首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Summary I studied the foraging behaviour of adults in three different-sized groups of yellow baboons (Papio cynocephalus) at Amboseli National Park in Kenya to assess the relationship between group size and foraging efficiency in this species. Study groups ranged in size from 8 to 44 members; within each group, I collected feeding data for the dominant adult male, the highest ranking pregnant female, and the highest ranking female with a young infant. There were no significant differences between groups during the study in either the mean estimated energy value of the food ingested per day for each individual (385±27 kJ kg-1 day-1) or in the estimated energy expended to obtain that food (114±3 kJ kg-1 day-1). Mean foraging efficiency ratios, which reflect net energy gain per unit of foraging time, also did not vary as a function of the size of the group in which the baboons were living. There was substantial variation between days in the efficiency ratios of all animals; this was the result of large differences in energy intake rather than in the energy expended during foraging itself. The members of the smallest group spent on the average only one-half as much time feeding each day as did individuals in the two larger groups. However, they obtained almost as much energy while foraging, primarily because their rate of food intake while actually eating tended to be higher than the rate in the other groups. The baboons in the small group were observed closer to trees that they could climb to escape ground predators, and they also were more likely to sit in locations elevated above the ground while resting. Such differences would be expected if the members of the small group were less able to detect approaching predators than individuals that lived in the larger groups. The results of this study suggest that predator detection or avoidance, rather than increased foraging efficiency, may be the primary benefit of living in larger groups in this population.  相似文献   

2.
Summary Eciton burchelli workers frequently form groups to retrieve large prey items. Such groups have a definite structure. There is a constant relationship between total ant dry weight and prey item dry weight for both individual porters and groups, and this relation is such that a larger weight of ant or ants can carry disproportionately heavy items. Furthermore, all prey items are carried at a standard retrieval speed. This means that groups are superefficient; they can carry items that are so large that if they were fragmented the original members of the group would be unable to carry all the fragments. Groups also have a distinct caste distribution. There is a significant tendency for each group to have a single submajor, the specialist porter caste in Eciton burchelli. These findings which were verified by experiments suggest that groups fulfill the criteria of efficient teams. The biomechanics are proposed to explain the superefficiency of groups. The organization of co-operation is considered as is the role of teams in the economy of these societies. Colony caste profiles can only be understood by examining the role of teams which form a plastic supercaste.  相似文献   

3.
Summary Colonial orb-weaving spiders from Mexico were studied to test predictions of risksensitive foraging theory: 1. group foraging increases prey capture/individual, and reduces prey variance; 2. spiders should be expected to exhibit risk-averse behavior (forage in groups) when the average level of prey exceeds individual needs, and exhibit risk-prone behavior (forage solitarily) when prey are searce. Laboratory and field studies show that group foraging increases capture efficiency and reduces variability in prey captured per spider. In desert/mesquite grassland habitat, where prey availability is low, M. atascadero forage solitarily in most cases. In tropical rainforest/agriculture sites, M. increassata forage in large colonies of thousands of webs. In intermediate habitats, M. spinipes forages solitarily or in groups, depending on prey availability. Over a range of sites with varying levels of prey, M. spinipes shifts from a risk-prone to a risk-averse group foraging strategy as prey increases.Group foraging behavior observed in colonial Metepeira fits the predictions of risk-sensitive foraging models. These findings explain why spiders tend to group webs together only in areas of superabundant prey. The role of risk-sensitivity in the evolution of coloniality in spiders is discussed.  相似文献   

