首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fisheries bycatch is a critical threat to sea turtle populations worldwide, particularly because turtles are vulnerable to multiple gear types. The Canary Current is an intensely fished region, yet there has been no demographic assessment integrating bycatch and population management information of the globally significant Cabo Verde loggerhead turtle (Caretta caretta) population. Using Boa Vista island (Eastern Cabo Verde) subpopulation data from capture–recapture and nest monitoring (2013–2019), we evaluated population viability and estimated regional bycatch rates (2016–2020) in longline, trawl, purse-seine, and artisanal fisheries. We further evaluated current nesting trends in the context of bycatch estimates, existing hatchery conservation measures, and environmental (net primary productivity) variability in turtle foraging grounds. We projected that current bycatch mortality rates would lead to the near extinction of the Boa Vista subpopulation. Bycatch reduction in longline fisheries and all fisheries combined would increase finite population growth rate by 1.76% and 1.95%, respectively. Hatchery conservation increased hatchling production and reduced extinction risk, but alone it could not achieve population growth. Short-term increases in nest counts (2013–2021), putatively driven by temporary increases in net primary productivity, may be masking ongoing long-term population declines. When fecundity was linked to net primary productivity, our hindcast models simultaneously predicted these opposing long-term and short-term trends. Consequently, our results showed conservation management must diversify from land-based management. The masking effect we found has broad-reaching implications for monitoring sea turtle populations worldwide, demonstrating the importance of directly estimating adult survival and that nest counts might inadequately reflect underlying population trends.  相似文献   

2.
Putting Longline Bycatch of Sea Turtles into Perspective   总被引:1,自引:0,他引:1  
Abstract:  Although some sea turtle populations are showing encouraging signs of recovery, others continue to decline. Reversing population declines requires an understanding of the primary factor(s) that underlie this persistent demographic trend. The list of putative factors includes direct turtle and egg harvest, egg predation, loss or degradation of nesting beach habitat, fisheries bycatch, pollution, and large-scale changes in oceanographic conditions and nutrient availability. Recently, fisheries bycatch, in particular bycatch from longline fisheries, has received increased attention and has been proposed as a primary source of turtle mortality. We reviewed the existing data on the relative impact of longline bycatch on sea turtle populations. Although bycatch rates from individual longline vessels are extremely low, the amount of gear deployed by longline vessels suggests that cumulative bycatch of turtles from older age classes is substantial. Current estimates suggest that even if pelagic longlines are not the largest single source of fisheries-related mortality, longline bycatch is high enough to warrant management actions in all fleets that encounter sea turtles. Nevertheless, preliminary data also suggest that bycatch from gillnets and trawl fisheries is equally high or higher than longline bycatch with far higher mortality rates. Until gillnet and trawl fisheries are subject to the same level of scrutiny given to pelagic longlines, our understanding of the overall impact of fisheries bycatch on vulnerable sea turtle populations will be incomplete.  相似文献   

3.
Although holistic conservation addressing all sources of mortality for endangered species or stocks is the preferred conservation strategy, limited budgets require a criterion to prioritize conservation investments. We compared the cost‐effectiveness of nesting site and at‐sea conservation strategies for Pacific leatherback turtles (Dermochelys coriacea). We sought to determine which conservation strategy or mix of strategies would produce the largest increase in population growth rate per dollar. Alternative strategies included protection of nesters and their eggs at nesting beaches in Indonesia, gear changes, effort restrictions, and caps on turtle takes in the Hawaiian (U.S.A.) longline swordfish fishery, and temporal and area closures in the California (U.S.A.) drift gill net fishery. We used a population model with a biological metric to measure the effects of conservation alternatives. We normalized all effects by cost to prioritize those strategies with the greatest biological effect relative to its economic cost. We used Monte Carlo simulation to address uncertainty in the main variables and to calculate probability distributions for cost‐effectiveness measures. Nesting beach protection was the most cost‐effective means of achieving increases in leatherback populations. This result creates the possibility of noncompensatory bycatch mitigation, where high‐bycatch fisheries invest in protecting nesting beaches. An example of this practice is U.S. processors of longline tuna and California drift gill net fishers that tax themselves to finance low‐cost nesting site protection. Under certain conditions, fisheries interventions, such as technologies that reduce leatherback bycatch without substantially decreasing target species catch, can be cost‐effective. Reducing bycatch in coastal areas where bycatch is high, particularly adjacent to nesting beaches, may be cost‐effective, particularly, if fisheries in the area are small and of little commercial value. Rentabilidad de Estrategias de Conservación Alternativas Aplicadas a Tortugas Laúd del Pacífico  相似文献   

