首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: In two workshops, we evaluated decision analysis methods for comparing Lake Erie levels management alternatives under climate change uncertainty. In particular, we wanted to see how acceptable and effective those methods could be in a public planning setting. The methods evaluated included simulation modeling, scenario analysis, decision trees and structured group discussions. We evaluated the methods by interviewing the workshop participants before and after the workshops. The participants, who were experienced Great Lakes water resources managers, concluded that simulation modeling is user-friendly enough to enable scenario analysis even in workshop settings for large public planning studies. They felt that simulation modeling can improve not only understanding of the system, but also of the options for managing it. Scenario analysis revealed that the decision for the case study, Lake Erie water level regulation, could be altered by the likelihood of climate change. The participants also recommended that structured group discussions be used in public planning settings to elicit ideas and opinions. On the other hand, the participants were less optimistic about decision trees because they felt that the public might view subjective probabilities as difficult to understand and subject to manipulation.  相似文献   

2.
Ecosystem‐based management of the Laurentian Great Lakes, which spans both the United States and Canada, is hampered by the lack of consistent binational watersheds for the entire Basin. Using comparable data sources and consistent methods, we developed spatially equivalent watershed boundaries for the binational extent of the Basin to create the Great Lakes Hydrography Dataset (GLHD). The GLHD consists of 5,589 watersheds for the entire Basin, covering a total area of approximately 547,967 km2, or about twice the 247,003 km2 surface water area of the Great Lakes. The GLHD improves upon existing watershed efforts by delineating watersheds for the entire Basin using consistent methods; enhancing the precision of watershed delineation using recently developed flow direction grids that have been hydrologically enforced and vetted by provincial and federal water resource agencies; and increasing the accuracy of watershed boundaries by enforcing embayments, delineating watersheds on islands, and delineating watersheds for all tributaries draining to connecting channels. In addition, the GLHD is packaged in a publically available geodatabase that includes synthetic stream networks, reach catchments, watershed boundaries, a broad set of attribute data for each tributary, and metadata documenting methodology. The GLHD provides a common set of watersheds and associated hydrography data for the Basin that will enhance binational efforts to protect and restore the Great Lakes.  相似文献   

3.
ABSTRACT Existing meteorological controls of water exchange by precipitation and evaporation on the Great Lakes are almost entirely inadvertent and related to man's urban-industrial complexes and their effect upon precipitation processes. These inadvertent effects have led to 10 to 40% increases in precipitation in localized areas within the basin. Envisioned growth of urban-industrial complexes within the Great Lakes region should lead to more inadvertent weather modification in the Basin. The only existing planned weather modification efforts are those at Lake Erie which are attempting to eliminate by redistribution the concentration of lake-derived heavy snowfall along the south shore. It appears reasonable to assume that practical increases of lake precipitation on the order of 5-20% could be achieved on an operational basis over the Great Lakes in the next 10 years, but the time of accomplishment will depend on national priorities, international cooperation, and economic factors. These activities would certainly produce a sizeable increase in the water quantity of the Great Lakes and should result in an improvement in water quality. Operational methods of evaporation suppression applicable to the lakes are just not available. Meteorological controls to ameliorate certain undesirable lake-effect snowstorms are a near reality.  相似文献   

4.
5.
ABSTRACT: Trophic classification of the Canadian nearshore waters of the Great Lakes is attempted using summer, surface water quality data for the early 1970's. A generalized Composite Trophic Index is developed using paired linear relationships for total phosphorus, chlorophyll a, and Secchi depth data for 66 defined nearshore regions. The chlorophyll a and total phosphorus relationship indicates that the nearshore waters contain a low chlorophyll a concentration for a given total phosphorus concentration than observed for the open waters of the Great Lakes or for smaller Canadian lakes. The most eutrophic nearshore regions occur in areas of relatively restricted circulation and/or high nutrient loadings. These include the Bay of Quinte, Toronto and Hamilton harbours, and portions of Lake We's Western Basin. Lakes Huron and Superior are generally oligotrophic, except for some embayments. Although nearshore water quality is highly variable, this apprach represents a reasonable compromise with respect to analytical complexity. The Composite Trophic Index removes biases introduced through the use of a single trophic state indicator and uniquely describes the nearshore water quality in terms generally comparable to other water bodies.  相似文献   

