contaminant. Dichlobenil and BAM half-lives were determined in five Finnish subsurface deposits and in topsoil. Aerobic and anaerobic conditions with sterilized controls were included in this 1.4-year incubation experiment. In subsurface deposits, dichlobenil half-life varied from 157 days to no degradation and that of BAM from 314 days to no degradation. Microbes and oxygen enhanced dichlobenil and BAM dissipation rates in some deposits. However, dichlobenil and BAM concentrations were most significantly affected by deposit characteristics, especially carbon and nitrogen amounts. Also low pH, cadmium, iron, zinc, manganese and lead correlated with low dichlobenil and/or BAM concentrations. In mineral topsoil, dissipation was faster with half-lives of 41–54 days for dichlobenil, and 182–261 days for BAM. Dichlobenil was depleted completely in surface soil, but BAM was not dissipated below 55–81 % of the initial concentration. Generally, dichlobenil and BAM dissipation in samples from the northern boreal region was similar to that reported for the temperate region. BAM was persistent in topsoil and subsurface deposits, indicating long-term persistence problems in groundwater also within the northern boreal region.  相似文献   

3.
The dichlobenil metabolite BAM (2,6-dichlorobenzamide) is frequently detected in aquifers e.g. in Denmark despite the mother compound dichlobenil was banned here since 1997. BAM mineralization was investigated at environmentally relevant concentrations in sediment samples. Undisturbed sediment cores with known dichlobenil application were collected from topsoil to 8.5 m below surface resulting in 57 samples hereof 4 aquifer samples. Mineralization was only substantial (>10%) in the uppermost meter of the unsaturated zone. Microbial adaptation, observed as faster mineralization in pre-exposed than in pristine sediments from the same location, was only evident in sandy sediment where dichlobenil was still present, but not in clayey sediments. Higher initial concentrations (1-5000 μg/kg) did not stimulate mineralization in pristine clayey or sandy sediments, or in pre-exposed sand. However, in pre-exposed clay mineralization was stimulated at high concentrations. Furthermore BAM was for the first time mineralized in aerobic aquifer sediments from different BAM-contaminated groundwater locations.  相似文献   

4.
The metabolite 2,6-dichlorobenzamide (BAM) is a frequent groundwater pollutant produced during degradation of the herbicide 2,6-dichlorobenzonitrile (dichlobenile). Spatial variability of BAM mineralisation is uncharacterized in surface soil, however, and factors controlling the heterogeneity remain unknown. We addressed these issues by sample-to-sample comparisons of BAM mineralisation rates and a range of soil characteristics at spatial scales ranging from meters to centimetres. For mineralisation assays nano-molar concentrations of labelled BAM were added to determine mineralisation rates under realistic conditions. We found a significant variability of BAM mineralisation which increased with decreasing spatial scale. BAM mineralisation rates were correlated to the density of BAM-degrading bacteria but not to water content, TOC, NH4+, NO3, or pH. The genus Aminobacter, which contains the only BAM degraders known, was detected in MPN samples of BAM degraders by a specific PCR assay targeting the 16S rRNA gene, confirming a role of Aminobacter in BAM mineralisation.  相似文献   

5.
The worldwide used herbicide dichlobenil (2,6-dichlorobenzonitrile) has resulted in widespread presence of its metabolite 2,6-dichlorobenzamide (BAM) in surface water and groundwater. To evaluate the potential for natural attenuation of this BAM pollution in groundwater, we studied the degradation of BAM and dichlobenil in 16 samples of clayey till, unconsolidated sand and limestone, including sediments from both oxidized and reduced conditions. The degradation of dichlobenil occurred primarily in the upper few meters below surface, although dichlobenil was strongly sorbed to these sediments. However, the degradation of dichlobenil to BAM could not be correlated to either sorption, water chemistry, composition of soils or sediments. Degradation of dichlobenil to BAM was limited (<2% degraded) in the deeper unsaturated zones, and no degradation was observed in aquifer sediments. This illustrates, that dichlobenil transported to aquifers does not contribute to the BAM-contamination in aquifers. A small, but significant degradation of BAM was observed in the upper part of the unsaturated zones in sandy sediments, but no degradation was observed in the clayey till sediment or in the deeper unsaturated zones. The insignificant degradation of BAM in aquifer systems shows that BAM pollution detected in aquifers will appear for a long time; and consequently the potential for natural attenuation of BAM in aquifer systems is limited.  相似文献   