4.
Conservation of migratory species exhibiting wide-ranging and multidimensional behaviors is challenged by management efforts that only utilize horizontal movements or produce static spatial–temporal products. For the deep-diving, critically endangered eastern Pacific leatherback turtle, tools that predict where turtles have high risks of fisheries interactions are urgently needed to prevent further population decline. We incorporated horizontal–vertical movement model results with spatial–temporal kernel density estimates and threat data (gear-specific fishing) to develop monthly maps of spatial risk. Specifically, we applied multistate hidden Markov models to a biotelemetry data set (n = 28 leatherback tracks, 2004–2007). Tracks with dive information were used to characterize turtle behavior as belonging to 1 of 3 states (transiting, residential with mixed diving, and residential with deep diving). Recent fishing effort data from Global Fishing Watch were integrated with predicted behaviors and monthly space-use estimates to create maps of relative risk of turtle–fisheries interactions. Drifting (pelagic) longline fishing gear had the highest average monthly fishing effort in the study region, and risk indices showed this gear to also have the greatest potential for high-risk interactions with turtles in a residential, deep-diving behavioral state. Monthly relative risk surfaces for all gears and behaviors were added to South Pacific TurtleWatch (SPTW) ( https://www.upwell.org/sptw ), a dynamic management tool for this leatherback population. These modifications will refine SPTW's capability to provide important predictions of potential high-risk bycatch areas for turtles undertaking specific behaviors. Our results demonstrate how multidimensional movement data, spatial–temporal density estimates, and threat data can be used to create a unique conservation tool. These methods serve as a framework for incorporating behavior into similar tools for other aquatic, aerial, and terrestrial taxa with multidimensional movement behaviors.  相似文献   

5.
Abstract: Many populations of marine megafauna, including seabirds, sea turtles, marine mammals, and elasmobranchs, have declined in recent decades due largely to anthropogenic mortality. To successfully conserve these long‐lived animals, efforts must be prioritized according to feasibility and the degree to which they address threats with the highest relative impacts on population dynamics. Recently, Wilcox and Donlan (2007, Frontiers in Ecology and the Environment) and Donlan and Wilcox (2008, Biological Invasions) proposed a conservation strategy of “compensatory mitigation” in which fishing industries offset bycatch of seabirds and sea turtles by funding eradication of invasive mammalian predators from the terrestrial reproductive sites of these marine animals . Although this is a creative and conceptually compelling approach, we find it flawed as a conservation tool because it has narrow applicability among marine megafauna, it does not address the most pervasive threats to marine megafauna, and it is logistically and financially infeasible. Invasive predator eradication does not adequately offset the most pressing threat to most marine megafauna populations—fisheries bycatch. For seabird populations, fisheries bycatch and invasive predators infrequently are overlapping threats. Invasive predators have limited population‐level impacts on sea turtles and marine mammals and no impacts on elasmobranchs, all of which are threatened by bycatch. Implementing compensatory mitigation in marine fisheries is unrealistic due to inadequate monitoring, control, and surveillance in the majority of fleets. Therefore, offsetting fisheries bycatch with eradication of invasive predators would be less likely to reverse population declines than reducing bycatch. We recommend that efforts to mitigate bycatch in marine capture fisheries should address multiple threats to sensitive bycatch species groups, but these efforts should first institute proven bycatch avoidance and reduction methods before considering compensatory mitigation.  相似文献   