6.
ABSTRACT: Growing interest in agricultural irrigation in the Great Lakes basin presents an increasing competition to other uses of Great Lakes water. This paper, through a case study of the Mud Creek Irrigation District in the Saginaw Bay basin, Michigan, evaluates the potential hydrologic effects of withdrawing water for agricultural irrigation to the Great Lakes. Crop growth simulation models for corn, soybeans, dry beans, and the FAO Penman method were used to estimate the difference in evapotranspiration rates between irrigated and nonirrigated identical crops, based on climate, soil, and management data. The simulated results indicate that an additional 70–120 mm of water would be evapotranspirated during the growing season from irrigated crop fields as compared to nonirrigated identical plantings. Dependent upon the magnitude of irrigation expansion, an equivalent of about 1 to 5 mm of water from Lakes Huron-Michigan could be lost to the atmosphere. If agricultural irrigation further expands in the entire Great Lakes basin, the aggregated potential of water loss to the atmosphere through ET from all five Great Lakes would be even greater.  相似文献   

7.
Human Influences on Water Quality in Great Lakes Coastal Wetlands   总被引:2,自引:0,他引:2  
A better understanding of relationships between human activities and water chemistry is needed to identify and manage sources of anthropogenic stress in Great Lakes coastal wetlands. The objective of the study described in this article was to characterize relationships between water chemistry and multiple classes of human activity (agriculture, population and development, point source pollution, and atmospheric deposition). We also evaluated the influence of geomorphology and biogeographic factors on stressor-water quality relationships. We collected water chemistry data from 98 coastal wetlands distributed along the United States shoreline of the Laurentian Great Lakes and GIS-based stressor data from the associated drainage basin to examine stressor-water quality relationships. The sampling captured broad ranges (1.5–2 orders of magnitude) in total phosphorus (TP), total nitrogen (TN), dissolved inorganic nitrogen (DIN), total suspended solids (TSS), chlorophyll a (Chl a), and chloride; concentrations were strongly correlated with stressor metrics. Hierarchical partitioning and all-subsets regression analyses were used to evaluate the independent influence of different stressor classes on water quality and to identify best predictive models. Results showed that all categories of stress influenced water quality and that the relative influence of different classes of disturbance varied among water quality parameters. Chloride exhibited the strongest relationships with stressors followed in order by TN, Chl a, TP, TSS, and DIN. In general, coarse scale classification of wetlands by morphology (three wetland classes: riverine, protected, open coastal) and biogeography (two ecoprovinces: Eastern Broadleaf Forest [EBF] and Laurentian Mixed Forest [LMF]) did not improve predictive models. This study provides strong evidence of the link between water chemistry and human stress in Great Lakes coastal wetlands and can be used to inform management efforts to improve water quality in Great Lakes coastal ecosystems.  相似文献   

8.
An optical plankton counter (OPC) potentially provides an assessment tool for zooplankton condition in ecosystems that is rapid, economical, and spatially extensive. We collected zooplankton data with an OPC in 20 near-shore regions of 4 of the Laurentian Great Lakes. The zooplankton size information was used to compute mean size, biomass density, and size-spectra parameters for each location. The resulting metrics were analyzed for their ability to discriminate among the Great Lakes. Biomass density provided discrimination among lakes, as did several parameters describing spectra shape and distribution. A proposed zooplankton indicator, mean size (determined with OPC measurements in this study), was found to provide discrimination among lakes. Size-spectra-related parameters added increased ability to discriminate in conjunction with the biomass density (or mean size) metric. A discriminant function analysis of the multiple metrics (mean size, biomass density, and distribution parameters) suggests that a multi metric size-based approach might be used to classify communities among lakes improving a mean-size metric. The feasibility OPCs and size-based metrics for zooplankton assessment was found to have potential for further development as assessment tools for the biological condition of zooplankton communities in the Great Lakes.  相似文献   