6.
The vertical distribution of the sorption, desorption and mineralisation of glyphosate and MCPA was examined in samples from two contrasting soil and subsurface profiles, obtained from a sandy agricultural site and a non-agricultural clay rich site. The highest mineralisation of [14C-methylen]glyphosate, with 9.3-14.7% degraded to 14CO2 within 3 months was found in the deepest sample from the clay site. In the deeper parts of the sandy profile high sorption and low desorption of glyphosate coincided with no or minor mineralisation indicating a limited glyphosate bioavailability. MCPA was readily mineralised except in the deepest samples from both sites. The highest MCPA mineralisation was detected just below the surface layers with 72% or 44% degraded to 14CO2 at the sandy or the clay sites, respectively. MCPA sorped to a minor extent in all samples and no indications of sorption-controlled mineralisation was revealed. None of the herbicides were mineralised under anoxic conditions.  相似文献   

7.
Bacterial mineralisation of four sulfonylurea herbicides at 20 microg kg(-1) in a sandy soil from nine different depths in a sandy soil horizon (5-780 cm) was investigated in laboratory studies. Metsulfuron-methyl, chlorsulfuron, and tribenuron-methyl were 14C-labelled in the sulfonamide ring, while thifensulfuron-methyl was labelled in the thiophene ring. The highest mineralised amount in 126 days was observed for metsulfuron-methyl (40%) followed by tribenuron-methyl (25%), and thifensulfuron-methyl (11%). Chlorsulfuron showed low mineralisation in all the soils tested (<4%). Mineralisation of the herbicides metsulfuron-methyl and tribenuron-methyl varied according to soil depth (upper profile: 5-70 cm, and lower profile: 165-780 cm) and were proven faster in soil taken from depths 5-7 and 30-35 cm, and slower in depths 45-50 and 70-75 cm. Mineralisation was absent in the lower profile (165-780 cm). As an indicator of microbial activity bacterial counts were taken at the experimental start; these counts grouped in three levels: highest in the surface layer (5-7 cm), slightly lower in the depths 30-75 cm, and lowest in the lower profile (165-780 cm). Residual concentrations of metsulfuron-methyl correlated to the accumulated amount mineralised, with high residual concentrations in soil showing low mineralisation. Also chlorsulfuron showed high residual concentrations with increasing depth in the upper profile, but the relatively high dissipation at 30-35 cm and lower one at 45-50 cm could not be related with the lack of mineralisation. This shows that hydrolysis occurs, but mineralisation of the chloro-substituted sulfonamide is restricted. Tribenuron-methyl and thifensulfuron-methyl could not be detected due to interference with other compounds.  相似文献   

8.
In laboratory experiments the mineralisation of 14C-labelled 1,2,4-trichlorobenzene (1,2,4-TCB) in soils was studied by direct measurement of the evolved 14CO2. The degradation capacity of the indigenous microbial population was investigated in an agricultural soil and in a soil from a contaminated site. Very low mineralisation of 1% within 23 days was measured in the agricultural soil. Whereas in the soil from the contaminated site the mineralisation occurred very fast and in high rates; up to 62% of the initially applied amount of 1,2,4-TCB were mineralised within 23 days. The transfer of the adapted microbial population into the agricultural soil significantly enhanced the mineralisation of 1,2,4-TCB in this soil, reflecting, that the transferred microbial population survived and maintained its degradation ability in the new microbial ecosystem. Additional nutrition sources ((NH4)2HPO4) increased the mineralisation rates in the first days significantly in the contaminated soil. In the soil from the contaminated site high amounts of non extractable 14C-residues were formed.  相似文献   