6.
Harnessing the economic potential of the oceans is key to combating poverty, enhancing food security, and strengthening economies. But the concomitant risk of intensified resource extraction to migratory species is worrying given these species contribute to important ecological processes, often underpin alternative livelihoods, and are mostly already threatened. We thus sought to quantify the potential conflict between key economic activities (5 fisheries and hydrocarbon exploitation) and sea turtle migration corridors in a region with rapid economic development: southern and eastern Africa. We satellite tracked the movement of 20 loggerhead (Caretta caretta) and 14 leatherback (Dermochelys coriacea) turtles during their postnesting migrations. We used movement‐based kernel density estimation to identify migration corridors for each species. We overlaid these corridors on maps of the distribution and intensity of economic activities, quantified the extent of overlap and threat posed by each activity on each species, and compared the effects of activities. These results were compared with annual bycatch rates in the respective fisheries. Both species’ 3 corridors overlapped most with longline fishing, but the effect was worse for leatherbacks: their bycatch rates of approximately 1500/year were substantial relative to the regional population size of <100 nesting females/annum. This bycatch rate is likely slowing population growth. Artisanal fisheries may be of greater concern for loggerheads than for leatherbacks, but the population appears to be withstanding the high bycatch rates because it is increasing exponentially. The hydrocarbon industry currently has a moderately low impact on both species, but mining in key areas (e.g., Southern Mozambique) may undermine >50 years of conservation, potentially affecting >80% of loggerheads, 33% of the (critically endangered) leatherbacks, and their nesting beaches. We support establishing blue economies (i.e., generating wealth from the ocean), but oceans need to be carefully zoned and responsibly managed in both space and time to achieve economic (resource extraction), ecological (conservation, maintenance of processes), and social (maintenance of alternative livelihood opportunities, alleviate poverty) objectives.  相似文献   

7.
The species composition, catch and mortality rates of sea turtles captured incidentally by the tiger prawn fishery on Australia's northern coast in 1989 and 1990 were estimated by monitoring the fishery's catch. In 1990, the delayed rate of mortality from damage was estimated and the size composition was measured. Five species of turtles were captured: the flatback (Natator depressa, 59% of the total), loggerhead (Caretta caretta, 10%), olive ridley (Lepidochelys olivacea, 12%), green turtle (Chelonia mydas, 8%) and hawksbill (Eretmochelys imbricata, 5%). The turtle catches varied with water depth: the highest catch rates (0.068±0.006 turtles per trawl) were from trawls in water between 20 and 30 m deep, relatively few turtles (10%) were captured in water deeper than 40 m (25% of trawls). Catch rates varied with time of year: the highest catch rates were 0.098 (±0.013) turtles per trawl in winter. There was no significant difference in the overall catch rate (2= 0.047; p=0.8111; df=1) but a significant difference in mortality rate (2= 3.99; p<0.05; df=1) between the two years. The incidence of capture in the commercial fishery was 0.051 (±0.003) turtles per trawl towed for about 180 min, with 0.007 (±0.001) turtles per trawl drowning in the nets. There were no significant differences in the catch and mortality rates between the two years for any of the turtle species except the loggerhead, which had a significantly (2 = 11.029; p=0.0013; df=1) lower catch rate in 1990 (0.002±0.001 turtles per trawl) than in 1989 (0.008±0.002 turtles per trawl), and a significantly higher mortality in 1990 (33%) than in 1989 (19%). Catch rates and mortality varied between the species: the flatback had the highest catch rate (0.030±0.002 turtles per trawl) but the lowest mortality (10.9%); the loggerhead had a catch rate of 0.005±0.001 turtles per trawl, and high mortality (21.9%); the olive ridley had a catch rate of 0.006±0.001 turtles per trawl and a low mortality (12.5%); the green turtle's catch rate was 0.004±0.001 per trawl and mortality 12.0%; the hawksbill had the lowest catch rate (0.002±0.001 turtles per trawl) but highest mortality (26.4%). Based on the fishing effort (27 049 d for 1989 and 25 746 d for 1990), we estimate that 5 503 (±424) turtles were caught and returned to the sea in 1989 and 5 238 (±404) in 1990, of which 567±140 drowned in 1989 and 943±187 in 1990. In 1990, an estimated 25% of all captured turtles suffered some non-lethal damage; an estimated 21% of turltes were captured comatose and 4% were injured. We conclude that, considering other threats, trawl-induced drowning is not the major impact on turtle populations in northern Australia, but that measures to reduce drowning and delayed mortality would be desirable.  相似文献   