9.
A total of 154 aquatic alien species have invaded the New York State Canal and Hudson River systems and a total of 162 aquatic species have invaded the Great Lakes Basin. Some of these invasive species are causing significant damage and control costs in both aquatic ecosystems. In the New York State Canal and Hudson River systems, the nonindigenous species are causing an estimated 500 million dollars in economic losses each year. The economic and environmental situation in the Great Lakes Basin is far more serious from nonindigenous species, with losses estimated to be about 5.7 billion dollars per year. Commercial and sport fishing suffer the most from the biological invasions, with about 400 million dollars in losses reported for the New York State Canal and Hudson River systems and 4.5 billion dollars in losses reported for the Great Lakes Basin.  相似文献   

10.
Neither Canada nor the United States attach much importance to the International Joint Commission (IJC) judging by the size of staffs and annual budgets. The Commission has been restricted to a relatively minor number of functions in the Great Lakes-St. Lawrence. It has investigated: the degree and causes of water and air quality deterioration; the effects of hydroelectric and navigation projects on water levels; the impacts of water-level fluctuations; and the feasibility of a deep waterway from the St. Lawrence to the Hudson River. Projects approved by the Commission have produced less than might be expected through no fault of the Commission. The Great Lakes Fishery Commission has promoted little international management. Budgetary limitations restrict its lamprey control program; institutional limitations restrict its ability to deal effectively with fishery problems. Commission responsibilities are limited to coordination and advisory functions. Since Canada and the United States have not chosen to refer most aspects of river basin management to international bodies, an institutional void exists in the Great Lakes Basin to consider these questions on a continuous basis. There is a need for expanded international cooperation.  相似文献   

11.
/ A method adapted from the National Weather Service's Extended Streamflow Prediction technique is applied retrospectively to three Great Lakes case studies to show how risk assessment using probabilistic monthly water level forecasts could have contributed to the decision-mak-ing process. The first case study examines the 1985 International Joint Commission (IJC) decision to store water in Lake Superior to reduce high levels on the downstream lakes. Probabilistic forecasts are generated for Lake Superior and Lakes Michigan-Huron and used with riparian inundation value functions to assess the relative impacts of the IJC's decision on riparian interests for both lakes. The second case study evaluates the risk of flooding at Milwaukee, Wisconsin, and the need to implement flood-control projects if Lake Michigan levels were to continue to rise above the October 1986 record. The third case study quantifies the risks of impaired municipal water works operation during the 1964-1965 period of extreme low water levels on Lakes Huron, St. Clair, Erie, and Ontario. Further refinements and other potential applications of the probabilistic forecast technique are discussed.KEY WORDS: Great Lakes; Water levels; Forecasting; Risk; Decision making  相似文献   

12.
ABSTRACT: A new screening approach is applied to a large‐scale multiple criteria water management problem to remove actions that cannot possibly be in the best subset. An inherent advantage of the approach is its ability to identify inferior actions by examining them individually, rather than within subsets. In a case study involving the selection of actions to address high water levels in the Great Lakes‐St. Lawrence Basin, two statistical indicators, the mode and the mean, are used to aggregate the opinions of experts and representatives of interest groups on the impacts of actions according to various criteria. Application of the screening approach shows that some of the proposed actions can be removed as they can never be in the optimal subset, thereby reducing the size of the problem.  相似文献   

13.
As complex social phenomena, public involvement processes are influenced by contextual factors. This study examined agency goals for public involvement and assessed the importance of local context in remedial action planning, a community-based water resources program aimed at the cleanup of the 42 most polluted locations in the Great Lakes Basin. Agency goals for public involvement in remedial action plans (RAPs) were agency-oriented and focused on public acceptance of the plan, support for implementation, and positive agency-public relations. Corresponding to these goals, citizen advisory committees were created in 75% of the RAP sites as a primary means for public input into the planning process. Factors that influenced the implementation of public involvement programs in remedial action planning included public orientation toward the remediation issue, local economic conditions, the interaction of diverse interests in the process, agency and process credibility, experience of local leadership, and jurisdictional complexity. A formative assessment of “community readiness” appeared critical to appropriate public involvement program design. Careful program design may also include citizen education and training components, thoughtful management of ongoing agency-public relations and conflict among disparate interests in the process, overcoming logistical difficulties that threaten program continuity, using local expertise and communication channels, and circumventing interjurisdictional complexities.  相似文献   

