首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The influence of intact (FLT) and photomodified (phFLT) fluoranthene (0.05, 0.5 and 5 μmol l−1) and herbicide Basagran (5, 20, 35 and 50 nmol l−1) on the germination, growth of seedlings and photosynthetic processes in pea plants (Pisum sativum L., cv. Garde) was investigated. The germination was significantly inhibited already by the lowest concentration (0.05 μmol l−1) of FLT and phFLT, while Basagran caused inhibition only in higher concentrations (35 and 50 nmol l−1). The growth of roots was significantly inhibited by higher concentration 5 μmol l−1 of both FLT and phFLT and the shoot of seedlings was significantly influenced only by photomodified form. The length of root and shoot was inhibited already by concentration 5 nmol l−1 of Basagran. Organic compounds applied on chloroplasts suspension influenced primary photochemical processes of photosynthesis. In chlorophyll fluorescence parameters, the significant increase of F0 values and the decrease of FV/FM and ΦII values by application of FLT (0.5 and 5 μmol l−1) and phFLT (0.05, 0.5 and 5 μmol l−1) was recorded. The maximum capacity of PSII (FV/FM) was influenced by the highest (50 nmol l−1) and the effective quantum yield of PSII (ΦII) already by the lowest (5 nmol l−1) concentration of Basagran. Hill reaction activity decreased and was significantly inhibited by higher concentration (0.5 and 5 μmol l−1) of FLT and phFLT and already by the lowest concentration (5 nmol l−1) of Basagran.  相似文献   

2.
The effect of both increased concentrations (0.01 and 1 mg l(-1)) of fluoranthene (FLT) and the duration of exposure (18 and 25 days) on the growth and photosynthetic processes in pea plants (Pisum sativum L., cv. Garde) was investigated. FLT concentration in roots and shoot of pea plants was also determined. The obtained results demonstrated that the higher concentration of FLT (1 mg l(-1)) significantly inhibited the growth of the pea plants after 25 days of the application, also affected the content of photosynthetic pigments (chlorophyll a, b and carotenoids), and the primary photochemical processes of photosynthesis. In chlorophyll fluorescence parameters, the significant increase of F(0) values and the decrease of F(V)/F(M) and Phi(II) values was recorded. The Hill reaction of isolated chloroplasts of pea plants was significantly inhibited after 25 days by presence of FLT (0.01 and 1 mg l(-1)) in nutrient solution, while after 18 days no significant response of Hill reaction activity was recorded. The fluoranthene content in roots and shoot of pea plants increased with increasing FLT concentration in the environment and the substantial accumulation of FLT was observed in the roots.  相似文献   

3.
Phthalic acid esters (PAEs) pollution in agricultural soils caused by widely employed plastic products is becoming more and more widespread in China. PAEs polluted soil can lead to phytotoxicity in higher plants and potential health risks to human being. We evaluated the individual toxicity of di-n-butyl phthalate (DnBP) and bis(2-ethylhexyl) phthalate (DEHP), two representative PAEs, to sown rape (Brassica chinensis L.) seeds within 72 h (as germination stage) and seedlings after germination for 14 days by monitoring responses and trends of different biological parameters. No significant effects of six concentrations of PAE ranging from 0 (not treated/NT) to 500 mg?kg?1 on germination rate in soil were observed. However, root length, shoot length, and biomass (fresh weight) were inhibited by both pollutants (except root length and biomass under DEHP). Stimulatory effects of both target pollutants on malondialdehyde (MDA) content, superoxide dismutase (SODase) activity, ascorbate peroxidase (APXase) content, and polyphenoloxidase (PPOase) activity in shoots and roots (SODase activity in shoots excluded) were in the same trend with the promotion of proline (Pro) but differed with acetylcholinesterase activity (except in shoots under DnBP) for analyzed samples treated for 72 h and 14 days. Responses of representative storage compounds free amino acids (FAA) and total soluble sugar (TSS) under both PAEs were raised. Sensitivity of APXase and Pro in roots demonstrates their possibility in estimation of PAE phytotoxicity and the higher toxicity of DnBP, which has also been approved by the morphological photos of seedlings at day 14. Higher sensitivity of the roots was also observed. The recommended soil allowable concentration is 5 mg DnBP?kg?1 soil for the development of rape. We still need to know the phytotoxicity of DEHP at whole seedling stage for both the growing and development; on the other hand, soil criteria for PAE compounds are urgently required in China.  相似文献   