8.
Abstract: Little is known about how specific anthropogenic hazards affect the biology of organisms. Quantifying the effect of regional hazards is particularly challenging for species such as sea turtles because they are migratory, difficult to study, long lived, and face multiple anthropogenic threats. Expert elicitation, a technique used to synthesize opinions of experts while assessing uncertainty around those views, has been in use for several decades in the social science and risk assessment sectors. We conducted an internet‐based survey to quantify expert opinion on the relative magnitude of anthropogenic hazards to sea turtle populations at the regional level. Fisheries bycatch and coastal development were most often ranked as the top hazards to sea turtle species in a geographic region. Nest predation and direct take followed as the second and third greatest threats, respectively. Survey results suggest most experts believe sea turtles are threatened by multiple factors, including substantial at‐sea threats such as fisheries bycatch. Resources invested by the sea turtle community, however, appear biased toward terrestrial‐based impacts. Results from the survey are useful for conservation planning because they provide estimates of relative impacts of hazards on sea turtles and a measure of consensus on the magnitude of those impacts among researchers and practitioners. Our survey results also revealed patterns of expert bias, which we controlled for in our analysis. Respondents with no experience with respect to a sea turtle species tended to rank hazards affecting that sea turtle species higher than respondents with experience. A more‐striking pattern was with hazard‐based expertise: the more experience a respondent had with a specific hazard, the higher the respondent scored the impact of that hazard on sea turtle populations. Bias‐controlled expert opinion surveys focused on threatened species and their hazards can help guide and expedite species recovery plans.  相似文献   

9.
We investigated cause-specific temporal and spatial trends in sea turtle strandings in the Hawaiian Archipelago. Five species of sea turtle were recorded in 3,861 strandings over a 22-year period (1982–2003). Green turtles comprised 97% of these strandings with size and gender composition reflecting the demographic structure of the resident green turtle population and relative green turtle abundance in Hawaiian waters. The cause of strandings was determined by necropsy based on a complete gross external and internal examination. Totally 75% of the 3,732 green turtle strandings were from Oahu where strandings occur year-round. The most common known cause of the green turtle strandings was the tumour-forming disease, fibropapillomatosis (28%) followed by hook-and-line fishing gear-induced trauma (7%), gillnet fishing gear-induced trauma (5%), boat strike (2.5%), and shark attack (2.7%). Miscellaneous causes comprised 5.4% of strandings whereas 49% of green turtle strandings could not be attributed to any known cause. Green turtle strandings attributable to boat strike were more likely from Kauai and Oahu while fibropapilloma strandings were more likely from Oahu and Maui. Hook-and-line gear strandings were more likely from Oahu due to higher per capita inshore fishing effort. The specific mortality rate (conditional probability) for fibropapillomatosis was 88%, 69% for gillnet gear and 52% for hook-and-line gear. The probability of a dead green turtle stranding increased from 1982 but levelled off by the mid-1990s. The declining mortality risk was because the prevalence and severity of fibropapillomatosis has decreased recently and so has the mortality risk attributable to gillnet gear. Despite exposure to disease and inshore fishing gears, the Hawaiian green turtle stock continues to recover following protection since the late 1970s. Nevertheless, measures to reduce incidental capture of sea turtles in coastal Hawaiian fisheries would be prudent, especially since strandings attributable to hook-and-line fishing gear have increased steadily since 1982.  相似文献   