9.
Mineralisation capability was studied in the 2,6-dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 under growth-arrested conditions. Cells were starved in mineral salts (MS) solution or groundwater before 14C-labelled BAM (0.1 mM) was added. Cell physiology was monitored with a panel of vitality stains combined with flow cytometry to differentiate intact, depolarised and dead cells. Cells starved for up to 3 weeks in MS solution showed immediate growth-linked mineralisation after BAM amendment while a lag-phase was seen after 8 weeks of starvation. In contrast, cells amended with BAM in natural groundwater showed BAM mineralisation but no growth. The cell-specific mineralisation rate was always comparable (10−16 mol C intact cell−1 day−1) independent of media, growth, or starvation period after BAM amendment; lower rates were only observed as BAM concentration decreased. MSH1 seems useful for bioremediation and should be optimised to maintain an intact cell subpopulation as this seems to be the key parameter for successful mineralisation.  相似文献   

10.
The adaptation of two similar soils to pyrene catabolism   总被引:4,自引:0,他引:4  
The development of pyrene catabolic activity was assessed in two similar soils (pasture and woodland) amended with 100 mg pyrene kg(-1) In the pasture and woodland soils, significant mineralisation of 14C-pyrene was observed after 8 and 76 weeks soil-pyrene contact times, respectively. In both soils, there were significant decreases (P<0.05) in the lag times and significant increases (P <0.05) in the maximum rates and extents of 14C-pyrene mineralised with increasing soil-pyrene contact time. A microbial inoculum was added to the woodland soil to assess if the previously added, but undegraded 14C-pyrene was bioavailable at 16 and 24 weeks. This resulted in the immediate mineralisation of the previously added 14C-pyrene, indicating that it was bioavailable but that the microbial community in the woodland soil had not developed the ability to mineralise pyrene. The relative contributions of the indigenous microflora to 14C-pyrene mineralisation were assessed by the addition of celective inhibitors, with bacteria seeming to be responsible for the mineralisation of pyrene in both soils. It is suggested that the rate of pyrene-transfer from the soil to the microorganisms was lower in the woodland soil due to its higher organic matter content.  相似文献   

11.
L Larsen  J Aamand 《Chemosphere》2001,44(2):231-236
We examined the potential for complete degradation (mineralisation) of the four [ring-U-14C]herbicides mecoprop, isoproturon, atrazine, and metsulphuron-methyl in two sandy aquifers representing aerobic, denitrifying, sulphate-reducing, and methanogenic conditions. Slurries with sediment and groundwater were set-up aerobically or anaerobically in the presence of the electron-acceptor prevailing at the sampling site, amended with 25 microg l(-1) herbicide, and incubated at 10 degrees C. Considerable mineralisation was only observed in sediment from the plough layer incubated aerobically. Here, 30% of 14C-mecoprop was recovered as 14CO2 after 15 days and 15% of isoproturon was recovered as 14CO2 after 267 days. Only 7% of mecoprop was recovered as 14CO2 after 313 days in sediment from the aquifer below sampled at 1.95-3.00 mbs (m below the surface). In denitrifying and methanogenic slurries, 3% of 14C added as mecoprop was recovered as 14CO2. Isoproturon was not mineralised except in the aerobic plough layer, and atrazine and metsulphuron-methyl were not mineralised under any of the conditions applied.  相似文献   

12.
In this study, aged aqueous suspensions of C(60) (nC(60)) were investigated in the respirometric OECD test for ready biodegradability. Two suspensions of nC(60) were prepared by stirring and aged under indirect exposure to sunlight for 36 months. ATR-FTIR analyses confirmed the presence of C(60)-structures in the suspensions. Samples of the nC(60) suspensions (20mg/l) were inoculated with activated sludge (30 mgTSS/L) and incubated in a mineral medium under aerobic conditions. Since no mineralisation of nC(60) was observed after 28 days of incubation, 5mg/l sodium acetate was added to the media. After additional 20 days, no mineralisation of nC(60) was observed. However, within a few days sodium acetate was completely mineralised, showing that the biomass was not inhibited by the presence of nC(60). Based on results from this simple approach, aged nC(60) can be classified as not ready biodegradable according to the standard OECD test procedure.  相似文献   