14.
Development of plans to restore degraded areas in the Great Lakes   总被引:3,自引:0,他引:3  
The International Joint Commission's Water Quality Board has identified 42 Areas of Concern in the Great Lakes ecosystem where Great Lakes Water Quality Agreement objectives or jurisdictional standards, criteria or guidelines, established to protect uses, have been exceeded and remedial actions are necessary to restore beneficial uses. As a result of the 1985 report of the Water Quality Board, the eight Great Lakes states and the Province of Ontario committed themselves to developing a remedial action plan (RAP) to restore all uses in each Area of Concern within their political boundaries. Each RAP must identify the specific measures necessary to control existing sources of pollution, abate existing contamination (e.g., contaminated sediments), and restore all beneficial uses. Points which must be explicitly addressed in each RAP include: geographic extent of problem, beneficial uses impaired, causes of problems, remedial measures and a schedule for implementation, responsible agencies, and surveillance and monitoring activities that will be used to track effectiveness of remedial actions. The jurisdictions are responsible for developing RAPs, and the International Joint Commission is responsible for evaluating the adequacy of each RAP and tracking progress in restoring beneficial uses.  相似文献   

15.
Integrated Measures of Anthropogenic Stress in the U.S. Great Lakes Basin   总被引:1,自引:0,他引:1  
Integrated, quantitative expressions of anthropogenic stress over large geographic regions can be valuable tools in environmental research and management. Despite the fundamental appeal of a regional approach, development of regional stress measures remains one of the most important current challenges in environmental science. Using publicly available, pre-existing spatial datasets, we developed a geographic information system database of 86 variables related to five classes of anthropogenic stress in the U.S. Great Lakes basin: agriculture, atmospheric deposition, human population, land cover, and point source pollution. The original variables were quantified by a variety of data types over a broad range of spatial and classification resolutions. We summarized the original data for 762 watershed-based units that comprise the U.S. portion of the basin and then used principal components analysis to develop overall stress measures within each stress category. We developed a cumulative stress index by combining the first principal component from each of the five stress categories. Maps of the stress measures illustrate strong spatial patterns across the basin, with the greatest amount of stress occurring on the western shore of Lake Michigan, southwest Lake Erie, and southeastern Lake Ontario. We found strong relationships between the stress measures and characteristics of bird communities, fish communities, and water chemistry measurements from the coastal region. The stress measures are taken to represent the major threats to coastal ecosystems in the U.S. Great Lakes. Such regional-scale efforts are critical for understanding relationships between human disturbance and ecosystem response, and can be used to guide environmental decision-making at both regional and local scales.  相似文献   

16.
ABSTRACT: Water level fluctuations of the Great Lakes often have created regional controversies among the states and Canadian provinces that share this vast resource. Even though the 100-year range of their water levels is only four to five feet, episodes of high and low Great Lakes water levels have been a recurring problem throughout the twentieth century. The possibility of increased diversion and consumptive use has exacerbated the existing conflicts over how to manage this water resource. A research project evaluated the effects of interbasin diversion on the Great Lakes system and on the industries that depend on the maintenance of historical water levels, namely hydropower and commercial navigation. The simulation approach employed in this research and some of the important findings are presented. The approach is similar to that used in recent government studies of Great Lakes water level regulation. Several significant modifications were made specifically addressing the diversion issue. Aggregate annual impacts to hydropower and shipping resulting from a diversion of 10,000 cubic feet per second were found to vary from 60 to 100 million dollars. Increases in impacts as a function of diversion rate are nonlinear for the navigation industry.  相似文献   