10.
We present data spanning approximately 100 years regarding the spatial and temporal occurrence of marine turtle sightings and strandings in the northeast Atlantic from two public recording schemes and demonstrate potential signals of changing population status. Records of loggerhead (n = 317) and Kemp’s ridley (n = 44) turtles occurring on the European continental shelf were most prevalent during the autumn and winter, when waters were coolest. In contrast, endothermic leatherback turtles (n = 1,668) were most common during the summer. Analysis of the spatial distribution of hard-shell marine turtle sightings and strandings highlights a pattern of decreasing records with increasing latitude. The spatial distribution of sighting and stranding records indicates that arrival in waters of the European continental shelf is most likely driven by North Atlantic current systems. Future patterns of spatial-temporal distribution, gathered from the periphery of juvenile marine turtles habitat range, may allow for a broader assessment of the future impacts of global climate change on species range and population size.  相似文献   

11.
Abstract:  Fishers, scientists, and resource managers have made substantial progress in reducing bycatch of sea turtles, seabirds, and marine mammals through physical modifications to fishing gear. Many bycatch-avoidance measures have been developed and tested successfully in controlled experiments, which have led to regulated implementation of modified or new fishing gear. Nevertheless, successful bycatch experiments may not translate to effective mitigation in commercial fisheries because experimental conditions are relaxed in commercial fishing operations. Such a difference between experimental results and real-world results with fishing fleets may have serious consequences for management and conservation of protected species taken as bycatch. We evaluated preimplementation experimental measures and postimplementation efficacy from primary and gray literature for three case studies: acoustic pingers that warn marine mammals of the presence of gill nets, turtle excluder devices that reduce bycatch of turtles in trawls, and various measures to reduce seabird bycatch in longlines. Three common themes to successful implementation of bycatch reduction measures are long-standing collaborations among the fishing industry, scientists, and resource managers; pre- and postimplementation monitoring; and compliance via enforcement and incentives.  相似文献   

12.
Gillnet fisheries are widely thought to pose a conservation threat to many populations of marine mammals, seabirds, and turtles. Gillnet fisheries also support a significant proportion of small‐scale fishing communities worldwide. Despite a large number of studies on protected‐species bycatch in recent decades, relatively few have examined the underlying causes of bycatch and fewer still have considered the issue from a multitaxon perspective. We used 3 bibliographic databases and one search engine to identify studies by year of publication and taxon. The majority of studies on the mechanisms of gillnet bycatch are not accessible through the mainstream published literature. Many are reported in technical papers, government reports, and university theses. We reviewed over 600 published and unpublished studies of bycatch in which causal or correlative factors were considered and identified therein 28 environmental, operational, technical, and behavioral factors that may be associated with high or low bycatch rates of the taxa. Of the factors considered, 11 were associated with potential bycatch reduction in 2 out of the 3 taxa, and 3 factors (water depth, mesh size, and net height) were associated with trends in bycatch rate for all 3 taxa. These findings provide a basis to guide further experimental work to test hypotheses about which factors most influence bycatch rates and to explore ways of managing fishing activities and improving gear design to minimize the incidental capture of species of conservation concern while ensuring the viability of the fisheries concerned.  相似文献   