13.
Mineralisation of atrazine in soil has been shown to depend on previous exposure of the herbicide. In this study, 24 Danish soils were collected and screened for potential to mineralise atrazine. Six soils were chosen, because they had never been exposed to atrazine, whereas 18 soils were chosen because of their history of application of atrazine or the related compound terbuthylazine. None of the 24 soils revealed a mineralisation potential of more than 4% of the added atrazine within a 60 day timeframe. In an atrazine adapted French soil, we found 60% mineralisation of atrazine in 30 days. Cattle manure was applied in order to boost the microbial activity, and a 2-3% increase in the atrazine mineralisation was found in some of the temperate soils, while in the highly adapted French soil it caused a 5% reduction.  相似文献   

14.

The microbial degradation of 14C-pyrene and 14C-benzo[a]pyrene by a bacterial mixed culture was studied within a mixture of the PAHs phenanthrene, anthracene, pyrene, fluoranthene, and benzo[a]pyrene as sole carbon source in the different culture systems: (i) liquid medium, (ii) soil slurry (surface and grinding influence), and (iii) soil. The fate of these two labeled compounds was followed in these systems with an emphasis on mineralization to carbon dioxide, extractability, and adsorption to humic materials and formation of unextractable residual. Mineralization showed the most obvious differences: soil slurries achieved the best results both concerning the extent of mineralization and the time required. The highest extent of pyrene mineralization (54% within 21 days) was observed in soil slurries; in liquid media, pyrene mineralization was slower, but reached approximately the same extent (54% in 150 days); in soils, mineralization reached only 36% of added pyrene after 160 days. Benzo[a]pyrene was mineralized in a mixture of PAHs in soil slurries to an extent of 34% within 70 days, whereas mineralization in liquid medium and soil occurred in the range of 5% (70 days). Mineralization of benzo[a]pyrene in sand slurries was lower compared to soil slurries (19% in sand slurries vs. 32% in soil slurries within 50 days).  相似文献   

15.
The role of char nutrients in the biodegradation of coexisting dichlobenil and atrazine in a soil by their respective bacterial degraders, DDN and ADP, was evaluated. Under growing conditions, their degradation in soil extract was slow with <40% and <20% degraded within 64 h, respectively. The degradation in extracts and slurries of char-amended solids increased with increasing char content, due to nutritional stimulation on microbial activities. By supplementing soil extract with various major nutrients, the measured degradation demonstrated that P was the exclusive limiting nutrient. The reduction in the degradation of coexisting dichlobenil and atrazine resulted apparently from the competitive utilization of P by DDN and ADP. With a shorter lag phase, ADP commenced growing earlier than DDN with the advantage of utilizing P first in insufficient supply. This resulted in an inhibition on the growth of DDN and thus suppression on dichlobenil degradation.  相似文献   

16.
This study investigated the microbial degradation of 14C-labelled hexadecane, octacosane, phenanthrene and pyrene and considered how degradation might be optimised in three genuinely hydrocarbon-contaminated soils from former petroleum refinery sites. Hydrocarbon mineralisation by the indigenous microbial community was monitored over 23 d. Hydrocarbon mineralisation enhancement by nutrient amendment (biostimulation), hydrocarbon degrader addition (bioaugmentation) and combined nutrient and degrader amendment, was also explored. The ability of indigenous soil microflora to mineralise 14C-target hydrocarbons was appreciable; ≥16% mineralised in all soils. Generally, addition of nutrients or degraders increased the rates and extents of mineralisation of 14C-hydrocarbons. However, the addition of nutrients and degraders in combination had a negative effect upon 14C-octacosane mineralisation and resulted in lower extents of mineralisation in the three soils. In general, the rates and extents of mineralisation will be dependent upon treatment type, nature of the contamination and adaptation of the ingenious microbial community.  相似文献   

