首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Group foraging allows the co-existence of a strategy (producer) that involves searching for food, and its alternative (scrounger) exploiting the food of the producer. The use of producer and scrounger strategies has been modelled as an alternative-option scramble which assumes strong negative frequency-dependence of the scrounger's pay-offs. We tested this assumption in a flock feeding situation by manipulating the proportion of scroungers in flocks of spice finches, Lonchura punctulata. In a first experiment we found that: (1) the food intake of scroungers, and to a lesser extent producers, was negatively affected by an increase in the proportion of scroungers; (2) the food intake of producers and scroungers was equal when the proportion of scroungers was small, suggesting that producers, who exploited 35.4% of their patches by scrounging were opportunistically adjusting their use of the strategies until the pay-offs equalized. In a second experiment we tested whether finches could vary their use of the two strategies in response to changes in foraging conditions brought about by an increase in the cost of producing. As predicted by the game, finches reduced their use of the producer strategy and increased their use of the scrounger strategy when the cost of producing increased. These results suggest that spice finches can alter their allocation to each foraging alternative by experience and that the producer-scrounger game is a realistic model for predicting group foraging decisions. Correspondence to: L.-A. Giraldeau  相似文献   

2.
Responses of echinoid larvae to food patches of different algal densities   总被引:1,自引:0,他引:1  
High densities of larvae have been found in areas of high primary production, but it remains unclear whether this is the result of hydrodynamics or of larval aggregative behaviour in the presence of food. In this study, we examined changes in the vertical distribution and swimming patterns of four-armed larvae of the sea-urchin Echinometra lucunter (Linnaeus) around food patches of a range of microalgal densities. We reared larvae in the laboratory in a high or low concentration of either single (Isochrysis galbana) or mixed (I. galbana, Dunaliella tertiolecta, Thalassiosira weissflogii) microalgal species. In Plexiglas cylinders, we experimentally constructed haloclines in which the salinity of the bottom water-layer was 33‰ and that of the top water-layer was 24‰. In a thin layer in the middle of the halocline, we inserted a food patch that consisted of 0, 2500, 5000 or 10 000 T. weissflogii cells ml−1. The presence of a food patch had a pronounced effect on the vertical distribution of larvae. This effect depended upon the algal density of the food patch and varied with dietary conditioning. The number of larvae that were above or within the patch decreased with increasing algal density, and was greater if larvae were reared in low-ration or single-species diets than in high-ration or mixed-species diets. Tracking of individual vertical swimming paths showed that within a few minutes, larvae swam into the patches of low algal density, and to positions just below the patches of the two higher algal densities, and remained there until the end of the experimental period. The greater number of algal cells in the digestive tracts of larvae from treatments with a food patch than in those without a patch confirmed that larvae were feeding on the microalgal cells of the patch. To our knowledge, this is the first study to experimentally show an aggregative behavioural response of invertebrate larvae to a food patch. Such a response may reduce the probability of food limitation and therefore enhance larval survival. Received: 14 February 1997 / Accepted: 24 September 1997  相似文献   

3.
 Continuous abundance estimates (510 m resolution) of the copepods Neocalanus cristatus, N. flemingeri and Metridia pacifica were obtained with an electronic particle counter along cruise tracks in the subarctic western North Pacific in spring. For all three species, the number of patches decreased exponentially with increasing patch size. Most patches (63 to 83%) were dominated by one species, and patches of the same species more closely spaced than patches of different species. The patches of M. pacifica tended to coexist with those of N. cristatus. In contrast, patches of N. flemingeri rarely co-occurred with those of other copepods. These patterns were more clearly observed in fine-scale observations with sampling intervals of <31 m. Coherence analysis of copepod species pairs showed no characteristic scale at 2 to 50 km wave lengths. At shorter wave lengths (<2 km), frequent positive correlations were observed between N. cristatus and M. pacifica. Thus, the distribution of copepods appears to be a mosaic assemblage of patches of each copepod species. These results suggest that copepods have a mechanism to form species-specific aggregations, and the aggregation and segregation processes are maintained at a scale of <2 km. Received: 24 February 1999 / Accepted: 25 April 2000  相似文献   

4.
Group living is thought to be advantageous for animals, though it also creates opportunities for exploitation. Using food discovered by others can be described as a producer-scrounger, frequency-dependent game. In the game, scroungers (parasitic individuals) do better than producers (food finders) when scroungers are rare in the group, but they do worse when scroungers are common. When the individuals' payoffs do not depend on their phenotype (i.e. a symmetric game), this strong negative frequency dependence leads to a mixed stable solution where both alternatives obtain equal payoffs. Here, we address the question of how differences in social status in a dominance hierarchy influence the individuals' decision to play producer or scrounger in small foraging groups. We model explicitly the food intake rate of each individual in a dominance-structured foraging group, then calculate the Nash equilibrium for them. Our model predicts that only strong differences in competitive ability will influence the use of producing or scrounging tactics in small foraging groups; dominants will mainly play scrounger and subordinates will mostly use producer. Since the differences in competitive ability of different-ranking individuals likely depend on the economic defendability of food, our model provides a step towards the integration of social foraging and resource defence theories. Received: 30 July 1997 / Accepted after revision: 15 November 1997  相似文献   