4.
Matriphagous young of a subsocial spider Amaurobius ferox exhibit collective predation during their post-maternal social period. In this paper, we examine functional mechanisms of collective predation by sibling groups. Predation efficiency increased with increasing number of individuals within each group. Solitary or paired individuals were generally unable to capture a 20 mg cricket. In larger groups, more individuals participated and captured the prey more quickly. Some siblings did not take part in paralyzing prey, but later consumed it. The proportion of these profiteers within a group increased with the group size. Presented with prey of different sizes (1, 5, or 40 mg), siblings were most aggressive towards each other when predating on 5 mg prey. Prey of this size could be captured by a single individual and yet were sufficiently large for more than one individual to eat. Siblings were much less aggressive towards one another during the capture of 40 mg prey, which require the assistance of other individuals to capture. By providing the same mass of prey in different numbers of individuals (a single cricket of 40 or 40 mg of first-instar crickets), we tested the influence of cooperation on the post-maternal social period. We found no difference in the development of young during the social period nor the timing of dispersal and the body mass of dispersing individuals. We conclude that the young of this subsocial animal increased predation efficiency by cooperative hunting after the mother's death.  相似文献   

5.
Summary Parent wheatears (Oenanthe oenanthe L.), foraging to meet their own needs and to provide food for a central place (CP, i.e. the nest), have to make decisions with respect to the configuration of foraging itineraries during round trips in the territory and to the directionality of their movements. These problems were studied in two pairs breeding in an agricultural area in central Swecen. All birds started a round trip by hunting from perches close to the CP and then moving to perches progressively further away in a roughly straight line until the first prey item was loaded. Loaded prey were either delivered singly (single prey loading: SPL) or with other prey (multiple prey loading: MPL). When the bird decided to return with several items to the CP, it abruptly changed the direction of its movements by making a left, right or backward turn and started to visit perches progressively nearer the CP, again following a roughly straight line. The decision to return continue loading was affected by the size of the prey as shown by the fact that prey carried singly was significantly larger than the first item in an MPL for all individuals. The distance to the CP also seemed to affect this decision as prey provisioned singly on average were collected significantly closer to the nest than the first item in an MPL by one pair. Both the size of prey loaded singly and load size of MPL increased with distance from the CP in one pair. The concentrated use of the territory in the other pair made any effect of distance difficult to detect. Great flexibility in foraging decisions was observed in cases when an individual, because of the size of the last prey captured, altered its decision to deliver an MPL and transported an SPL to the nest instead. On the basis of these results we propose a set of rules followed by predators such as wheatears when making decisions about delivering prey to a CP (Fig. 4).  相似文献   

6.
Individual-level variation in resource use occurs in a broad array of vertebrate and invertebrate taxa and may have important ecological and evolutionary implications. In this study, we measured the degree of individual-level variation in prey preference of the hunting wasp Trypoxylon albonigrum, which inhabits the Atlantic Forest in southeastern Brazil. This wasp captures several orb-weaving spider genera to provision nests. Individuals consistently specialized on a narrow subset of the prey taxa consumed by the population, indicating the existence of significant individual-level variation in prey preferences. The population niche was broader in the wet season in terms of both prey size and taxa. In the case of prey size, the population niche expansion was achieved via increased individual niche breadths, whereas in the case of prey taxa, individual niches remained relatively constrained, and the population niche expanded via increased interindividual variation. The observed pattern suggests the possibility of functional trade-offs associated with the taxon of the consumed prey. The nature of the trade-offs remains unknown, but they are likely related to learning in searching and/or handling prey. We hypothesize that by specializing on specific prey taxa, individuals increase foraging efficiency, reducing foraging time and ultimately increasing reproductive success.  相似文献   

7.
Optimal foraging theory predicts that individuals should become more opportunistic when intraspecific competition is high and preferred resources are scarce. This density-dependent diet shift should result in increased diet breadth for individuals as they add previously unused prey to their repertoire. As a result, the niche breadth of the population as a whole should increase. In a recent study, R. Svanb?ck and D. I. Bolnick confirmed that intraspecific competition led to increased population diet breadth in threespine stickleback (Gasterosteus aculeatus). However, individual diet breadth did not expand as resource levels declined. Here, we present a new method based on complex network theory that moves beyond a simple measure of diet breadth, and we use the method to reexamine the stickleback experiment. This method reveals that the population as a whole added new types of prey as stickleback density was increased. However, whereas foraging theory predicts that niche expansion is achieved by individuals accepting new prey in addition to previously preferred prey, we found that a subset of individuals ceased to use their previously preferred prey, even though other members of their population continued to specialize on the original prey types. As a result, populations were subdivided into groups of ecologically similar individuals, with diet variation among groups reflecting phenotype-dependent changes in foraging behavior as prey density declined. These results are consistent with foraging theory if we assume that quantitative trait variation among consumers affects prey preferences, and if cognitive constraints prevent individuals from continuing to use their formerly preferred prey while adding new prey.  相似文献   