4.
Aqueous 7-d germination and growth experiments were performed to compare responses of T. latifolia to exposures of atrazine (2-chloro-4-ethylamino-6-isopropylamine-s-atrazine) and paraquat dichloride (1,1′-dimethyl-4,4′-bipyridinium dichloride). T. latifolia seed germination was < 50 % in concentrations ≥ 1.0 mg/L of paraquat dichloride. No observed effect concentration (NOEC) and lowest observed effect concentration (LOEC) for paraquat and root growth were 0.001 and 0.01 mg/L, respectively, while NOEC and LOEC for paraquat and shoot growth were 0.01 and 0.1 mg/L, respectively following 7-d exposures. Greater than 72 % of seeds germinated in each concentration up to 30 mg/L atrazine. After 7-d exposure, NOEC and LOEC for atrazine and root growth were 0.1 and 1.0 mg/L, while atrazine and shoot growth NOEC and LOEC values were 15 and 30 mg/L, respectively. This research provides data concerning relative sensitivity of T. latifolia seedlings to the herbicides atrazine and paraquat, as well as the potential use of T. latifolia as a representative plant test species.  相似文献   

5.
This study presents a bioassay procedure, based on the root and shoot growth parameters, for the determination of the herbicide sulfosulfuron (1-(4,6 dimethoxypyrimidin-2-yl)-3-(2-ethylsulfonylimidazo[1,2-a]pyridin-3-ylsulfonil)urea) sensitivity on seven vegetal species. Plant response to sulfosulfuron was calculated with the equations fitted to the root growth data as a function of the logarithm of the herbicide concentration by non-linear regression and was used to calculate the doses for 10, 30 and 50% inhibition of root growth (EC10, EC30 and EC50). The results indicate that the phytotoxic effect of sulfosulfuron in all the species assayed followed the order: flax > maize > onion > vetch > lepidium sativum > tomato > barley. These species showed phytotoxicity at low levels of sulfosulfuron and flax appeared to be the most susceptible species to sulfosulfuron (0.001 mg/L).  相似文献   

6.
Effects of composting on phytotoxicity of spent pig-manure sawdust litter   总被引:9,自引:0,他引:9  
The phytotoxicity of spent pig-manure sawdust litter (spent litter) was evaluated during further composting. Aqueous extracts of the spent litter were prepared by shaking the sample with water (1:10 w/v), and the toxicity of these extracts was determined on relative seed germination, relative root elongation and germination index (GI, a factor of relative seed germination and relative root elongation). The sensitivity of six plant species, namely Brassica parachinensis (Chinese cabbage), Brassica albogalera (Chinese kale), Allium sativum (onion), Cucumis sativus (cucumber), Amaranthus espinosus (Chinese spinach), and Lycopersicon esculentum (tomato) were compared. The effect of different moisture levels during composting on the phytotoxicity of the spent litter was also examined. Phytotoxicity of the spent litter was only evident during the earlier stage of composting (first 14 days) and, that seed germination and root elongation reached 100% (same as the control) towards the end of the composting. The concentrations of the major inhibitors, water-extractable Cu and Zn, and NH4(+)-N of the spent litter, declined during composting, indicating that these inhibitors were gradually eliminated as composting proceeded. Multiple regression analysis showed that the NH4(+)-N content of the spent litter was the most important chemical factor affecting phytotoxicity of the plant species selected for this study. Relative root elongation and GI were more sensitive indicators of phytotoxicity than seed germination. In the present study, the GI's of all plant species were >80% at day 60, indicating that the spent litter had reached its maturation by day 60. The responses of different plant species to the water-extracts of the spent litter were different. Among the six species, Chinese cabbage and Chinese spinach were the most sensitive species, and tomato and cucumber were the least sensitive species to indicate phytotoxicity of the spent litter. Moisture adjustment during the composting process did not affect the results of the phytotoxicity test.  相似文献   

7.
Liu X  Zhang S  Shan X  Zhu YG 《Chemosphere》2005,61(2):293-301
Effects of different concentrations of arsenite and arsenate (0-16 mg/l) on seed germination, relative root length and shoot height, arsenic accumulation in young seedlings, alpha-amylase, beta-amylase and total amylolytic activity in wheat were investigated in order to elucidate the toxicity of arsenic in the early developmental stage. Germination percentages of different wheat varieties had different responses to arsenic species and decreased significantly with increasing arsenic concentrations except Duokang 1. Relative root length (RRL) and relative shoot height (RSH) of wheat seedlings decreased with increasing concentrations of arsenite and arsenate. The relative root lengths were correlated with the relative shoot heights for arsenite (r2 = 0.79) and arsenate (r2 = 0.77). Arsenic uptake by seedlings increased with the increasing concentrations of arsenite or arsenate and followed the Michaelis-Menten kinetics function. The average total amylolytic activity and beta-amylase activity had no significant difference comparable to that of controls at the concentration 2 mg/l arsenite or arsenate, but decreased apparently when the concentration was higher than 2 mg/l. Whereas the alpha-amylase activity decreased with increasing concentrations of arsenite or arsenate over the whole concentration range. Arsenite decreased all the endpoints more remarkably than arsenate. In comparison, shoot height and root length were more sensitive to arsenic than other endpoints and might be used as indicators for arsenic toxicity.  相似文献   