5.
Oxygen and pH microelectrodes were used to investigate the microenvironment of the planktonic foraminifer Orbulina universa and its dinoflagellate endosymbionts. A diffusive boundary layer surrounds the foraminiferal shell and limits the O2 and proton transport from the shell to the ambient seawater and vice versa. Due to symbiont photosynthesis, high O2 concentrations of up to 206% air saturation and a pH of up to 8.8, i.e. 0.5 pH units above ambient seawater, were measured at the shell surface of the foraminifer at saturating irradiances. The respiration of the host–symbiont system in darkness decreased the O2 concentration at the shell surface to <70% of the oxygen content in the surrounding air-saturated water. The pH at the shell surface dropped to 7.9 in darkness. We measured a mean gross photosynthetic rate of 8.5 ± 4.0 nmol O2 h−1 foraminifer−1. The net photosynthesis averaged 5.3 ± 2.7 nmol O2 h−1. In the light, the calculated respiration rates reached 3.9 ± 1.9 nmol O2 h−1, whereas the dark respiration rates were significantly lower (1.7 ± 0.7 nmol O2 h−1). Experimental light–dark cycles demonstrated a very dynamic response of the symbionts to changing light conditions. Gross photosynthesis versus scalar irradiance curves (P vs E o curves) showed light saturation irradiances (E k) of 75 and 137 μmol photons m−2 s−1 in two O. universa specimens, respectively. No inhibition of photosynthesis was observed at irradiance levels up to 700 μmol photons m−2 s−1. The light compensation point of the symbiotic association was 50 μmol photons m−2 s−1. Radial profile measurements of scalar irradiance (E o) inside the foraminifera showed a slight increase at the shell surface up to 105% of the incident irradiance (E d). Received: 26 January 1998 / Accepted: 11 April 1998  相似文献   

6.
Artemia franciscana was grown on Isochrysis galbana Green (clone T. Iso) at saturated food concentrations (13 to 20 mg C l−1) for 11 d at 26 to 28 °C, and 34 ppt salinity. Three groups of brine shrimp were used in the feeding experiments: metanauplius III and IV (Group 1), post-metanauplius II and III (Group 2) and post-metanauplius VIII (Group 3), corresponding to 4-, 7- and 11-d-old animals, respectively. The ingestion rate, clearance rate and carbon balance were estimated for these stages at different concentrations of 14C-labeled I. galbana ranging from 0.05 to 30 mg C l−1. The handling time of algae was determined for all three groups. The ingestion rate (I, ng C ind−1 h−1) increased as a function of animal size and food concentration. In all three groups, the ingestion rate increased to a maximum level (I max) and remained constant at food concentrations ≥10 mg C l−1 (saturated food concentrations). The clearance rate (CR, μl ind−1 h−1) increased with increasing food concentration up to a maximum rate (CR max), after which it decreased for even higher food concentrations. The functional response of A. franciscana was most consistent with Holling's Type 3 functional response curve (sigmoidal model), which for the two oldest groups (Group 2 and 3) differed significantly from a Type 2 response (p < 0.05). The gut passage time for the three groups of A. franciscana, feeding on saturated food concentration (20 mg C l−1), varied between 24 and 29 min. As the nauplii developed to pre-adult stage the handling time of the algae increased as a function of animal size. The assimilation rate (ng C ind−1 h−1) in the youngest stages (Group 1 and 2) increased with increasing food concentrations, reaching a maximum level close to 10 mg C l−1. At higher food concentrations the assimilation rate decreased, and the proportions of defecated carbon increased, reaching 60 to 68% in the post-metanauplius stages (Group 3). The assimilation efficiency (%) was high at the lowest food concentrations in all three groups (89 to 64%). At higher concentrations, the assimilation efficiency decreased, reaching 56 to 38% at the highest concentrations. Received: 2 February 2000 / Accepted: 25 March 2000  相似文献   