8.
Stable isotope analysis of carbon and nitrogen is frequently used to study the diets and foraging ecology of marine predators. However, isotopic values may also be affected by an individual’s nutritional status and associated physiological processes. Here, we use C and N stable isotopes in blood and feathers of blue-footed booby chicks at the Galápagos Islands to examine how isotopic values are related to body condition and growth rate, and to assess the consistency in the isotope ratios of individuals during growth. Size dimorphism in blue-footed boobies provided an additional opportunity to examine how isotope ratios differ between sexes in relation to body size and growth rate. There was no significant difference between sexes but both C and N stable isotopes were significantly negatively related to the body condition of chicks. These data were consistent with individual variation in physiological processes affecting fractionation, although we cannot rule out the possibility that they were also influenced to some extent by population-level variation in the stable isotope ratios of prey fed to chicks, for instance related to prey size, depth or lipid content. Our results highlight the need for methods that take proper account of confounding physiological factors in isotopic studies of foraging ecology and diet.  相似文献   

9.
Chemotactile cues unintentionally left by animals can play a major role in predator–prey interactions. Specialized predators can use them to find their prey, while prey individuals can assess predation risk. However, little is known to date about the importance of chemotactile cues for generalist predators such as ants. Here, we investigated the response of a generalized predatory ant, Formica polyctena, to cues of two taxonomically distinct prey: a spider (Pisaura mirabilis) and a cricket (Nemobius sylvestris). In analogy, we studied whether crickets and spiders showed antipredator behavior in response to ant cues. When confronted with cues of the two prey species, Formica polyctena workers showed increased residence time and reduced movement speed, which suggests success-motivated searching behavior and thus increased foraging effort. The ants’ response did not differ between cues of the two prey species, coinciding with similar aggression and consumption rates of dead prey. However, the cuticular hydrocarbons, which likely resemble part of the potential cues, differed strongly between the species, with only few methyl-branched alkanes in common. This suggests that ants respond to multiple compounds left by other organisms with prey-search behavior. The two prey species, in turn, showed no detectable antipredator behavior in response to ant cues. Our study shows that ants can detect and respond to chemotactile cues of taxonomically and ecologically distinct prey species, probably to raise their foraging success. Using such chemotactile cues for prey detection may drastically increase their foraging efficiency and thus contribute to the high ecological success of ants.  相似文献   

10.
Little is known about how cryptic colouration influences prey search in near-surface aquatic habitats, although such knowledge is critical for understanding the adaptive value of colour crypsis as well as the perceptive constraints influencing foraging behaviour in these environments. This study had two main aims: (1) to investigate how background colour matching by prey affects foraging efficiency by brown trout parr and (2) to investigate how foraging ability on cryptic and conspicuous prey is affected by fish size at age (reflecting dominance). We addressed these questions by training wild brown trout parr to forage individually on live brown-coloured maggots on a cryptic (brown) or conspicuous (green) background. A separate experiment confirmed the absence of trout preference for brown or green substrate. The results show that prey background colour matching increases search time in brown trout. Search time generally decreased by learning, but conspicuous prey remained an easier prey to find throughout the six training trials. Thus, perceptive constraints appear to limit search efficiency for cryptic prey, suggesting that cryptic colouration can confer survival benefits to prey in natural environments. Smaller fish generally found conspicuous prey faster than larger individuals, whereas search time for cryptic prey was not influenced by body size. This suggests that smaller individuals compensate for inferior competitive ability by increasing foraging activity rather than improving cognitive ability. The technique of varying cognitive demands in behavioural tasks could be used more in future studies aimed at distinguishing motivational effects from cognitive explanations for variation in behavioural performance.  相似文献   