8.
The impact of distillery effluent in various concentrations (1, 2.5, 5, 10, 25, 50, 75 and 100%) on the seed germination, Speed of Germination Index, growth behaviour, leaf area, biomass, net primary productivity, pigment content, reproductive capacity, seed output, seed weight, seed density and the seed protein content of Cicer arietinum L. plants was investigated. The percentage and speed of germination of seeds were increasingly retarded with increase in effluent concentration and at 100% concentration there was no germination. The seedlings exhibited maximum shoot length at 5% concentration and maximum root length at 2.5% concentration. The values of root and shoot lengths, leaf area, biomass, net primary productivity, pigment content, reproductive capacity, seed output, seed weight, seed density and seed protein content in pot plants exhibited a gradual increase from the control up to 5% concentration and decreases at higher concentrations. The very high BOD load and the presence of excessive concentrations of soluble salts could be responsible for the toxicity of the effluent. The effluent at up to 5% concentration was, however, beneficial for the overall growth parameters studied and can thus be used as a liquid fertilizer.  相似文献   

9.

This study presents a bioassay procedure, based on the root and shoot growth parameters, for the determination of the herbicide sulfosulfuron (1-(4,6 dimethoxypyrimidin-2-yl)-3-(2-ethylsulfonylimidazo[1,2-a]pyridin-3-ylsulfonil)urea) sensitivity on seven vegetal species. Plant response to sulfosulfuron was calculated with the equations fitted to the root growth data as a function of the logarithm of the herbicide concentration by non-linear regression and was used to calculate the doses for 10, 30 and 50% inhibition of root growth (EC10, EC30 and EC50). The results indicate that the phytotoxic effect of sulfosulfuron in all the species assayed followed the order: flax > maize > onion > vetch > lepidium sativum > tomato > barley. These species showed phytotoxicity at low levels of sulfosulfuron and flax appeared to be the most susceptible species to sulfosulfuron (0.001 mg/L).  相似文献   

10.
Increasing use of nanoparticles in daily products is of great concern today, especially when their positive and negative impact on environment is not known. Hence, in current research, we have studied the impact of silver nanoparticle (AgNPs) and silver nitrate (AgNO3) application on seed germination, root, and shoot length of castor bean, Ricinus communis L. plant. Silver nanoparticles had no significant effects on seedling growth even at higher concentration of 4,000 mg L?1, while the silver in bulk form as AgNO3 applied on the castor bean seeds inhibited the seed germination. Silver uptake in seedlings of the castor seeds on treatment with both the forms of silver was confirmed through atomic absorption spectroscopy studies. The silver nanoparticle and silver nitrate application to castor seeds also caused an enhanced enzymatic activity of ROS enzymes and phenolic content in castor seedlings. High-performance liquid chromatography analysis of individual phenols indicated enhanced content of parahydroxy benzoic acid. These kinds of studies are of great interest in order to unveil the movement and accumulation of nanoparticles in plant tissues for assessing future applications in the field or laboratory.  相似文献   

11.
The effects of the photochemical oxidant air pollutant ozone (O(3)) on growth and yield of three garden crops, broccoli (Brassica oleracea L.), lettuce (Lactuca sativa L.), and onion (Allium cepa L.) were studied in an open-top chamber experiment conducted in the field in southern California. Four cultivars each of leaf lettuce, broccoli, and globe onion were exposed to charcoal-filtered air (CF), non-filtered (NF) air, or NF plus 1.5 times ambient O(3) concentration from 4 weeks after germination in January or February until harvest. Exposures lasted 31 days for lettuce, 55 to 78 days for broccoli, and 105 days for onion. Results showed that despite severe O(3) injury to outer leaves, lettuce yields were not affected by O(3). Broccoli also was resistant to O(3) and no growth reduction was observed at ambient O(3) concentrations. Onions were more susceptible to O(3), but only one cv. 'Rio Bravo' had significant yield losses (ca. 5%) at ambient O(3) levels. These results suggest that, in general, concentrations of O(3) in the winter and spring may be below the threshold for adverse effects on yields of broccoli, lettuce and onion.  相似文献   