13.
The interspecific preferences of fishes for different depths and habitats suggest fishers could avoid unwanted catches of some species while still effectively targeting other species. In pelagic longline fisheries, albacore (Thunnus alalunga) are often caught in relatively cooler, deeper water (>100 m) than many species of conservation concern (e.g., sea turtles, billfishes, and some sharks) that are caught in shallower water (<100 m). From 2007 to 2011, we examined the depth distributions of hooks for 1154 longline sets (3,406,946 hooks) and recorded captures by hook position on 2642 sets (7,829,498 hooks) in the American Samoa longline fishery. Twenty‐three percent of hooks had a settled depth <100 m. Individuals captured in the 3 shallowest hook positions accounted for 18.3% of all bycatch. We analyzed hypothetical impacts for 25 of the most abundant species caught in the fishery by eliminating the 3 shallowest hook positions under scenarios with and without redistribution of these hooks to deeper depths. Distributions varied by species: 45.5% (n = 10) of green sea turtle (Chelonia mydas), 59.5% (n = 626) of shortbill spearfish (Tetrapturus angustirostris), 37.3% (n = 435) of silky shark (Carcharhinus falciformis), and 42.6% (n = 150) of oceanic whitetip shark (C. longimanus) were caught on the 3 shallowest hooks. Eleven percent (n = 20,435) of all tuna and 8.5% (n = 10,374) of albacore were caught on the 3 shallowest hooks. Hook elimination reduced landed value by 1.6–9.2%, and redistribution of hooks increased average annual landed value relative to the status quo by 5–11.7%. Based on these scenarios, redistribution of hooks to deeper depths may provide an economically feasible modification to longline gear that could substantially reduce bycatch for a suite of vulnerable species. Our results suggest that this method may be applicable to deep‐set pelagic longline fisheries worldwide. Compensaciones entre Captura, Captura Accesoria y Valores Asentados en la Pesquera de Línea Larga de Samoa Americana  相似文献   

14.
Leatherback turtles, Dermochelys coriacea, are highly migratory, spending most of their lives submerged or offshore where their feeding habits are difficult to observe. In order to elucidate the foraging ecology of leatherbacks off Massachusetts, USA, stable isotope analyses were performed on leatherback tissues and prey collected from 2005 to 2009. Stable isotope ratios of nitrogen and carbon were determined in whole blood, red blood cells, blood plasma, muscle, liver, and skin from adult male, female, and subadult leatherbacks. Isotopic values were analyzed by body size (curved carapace length) and grouped by sex, and groups were tested for dietary differences. Gelatinous zooplankton samples were collected from leatherback foraging grounds using surface dip nets and stratified net tows, and prey contribution to leatherback diet was estimated using a two-isotope Bayesian mixing model. Skin and whole blood δ13C values and red blood cell δ15N values were correlated with body size, while δ13C values of red blood cells, whole blood, and blood plasma differed by sex. Mixing model results suggest that leatherbacks foraging off Massachusetts primarily consume the scyphozoan jellyfishes, Cyanea capillata and Chrysaora quinquecirrha, and ctenophores, while a smaller proportion of their diet comes from holoplanktonic salps and sea butterflies (Cymbuliidae). Our results are consistent with historical observations of leatherback turtles feeding on scyphozoan prey in this region and offer new insight into size- and sex-related differences in leatherback diet.  相似文献   

15.
Abstract: Within 19 years the nesting population of leatherback turtles (Dermochelys coriacea) at Parque Nacional Marino Las Baulas declined from 1500 turtles nesting per year to about 100. We analyzed the effects of fishery bycatch and illegal harvesting (poaching) of eggs on this population. We modeled the population response to different levels of egg harvest (90, 75, 50, and 25%) and the effect of eradicating poaching at different times during the population decline. We compared effects of 90% poaching with those of 20% adult mortality because both of these processes were present in the population at Las Baulas. There was a stepwise decline in number of nesting turtles at all levels of egg harvest. Extirpation times for different levels of poaching ranged from 45 to 282 years. The nesting population declined more slowly and survived longer with 20% adult mortality (146 years) than it did with 90% poaching (45 years). Time that elapsed until poaching stopped determined the average population size at which the population stabilized, ranging from 90 to 420 nesting turtles. Our model predicted that saving clutches lost naturally would restore the population when adult mortality rates were low and would contribute more to population recovery when there were short remigration intervals between nesting seasons and a large proportion of natural loss of clutches. Because the model indicated that poaching was the most important cause of the leatherback decline at Las Baulas, protecting nests on the beach and protecting the beach from development are critical for survival of this population. Nevertheless, the model predicted that current high mortality rates of adults will prevent population recovery. Therefore, protection of the beach habitat and nests must be continued and fishery bycatch must be reduced to save this population.  相似文献   