11.
Summary Leaf cutting was selected for an evaluation of ergonomic efficiency in the fungus-growing ant Atta sexdens because it is performed largely by medias (head width 1.8–2.8 mm), which attend to relatively few other functions and hence are less likely to be evolutionarily compromised by the demands of competing tasks (Fig. 1).Three alternative a priori criteria of evolutionary optimization were envisioned that are consistent with natura selection theory: the reduction of predation by means of defense and evasion during foraging, the minimization of foraging time through skill and running velocity during foraging, and energetic efficiency, which must be evaluated with reference to both the energetic construction costs of new workers and the energetic cost of maintenance of the existing worker force.In order to measure the performance of various size groups within the A. sexdens worker caste in isolation, I devised the pseudomutant technique: in each experiment, groups of foraging workers were thinned out until only individuals of one size class were left outside the nest. Measurements were then made of the rate of attraction, initiative in cutting, and performance of each size group at head-width intervals of 0.4 mm (Figs. 2, 3, and 7). Other needed measurements were made in body weight, oxygen consumption, and running velocity (Figs. 5, 6, and 8).The size-frequency distribution ff leaf cutters in the A. sexdens conforms closely to the optimum predicted by the energetic efficiency criterion for harder forms of vegetation, such as rhododendron leaves. The distribution is optimum with reference to both construction and maintenance costs. The difference between the predicted and actual modal size groups specializing on leaf cutting is 10% or less of the total size range of the sexdens worker caste.A model was next constructed in which attraction and initiative were allowed to evolve genetically to uniform maximum levels. The theoretical maximum efficiency levels obtained by this means were found to reside in the head-width 2.6–2.8 mm size class, or 8% from the actual maximally efficiency class (head width 2.2–2.4 mm). In the activity of leaf cutting, A. sexdens can therefore be said to be not only at an adaptive optimum but also, within at most a relatively narrow margin of error, to have been optimized in the course of evolution.  相似文献   

12.
Spinner dolphins (Stenella longirostris) feed on individual small (2–10 cm long) prey that undergo diel vertical migrations, presumably making them inaccessible to dolphins during the day. To examine how time, prey behavior, prey distribution, and energy needs constrain dolphin foraging, a calorimeter was used to measure the caloric content of prey items. These data were combined with information on prey distribution in the field and the energetic needs of dolphins to construct basic bioenergetic models predicting the total prey consumption and mean feeding rates of wild dolphins as well as potential prey preferences. The mean caloric density of mesopelagic animals from Hawaii was high (2,837 cal/g wet weight for shrimps, squids, and myctophid fishes). Their total caloric content, however, was low because of their small size. Energy value of prey and energetic needs of spinner dolphins were used to examine the effect of time and energy constraints on dolphin foraging. The results predict that spinner dolphins need to consume an estimated minimum of 1.25 large prey items per minute to meet their maintenance energy needs. If the additional energy costs of foraging are considered, the estimated necessary foraging rate is predicted to increase only slightly when large prey are consumed. If smaller prey are consumed, the total energy demand may be twice the basic maintenance value. Prey density and size are predicted to be important in determining if dolphins can forage successfully, meeting their energetic needs. The prey size predictions compare well with results from previous gut content studies and from stomach contents of a recently stranded spinner dolphin that had enough prey in its stomach to meet its estimated basic maintenance energy needs for a day. Finally, the results suggest that spinner dolphins are time and therefore efficiency limited rather than being limited by the total amount of available prey. This may explain the diel migration exhibited by spinner dolphins that allows them to follow the movements of their prey and presumably maximizes their foraging time.Communicated by P.W. Sammarco, Chauvin  相似文献   

13.
Graded recruitment in a ponerine ant   总被引:6,自引:0,他引:6  
Summary (1) The giant tropical ant, Paraponera clavata, exhibits graded recruitment responses, depending on the type, quantity, and quality of a food source. More ants are initially recruited to a large prey or scavenge item than to a large quantity of sugar water. (2) Individual ants encountering prey items gauge the size and/or unwieldiness of the item, regardless of the weight, when determining whether to recruit. (3) The trail pheromone of this species is often used as an orientation device by individual ants, independent of recruitment of nestmates. (4) It is proposed that the foraging behavior of P. clavata represents one of the evolutionary transitions from the independent foraging activities of the primitive ants to the highly coordinated cooperative foraging activities of many higher ants.  相似文献   