17.
Clemente R  Bernal MP 《Chemosphere》2006,64(8):1264-1273
The effects of humic acids (HAs) extracted from two different organic materials on the distribution of heavy metals and on organic-C mineralisation in two contaminated soils were studied in incubation experiments. Humic acids isolated from a mature compost (HAC) and a commercial Spaghnum peat (HAP) were added to an acid soil (pH 3.4; 966 mg kg(-1) Zn and 9,229 mg kg(-1) Pb as main contaminants) and to a calcareous soil (pH 7.7; 2,602 mg kg(-1) Zn and 1,572 mg kg(-1) Pb as main contaminants) at a rate of 1.1g organic-C added per 100g soil. The mineralisation of organic-C was determined by the CO(2) released during the experiment. After 2, 8 and 28 weeks of incubation the heavy metals of the soils were fractionated by a sequential extraction procedure. After 28 weeks of incubation, the mineralisation of the organic-C added was rather low in the soils studied (<8% of TOC in the acid soil; <10% of TOC in the calcareous soil). Both humic acids caused significant Zn and Pb immobilisation (increased proportion of the residual fraction, extractable only with aqua regia) in the acid soil, while Cu and Fe were slightly mobilised (increased concentrations extractable with 0.1M CaCl(2) and/or 0.5M NaOH). In the calcareous soil there were lesser effects, and at the end of the experiment only the fraction mainly related to carbonates (EDTA-extractable) was significantly increased for Zn and decreased for Fe in the humic acids treated samples. However, HA-metal interactions provoked the flocculation of these substances, as suggested by the association of the humic acids with the sand fraction of the soil. These results indicate that humic acid-rich materials can be useful amendments for soil remediation involving stabilisation, although a concomitant slight mobilisation of Zn, Pb and Cu can be provoked in acid soils.  相似文献   

18.
This study investigated the fate and behaviour of [UL-(14)C] 2,4-dichlorophenol (DCP) in planted (Lolium perenne L.) and unplanted soils over 57 days. Extractability of [UL-(14)C] 2,4-DCP associated activity was measured using calcium chloride (CaCl(2)), acetonitrile-water and dichloromethane (DCM) extractions. Biodegradability of [UL-(14)C] 2,4-DCP associated activity was assessed through measurement of (14)CO(2) production by a degrader inoculum (Burkholderia sp.). Although extractability and mineralisation of [UL-(14)C] 2,4-DCP associated activity decreased significantly in both planted and unplanted soils, plants appeared to enhance the sequestration process. After 57 days, in unplanted soil, 27% of the remaining [UL-(14)C] 2,4-DCP associated activity was mineralised by Burkholderia sp., and 13%, 48%, and 38% of (14)C-activity were extracted by CaCl(2), acetonitrile-water and DCM, respectively. However, after 57 days, in planted soils, only 10% of the [UL-(14)C] 2,4-DCP associated activity was available for mineralisation, whilst extractability was reduced to 2% by CaCl(2), 17% by acetonitrile-water and 11% by DCM. This may be due to the effect of plants on soil moisture conditions, which leads to modification of the soil structure and trapping of the compound. However, the influence of plants on soil biological and chemical properties may also play a role in the ageing process.  相似文献   

19.
The fate of selected pesticides (bentazone, isoproturon, DNOC, MCPP, dichlorprop and 2,4-D) and a metabolite (2,6-dichlorobenzamide (BAM)) was investigated under aerobic conditions in column experiments using aquifer material and low concentrations of pesticides (approximately 25 microg/l). A solute transport model accounting for kinetic sorption and degradation was used to estimate sorption and degradation parameters. Isoproturon and DNOC were significantly retarded by sorption, whereas the retardation of the phenoxy acids (MCPP, 2,4-D and dichlorprop), BAM and bentazone was very low. After lag periods of 16-33 days for the phenoxy acids and 80 days for DNOC, these pesticides were degraded quickly with 0.-order rate constants of 1.3-2.6 microg/l/day. None of the most probable degradation products were detected.  相似文献   

20.
The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by (14)C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 microg kg(-1)) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号