16.
The mangrove channels of Bahía Magdalena, Mexico, are important developmental areas for juvenile green, or black turtles (Chelonia mydas), but incidental bycatch and illegal hunting threaten population persistence. We studied size distribution, condition index (CI), growth rates, and mortality of black turtles in Estero Banderitas, the largest mangrove channel in Bahía Magdalena, to supply information for the development of effective conservation strategies. A total of 213 black turtles (including 88 recaptures) were caught in entanglement nets between July 2000 and July 2003. Average yearly catch per unit of effort (CPUE, 1 unit: 100 m of net fishing for 12 h) dropped during the study from 2.19 to 0.76. About 97% of all turtles were considered juveniles, average size was 54.6 ± 9.5 cm. Turtles were significantly smaller at the head of Estero Banderitas than in the central part of the Estero and in the open bay, indicating size-based habitat segregation. Average growth rate was 1.62 cm/year and declined with increasing size. Growth was seasonal and three times higher in summer (0.28 cm/month) than in winter (0.09 cm/month), body CI was also significantly higher during the summer months. A seasonalized von Bertalanffy growth function (VBGF) was used to model growth for the size range studied (43–73 cm SCL), with the parameters: L = 101 cm SCL; K = 0.04 year−1; t 0 = 0; C = 0.4 and t s = 0.75. Growth data indicate that black turtles may spend up to 20 years in Bahía Magdalena before they reach maturity at about 77 cm SCL. The total mortality estimate (Z) from the length converted catch curve was 0.16, corresponding to a yearly survival probability of 0.85.  相似文献   

17.
Globally, 6.4 million tons of fishing gear are lost in the oceans annually. This gear (i.e., ghost nets), whether accidently lost, abandoned, or deliberately discarded, threatens marine wildlife as it drifts with prevailing currents and continues to entangle marine organisms indiscriminately. Northern Australia has some of the highest densities of ghost nets in the world, with up to 3 tons washing ashore per kilometer of shoreline annually. This region supports globally significant populations of internationally threatened marine fauna, including 6 of the 7 extant marine turtles. We examined the threat ghost nets pose to marine turtles and assessed whether nets associated with particular fisheries are linked with turtle entanglement by analyzing the capture rates of turtles and potential source fisheries from nearly 9000 nets found on Australia's northern coast. Nets with relatively larger mesh and smaller twine sizes (e.g., pelagic drift nets) had the highest probability of entanglement for marine turtles. Net size was important; larger nets appeared to attract turtles, which further increased their catch rates. Our results point to issues with trawl and drift‐net fisheries, the former due to the large number of nets and fragments found and the latter due to the very high catch rates resulting from the net design. Catch rates for fine‐mesh gill nets can reach as high as 4 turtles/100 m of net length. We estimated that the total number of turtles caught by the 8690 ghost nets we sampled was between 4866 and 14,600, assuming nets drift for 1 year. Ghost nets continue to accumulate on Australia's northern shore due to both legal and illegal fishing; over 13,000 nets have been removed since 2005. This is an important and ongoing transboundary threat to biodiversity in the region that requires attention from the countries surrounding the Arafura and Timor Seas. Entender las Fuentes y Efectos de Equipo de Pesca Abandonado, Perdido y Desechado sobre las Tortugas Marinas del Atlántico Norte  相似文献   