14.
Sea otter, Enhydra lutris, predation had no detectable effect on abundance and size distribution of deep-burrowing bivalve prey in the Elkhorn Slough, California, USA. Up to 23 otters were present for 6 mo of the study period (March 1984 through April 1985). This is in contrast to previous studies of sea otter predation, especially on the shallow-burrowing Pismo clam Tivela stultorum, which can be found along the wave-exposed coast near the slough. The deep-burrowing clams Tresus nuttallii and Saxidomus nuttalli made up 61% of the prey taken in the slough, and are more difficult for otters to excavate than Pismo clams. The occurrence of foraging otters was highest in an area where the two bivalve prey were extremely abundant (18 individuals m–2). However, the otters did not selectively prey on the largest clams available within the study sight, but foraged preferentially in a patch of smaller individuals where bivalve burrow depth was restricted by the presence of a dense clay layer. This foraging strategy maximized the amount of prey biomass obtained per unit volume of sediment excavated. Our findings suggest that in soft-sediment habitats deep-burrowing bivalves may be more resistant to otter predation than shallower burrowers.  相似文献   

15.
Summary Foraging by a social wren, Campylorhynchus nuchalis (Troglodytidae), in a tropical savanna habitat is not enhanced by aggregation. Data for marked individuals show that solitary foraging results in a higher capture rate than foraging near others. We find no evidence of imitative foraging, as individuals actively avoid successful foragers following a capture and successful foragers do not restrict their search to recently productive stations or techniques. Captures are seldom temporally clumped, and clumping is probably not pronounced enough to favor imitation. Juveniles show no greater tendency to respond to captures of others, or to succeed in foraging in a group, than do adults. Aggregation is probably disadvantageous for foraging because of dispersed, scarce, cryptic, and noneruptive prey and because of the searching technique of these foliage-gleaning insectivores. If predator avoidance is enhanced by aggregation, it does not result in either increased survival or increased foraging efficiency in large groups, even by juveniles.  相似文献   

16.
Recently emerged brook charr (Salvelinus fontinalis) foraging in still-water pools along the sides of streams are either active, feeding on insects from the upper portion of the water column away from the stream bank, or sedentary, feeding on crustaceans emerging from the hyporheic zone near the stream bank. We tested whether the frequency of movement displayed by individual brook charr searching for prey in the field was related to the relative volume of the telencephalon, a brain region involved with movement and space use in fishes. Movement of individuals searching for prey was quantified in the field, individuals were captured and volumes of the telencephalon and of the olfactory bulbs, a brain region neighbouring the telencephalon but not implicated in space use, were measured. Individuals with larger telencephalon volumes moved more frequently on average while searching for prey in the field than did individuals with smaller telencephalon volumes. The frequency of movement was unrelated to differences in the volume of the olfactory bulbs, suggesting that the relationship between telencephalon volume and movement was not a consequence of differences in overall brain size. Demonstrating a correlation between foraging behaviour and brain morphology for brook charr exhibiting different foraging tactics suggests that diversification in brain structure and function could be important aspects of the foraging specialization believed to occur during early stages in the evolution and development of resource polymorphisms.  相似文献   

17.
Summary The social dynamics of killer whales (Orcinus orca) that hunt marine mammals are apparently highly flexible, though strong individual associations do exist. The killer whales at Punta Norte offer an unusually detailed view of association patterns and foraging behaviour, and suggest a pattern of behaviour that optimizes hunting efficiency with exception only to strong associations between some individuals and the provisioning and training of offspring. The main points from this paper are as follows: First, hunting effort was concentrated where the capture rate was greatest. All pods selectively attacked the prey type for which they had the highest capture rate. The amount of southern sea lion prey captured was approximately equal to the estimated minimum energetic requirement for killer whales based on weight. Secondly, one whale in each pod did the majority of the hunting, and then provisioned the others in the pod. It was clear on numerous occasions that food was shared. A review of reported incidences of killer wales taking marine mammal prey suggests that it is common for a subset of the individuals in a pod to hunt. These results are discussed in the context of the evolution of foraging behaviour.Offprint requests to: A.R. Hoelzel at the first address  相似文献   