12.
Wang X  Sun C  Gao S  Wang L  Shuokui H 《Chemosphere》2001,44(8):1711-1721
Germination rate and root elongation, as a rapid phytotoxicity test method, possess several advantages, such as sensitivity, simplicity, low cost and suitability for unstable chemicals or samples. These advantages made them suitable for developing a large-scale phytotoxicity database and especially applicable for developing quantitative structure–activity relationship (QSAR) to study mechanisms of phytotoxicity. In this paper, the comparative inhibition of germination rate and root elongation of Cucumis sativus by selected halogen-substituted phenols and anilines were determined. The suitability of germination rate and root elongation as phytotoxicity endpoints was evaluated. Excellent reproducibility and stability of germination rate and root elongation in the control test, relatively greater sensitivity and similar dose–response relations for all tested compounds were observed. These results together with those of a 2-day test were used to demonstrate the suitability of this phytotoxicity test method. A QSAR was developed for the phytotoxicity mode of action of the tested compounds to C. sativus seeds. Models that combined the logarithm of 1-octanol/water partition coefficient (log Kow) and the energy of the lowest unoccupied molecular orbital (Elumo) were developed for both germination rate inhibition and root elongation inhibition. The results of these studies indicate that phytotoxicity of substituted phenols and anilines to C. sativus seeds could be explained by a polar narcosis mechanism. This paper will promote the application of germination rate and root elongation method and the development of large-scale phytotoxicity database, which will provide the fundamental data for QSAR and ecological risk assessment of organic pollutants.  相似文献   

13.
Abstract

Wheat (Triticum aestivum L.) seedlings grown from seeds produced in “organic”; (non‐chemical) and “conventional”; cropping systems are characterized by a) similar rates of root and shoot growth, b) equal sensitivity to phytotoxicity by the herbicide glyphosate, and c) equivalent basal activity of the enzyme glutathione S‐transferase (both in the roots and in the shoots). In addition, treatment of these seedlings with glyphosate leads to significantly higher contents of this enzyme both in the shoots and in the roots. However, time‐course and dose‐response investigations indicate significant differences in the induction pattern of glutathione S‐transferase: the response of “conventional”; wheat seedlings takes place earlier and with higher efficiency, than that of the “organic”; ones.  相似文献   

14.
Y Wan  S Luo  J Chen  X Xiao  L Chen  G Zeng  C Liu  Y He 《Chemosphere》2012,89(6):743-750
The aim of this work was to evaluate effects of endophytic bacterium inoculation on plant growth and assess the possible mechanism of endophyte in heavy metal phytoremediation. Seeds of Solanum nigrum L. were inoculated with endophyte Serratia nematodiphila LRE07 and were subjected to Cd in the growing medium. Cd produced a significant inhibition on plant growth and a reduction in the content of photosynthetic pigments. The inoculation of endophytic bacterium alleviated the Cd-induced changes, resulting in more biomass production and higher photosynthetic pigments content of leaves compared with non-symbiotic ones. The beneficial effect was more obvious at relatively low Cd concentration (10 μM). Based on the alteration of nutrient uptake and activated oxygen metabolism in infected plants, the possible mechanisms of endophytic bacterium in Cd phytotoxicity reduction can be concluded as uptake enhancement of essential mineral nutrition and improvement in the antioxidative enzymes activities in infected plant.  相似文献   

15.
Leachates from an operating and a closed landfill were examined for their phytotoxicity by seed germination/root elongation tests using seeds of Brassica chinensis and Lolium perenne. Their EC50s ranged from 3% to 46% v/v, which varied remarkably with the operating status of the landfills. Seedlings of twelve tree species were grown in pots, which were irrigated with landfill leachate at the EC50 levels, with tap water as control. No tree mortality or growth inhibition was observed after 90 days of leachate application. Chlorophyll fluorescence measurement also showed that plants receiving leachate did not suffer from a decline in photosynthetic efficiency. Litsea glutinosa and Hibiscus tiliaceus had remarkable growth, and other non-N-fixers were not inferior to the N-fixing Acacia auriculiformis. Leachate irrigation improved soil N content, though P deficiency is still a problem. The seed bioassay provided a conservative estimate of the phytotoxicity of landfill leachate. Plants irrigated can be protected from growth inhibition when the leachate irrigation plan is designed with reference to phytotoxicity data.  相似文献   