18.
Abstract:  Bycatch—the incidental catch of nontarget species—is a principal concern in marine conservation and fisheries management. In the eastern Pacific Ocean tuna fishery, a large fraction of nonmammal bycatch is captured by purse-seine gear when nets are deployed around floating objects. We examined the spatial distribution of a dominant species in this fishery's bycatch, the apex predator silky shark ( Carcharhinus falciformis ), from 1994 to 2005 to determine whether spatial closures, areas where fishing is prohibited, might effectively reduce the bycatch of this species. We then identified candidate locations for fishery closures that specifically considered the trade-off between bycatch reduction and the loss of tuna catch and evaluated ancillary conservation benefits to less commonly captured taxa. Smoothed spatial distributions of silky shark bycatch did not indicate persistent small areas of especially high bycatch for any size class of shark over the 12-year period. Nevertheless, bycatch of small silky sharks (<90 cm total length) was consistently higher north of the equator during all years. On the basis of this distribution, we evaluated nearly 100 candidate closure areas between 5°N and 15°N that could have reduced, by as much as 33%, the total silky shark bycatch while compromising only 12% of the tuna catch. Although silky sharks are the predominant species of elasmobranchs caught as bycatch in this fishery, closures also suggested reductions in the bycatch of other vulnerable taxa, including other shark species and turtles. Our technique provides an effective method with which to balance the costs and benefits of conservation in fisheries management. Spatial closures are a viable management tool, but implementation should be preceded by careful consideration of the consequences of fishing reallocation.  相似文献   

19.
Fisheries bycatch, or incidental take, of large vertebrates such as sea turtles, seabirds, and marine mammals, is a pressing conservation and fisheries management issue. Identifying spatial patterns of bycatch is an important element in managing and mitigating bycatch occurrences. Because bycatch of these taxa involves rare events and fishing effort is highly variable in space and time, maps of raw bycatch rates (the ratio of bycatch to fishing effort) can be misleading. Here we show how mapping bycatch can be enhanced through the use of Bayesian hierarchical spatial models. We compare model-based estimates of bycatch rates to raw rates. The model-based estimates were more precise and fit the data well. Using these results, we demonstrate the utility of this approach for providing information to managers on bycatch probabilities and cross-taxa bycatch comparisons. To illustrate this approach, we present an analysis of bycatch data from the U.S. gill net fishery for groundfish in the northwest Atlantic. The goals of this analysis are to produce more reliable estimates of bycatch rates, assess similarity of spatial patterns between taxa, and identify areas of elevated risk of bycatch.  相似文献   

20.
Our research aims to identify longline fishing gear modifications that can improve fishing selectivity and reduce incidental capture of non-target species. Catch rates and anatomical hook locations (AHL) were compared when using a 14/0 standard ??control?? circle hook with a 0° offset and an experimental ??appendage?? hook in a Costa Rican longline fishery. With the appendage, the maximum dimension of the appendage hook was increased by 10% and the minimum dimension of the hook by 19%. A total of 1,811 marine animals were captured during five fishing trips. By taxonomic groups, sea turtles represented the largest total catch (27%), followed by sharks (26%), rays (25%), mahimahi (Coryphaena hippurus) (12%), and tunas and billfish (10%). Non-target and discard species, such as rays and sea turtles, accounted for over half of the total catch. Catch per unit effort (CPUE; number of individuals per 1,000 hooks) was higher with control hooks compared to appendage hooks for all species?? categories except rays; appendage hooks caught 52% fewer sea turtles and 23% fewer tunas and billfish than standard hooks, which represents a significant reduction in bycatch of endangered and other species. No differences were found in the AHL for sea turtles, suggesting use of the appendage may not incur additional advantages regarding turtles?? post-release survivorship. Despite lower catch rates for marketable species, such as sharks and mahimahi, use of the appendage resulted in dramatic reductions in catch rates of sea turtles. The results suggest that large scale adoption of hooks with a significantly wider hook dimension could be an effective conservation measure to maintain marine biodiversity while allowing for continued fishing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号