18.
Interactions between foragers may seriously affect individual foraging efficiency. In a laboratory study of handling time, prey value and prey-size preference in northern pike and signal crayfish, we show that risk of intraspecific interactions between predators does not affect handling time or value of prey. However, the presence of agonistic intraspecific interactors shifts prey-size preference in these predators. Neither northern pike nor signal crayfish foraging alone show a prey-size preference, while pike foraging among conspecifics prefer small prey, and crayfish foraging in groups prefer large prey. We ascribe the different outcomes in prey preference to differences in susceptibility to interactions: northern pike under risk avoid large prey to avoid long handling times and the associated risk of interactions, while signal crayfish foraging among conspecifics may defend themselves and their prey during handling, and thus select prey to maximise investment. In addition, the value of pike prey (roach) is low for very small prey, maximises for small prey, and then decreases monotonically for larger prey, while crayfish prey (pond snail) value is low for very small prey, has a maximum at small prey, but does not decrease as much for larger prey. Therefore, a large and easily detected snail prey provides a crayfish with as much value as a small prey. We conclude that interaction risk and predator density affect prey-size preference differently in these aquatic predators, and therefore has different potential effects on prey-size structure and population and community dynamics. Received: 4 October 1999 / Revised: 20 March 2000 / Accepted: 27 May 2000  相似文献   

19.
Social animals are extraordinarily diverse and ecologically abundant. In understanding the success of complex animal societies, task differentiation has been identified as a central mechanism underlying the emergence and performance of adaptive collective behaviors. In this study, we explore how individual differences in behavior and body size determine task allocation in the social spider Stegodyphus dumicola. We found that individuals with high body condition indices were less likely to participate in prey capture, and individuals’ tendency to engage in prey capture was not associated with either their behavioral traits or body size. No traits were associated with individuals’ propensity to participation in web repair, but small individuals were more likely to engage in standard web-building. We also discovered consistent, differences among colonies in their collective behavior (i.e., colony-level personality). At the colony level, within-colony variation in behavior (aggressiveness) and body size were positively associated with aggressive foraging behavior. Together, our findings reveal a subtly complex relationship between individual variation and collective behavior in this species. We close by comparing the relationship between individual variation and social organization in nine species of social spider. We conclude that intraspecific variation is a major force behind the social organization of multiple independently derived lineages of social spider.  相似文献   

20.
Knowledge of the structure of networks of social interactions is important for understanding the evolution of cooperation, transmission of disease, and patterns of social learning, yet little is known of how environmental, ecological, or behavioural factors relate to such structures within groups. We observed grooming, dominance, and foraging competition interactions in eight groups of wild meerkats (Suricata suricatta) and constructed interaction networks for each behaviour. We investigated relationships between networks for different social interactions and explored how group attributes (size and sex ratio), individual attributes (tenure of dominants), and ecological factors (ectoparasite load) are related to variation in network structure. Network structures varied within a group according to interaction type. Further, network structure varied predictably with group attributes, individual attributes, and ecological factors. Networks became less dense as group size increased suggesting that individuals were limited in their number of partners. Groups with more established dominant females were more egalitarian in their grooming and foraging competition interactions, but more despotic in their dominance interactions. The distribution of individuals receiving grooming became more skewed at higher parasite loads, but more equitable at low parasite loads. We conclude that the pattern of interactions between members of meerkat groups is not consistent between groups but instead depends on general attributes of the group, the influence of specific individuals within the group, and ecological factors acting on group members. We suggest that the variation observed in interaction patterns between members of meerkat groups may have fitness consequences both for individual group members and the group itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号