16.
The effect of paper industry effluent on the growth and content of certain macromolecules of seedlings of rice (Oryza sativa L. cv. Kesari-82K) has been examined. The effects were investigated in relation to both concentration of effluent and time of exposure to the effluent. Percentage of germination, water imbibing capacity, growth, pigment, carbohydrate and protein content showed a decreasing trend with increase in effluent concentration and time. Protein content was the most sensitive macromolecule affected by effluent. Measurement of protein and protein enzymes might therefore provide a useful criterion for the evaluation of the phytotoxicity of effluent released from the pulp and paper industries.  相似文献   

17.
Several treatment technologies are available for the treatment of palm oil mill wastes. Vermicomposting is widely recognized as efficient, eco-friendly methods for converting organic waste materials to valuable products. This study evaluates the effect of different vermicompost extracts obtained from palm oil mill effluent (POME) and palm-pressed fiber (PPF) mixtures on the germination, growth, relative toxicity, and photosynthetic pigments of mung beans (Vigna radiata) plant. POME contains valuable nutrients and can be used as a liquid fertilizer for fertigation. Mung bean seeds were sown in petri dishes irrigated with different dilutions of vermicomposted POME-PPF extracts, namely 50, 60, and 70% at varying dilutions. Results showed that at lower dilutions, the vermicompost extracts showed favorable effects on seed germination, seedling growth, and total chlorophyll content in mung bean seedlings, but at higher dilutions, they showed inhibitory effects. The carotenoid contents also decreased with increased dilutions of POME-PPF. This study recommends that the extracts could serve as a good source of fertilizer for the germination and growth enhancement of mung bean seedlings at the recommended dilutions.  相似文献   

18.
Phytotoxicity of nanoparticles: inhibition of seed germination and root growth   总被引:12,自引:0,他引:12  
Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC50) of nano-Zn and nano-ZnO were estimated to be near 50mg/L for radish, and about 20mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles.  相似文献   

19.
Mercury toxicity induces oxidative stress in growing cucumber seedlings   总被引:6,自引:0,他引:6  
In this study, the effects of exogenous mercury (HgCl(2)) on time-dependent changes in the activities of antioxidant enzymes (catalase and ascorbate peroxidase), lipid peroxidation, chlorophyll content and protein oxidation in cucumber seedlings (Cucumis sativus L.) were investigated. Cucumber seedlings were exposed to from 0 to 500microM of HgCl(2) during 10 and 15 days. Hg was readily absorbed by growing seedlings, and its content was greater in the roots than the in shoot. Time and concentration-dependent reduction in root and shoot length was observed at all concentrations tested, equally in the roots and shoot, at both 10 and 15 days. At 50microM HgCl(2), root fresh weight of 15-day-old seedlings increased, and at other concentrations, it reduced. For 10-day-old seedlings, reduction in root and shoot fresh biomass was observed. At 15 days, only at 50microM HgCl(2) was there no observed reduction in shoot fresh biomass. Dry weight of roots increased at 500microM both at 10 and 15 days, though at 250microM HgCl(2) there was only an increase at 15 days. There was a significant effect on shoot dry weight at all concentrations tested. Hg-treated seedlings showed elevated levels of lipid peroxides with a concomitant increase in protein oxidation levels, and decreased chlorophyll content when exposed to between 250 and 500microM of HgCl(2). At 10 days, catalase activity increased in seedlings at a moderately toxic level of Hg, whereas at the higher concentration (500microM), there was a marked inhibition. Taken together, our results suggest that Hg induces oxidative stress in cucumber, resulting in plant injury.  相似文献   

20.
Cadmium (Cd) stress responses in seedlings of two Indian rice cultivars, MTU 7029 and MO 16 were investigated under ammonium-based fertilizer amendment. Cd translocation was reduced by fertilizer treatment. An increase in the production of organic acids as well as nitrogenous compounds and maintenance of nutrient status were implicated for decrease in Cd translocation which in turn promoted shoot growth. Fertilizer treatment increased photosynthetic pigments and activity of antioxidant enzymes that ensured steady photosynthetic rate during Cd stress. MO 16 showed Cd exclusion characteristics when compared with MTU 7029. Photosynthesis performance of MO 16 was not affected by Cd treatments. These findings suggest that photosynthesis influenced decrease in Cd translocation enhanced shoot growth of seedlings during ammonium phosphate–sulfur fertilizer supplementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号