17.
Continued resource degradation in various areas of the Great Lakes has led to doubts of the adequacy of conventional science and management approaches. The need for a more holistic approach, identified as an ecosystem approach, appears now to be more widely accepted although progress with implementation is slow. We argue here that ecosystem science is an integral part of an ecosystem approach and is a prerequisite to effective management planning.One of the problems of implementing an ecosystem approach is forging the link between ecosystem based research and management. For Green Bay, Wisconsin, USA, certain structural and functional qualities of the ecosystem have been used to define operational guides and to formulate management objectives. These objectives are being utilized in the development of a remedial action plan for Green Bay.Deceased 5 February 1986.  相似文献   

18.
Great Basin Land Management Planning Using Ecological Modeling   总被引:1,自引:1,他引:0  
This report describes a land management modeling effort that analyzed potential impacts of proposed actions under an updated Bureau of Land Management Resource Management Plan that will guide management for 20 years on 4.6 million hectares in the Great Basin ecoregion of the United States. State-and-transition models that included vegetation data, fire histories, and many parameters (i.e., rates of succession, fire return intervals, outcomes of management actions, and invasion rates of native and nonnative invasive species) were developed through workshops with scientific experts and range management specialists. Alternative restoration scenarios included continuation of current management, full fire suppression, wildfire use in designated fire use zones, wildfire use in resilient vegetation types only, restoration with a tenfold budget increase, no restoration treatments, and no livestock grazing. Under all the scenarios, cover of vegetation states with native perennial understory declined and was replaced by tree-invaded and weed-dominated states. The greatest differences among alternative management scenarios resulted from the use of fire as a tool to maintain native understory. Among restoration scenarios, only the scenario assuming a tenfold budget increase had a more desirable outcome than the current management scenario. Removal of livestock alone had little effect on vegetation resilience. Rather, active restoration was required. The predictive power of the model was limited by current understanding of Great Basin vegetation dynamics and data needs including statistically valid monitoring of restoration treatments, invasiveness and invasibility, and fire histories. The authors suggest that such computer models can be useful tools for systematic analysis of potential impacts in land use planning. However, for a modeling effort to be productive, the management situation must be conducive to open communication among land management agencies and partner entities, including nonprofit organizations.  相似文献   

19.
ABSTRACT: Two scenarios of CO2-induced climatic change are used to estimate changes in water use for a number of municipalities in the Great Lakes region of Canada and the United States. Both scenarios, based on General Circulation Models produced by the Goddard Institute for Space Studies (GISS) and Geophysical Fluid Dynamics Lab (GFDL), project warmer temperatures for the region. Using regression models based on monthly potential evapotranspiration for individual cities, it is projected that annual per capita water use will increase by a small amount, which will probably have only a marginal effect on water supplies in the Great Lakes basin. This method could also be used to assess the potential impacts of CO2-induced climatic change on water use by the agriculture and power sectors, as well as the effectiveness of water policy initiatives, such as price changes. More work is needed to project water use during peak periods (warm dry spells), which may occur more frequently in a 2 × CO2 climate in this region.  相似文献   

20.
ABSTRACT: Recent research that couples climate change scenarios based on general circulation models (GCM) with Great Lakes hydrologic models has indicated that average water levels are projected to decline in the future. This paper outlines a methodology to assess the potential impact of declining water levels on Great Lakes waterfront communities, using the Lake Huron shoreline at Goderich, Ontario, as an example. The methodology utilizes a geographic information system (GIS) to combine topographic and bathymetric datasets. A digital elevation surface is used to model projected shoreline change for 2050 using water level scenarios. An arbitrary scenario, based on a 1 m decline from February 2001 lake levels, is also modeled. By creating a series of shoreline scenarios, a range of impact and cost scenarios are generated for the Goderich Harbor and adjacent marinas. Additional harbor and marina dredging could cost as much as CDN $7.6 million. Lake freighters may experience a 30 percent loss in vessel capacity. The methodology is used to provide initial estimates of the potential impacts of climate change that can be readily updated as more robust climate change scenarios become available and is adaptable for use in other Great Lakes coastal communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号