7.
 The abundance and biomass of Corophium multisetosum Stock, 1952 were determined from benthic corer samples collected monthly over 1 yr in the upper reaches of Canal de Mira (Ria de Aveiro, Portugal). Both density and biomass over the sampling period were negatively correlated with water temperature and positively correlated with chlorophyll a concentration in the sediment. C. multisetosum density was significantly negatively correlated with plant biomass and positively correlated with salinity. The nature of the sediment, favourable environmental conditions, high availability of food and low interspecific competition allowed the population to reach a maximal density of 200 × 103 individuals m−2 and a maximal biomass (ash-free dry wt, AFDW) of 62 gAFDW m−2. The population was highly productive, especially during the autumn/winter period. Production, estimated by two different methods (Hynes method: 251 gAFDW m−2 yr−1; Morin–Bourassa method: 308 gDW m−2 yr−1), was much higher than the values reported for other Corophium species. The annual P:Bˉ ratio (10) was high, but similar to values reported for Swedish populations of C. volutator and lower than the values estimated from Mediterranean populations of C. insidiosum. Received: 8 October 1999 / Accepted: 22 June 2000  相似文献   

8.
The isopod Munnopsurus atlanticus occupies bathyal depths in both the Bay of Biscay (NE Atlantic; between 383 and 1022 m) and in the Catalan Sea (Northwestern Mediterranean; between 389 and 1859 m). The species was dominant in both assemblages, reaching bathymetric peaks of abundance on the upper part of the continental slope (400 m depth) in the Bay of Biscay and at ˜600 m in the Catalan Sea. Both the Atlantic and the Mediterranean populations are bivoltines. Demographic analysis of the Bay of Biscay population revealed the production of two generations per year with different potential longevity (5 mo for G1 and 11 mo for G2). The mean cohort-production interval (CPI) was estimated at 8 mo, and results of the demographic analysis were also used to estimate production for the Catalan Sea populations. Mean annual density (D) and biomass (B) were higher in the Bay of Biscay (D = 356.7 individuals 100 m−2; B = 0.803 mg dry wt m−2 yr−1) than in the Mediterranean (D = 16.3 individuals 100 m−2; B = 0.078 mg dry wt m−2 yr−1). Also, mean annual production was an order of magnitude higher in the Atlantic (between 4.063 and 4.812 mg dry wt 100 m−2 yr−1 depending on the method used) than in the Catalan Sea (between 0.346 and 0.519 mg dry wt 100 m−2 yr−1). M. atlanticus feeds on a wide variety of benthic and pelagic food sources. In both study areas, phytodetritus was not important in the diet of M. atlanticus. In contrast, gut-content data suggested an indirect coupling with phytoplankton production in both areas via foraminiferans. The life history and the recorded production are considered in respect to both the dynamics and levels of primary production and the total mass flux in the respective study areas. Differences in the secondary production of both populations seemed to be more consistently explained by differences in total mass flux than by differences in the primary production levels; this is also consistent with the variety of food sources exploited by M. atlanticus. Received: 22 February 1999 / Accepted: 3 February 2000  相似文献   

9.
Growth and development rates were determined for nauplii of Calanus finmarchicus (Gunnerus) in the near-shore waters of a western Norwegian fjord from in situ mesocosm incubations. The major food source for the nauplii was diatoms, but Phaeocystis sp., dinoflagellates and ciliates were also part of the diet. At local temperatures ranging from 4.8 to 5.2 °C the cumulative median development time from hatching to Nauplius VI was 19 d. The time taken to molt to the next naupliar stage was approximately constant (3 d) from Stages IV to VI, but Stage III needed the longest development time (5 d). The instantaneous growth rate in terms of body carbon was negative from hatching to Nauplius Stage II, but as high as 0.25 to 0.30 d−1 from Stage III to V. Enhancement of food resources by nutrient addition led to no significant change in specific growth rates. Additionally, the cohorts from different nutrient regimes showed almost equal development time, size and body carbon within stages. Length–weight relationships of nauplii from the two different food resources were: W low resources = 4.17 × 10−6 × L 2.03 (r 2 = 0.84) and W high resources = 4.29 × 10−6 × L 2.05 (r 2 = 0.92), where weight (W) is in micrograms of C and body length (L) in micrometers. The natural body morphology of naupliar stages I to VI is illustrated with digital images, including the final molt from Nauplius VI to Copepodid Stage I. In general, development of the nauplii was faster than that of the copepodids of C. finmarchicus, and structural growth was exponential from naupliar stages III to VI. This study validates our earlier results that nauplii of C. finmarchicus can obtain high growth and nearly maximal developmental rates at relatively low food levels (∼50 μg C l−1), suggesting that nauplii exhibit far less dependence on food supply than copepodids. Received: 30 July 1999 / Accepted: 7 March 2000  相似文献   

10.
On the eastern shore of Nova Scotia late summer atmospheric systems cause upwelling of shelf water; the associated temperature variations of 10 °C with a 6 to 8 d period are comparable in magnitude to the seasonal variation. A laboratory study was undertaken to assess the effects of these temperature fluctuations on sea scallop (Placopecten magellanicus) growth and metabolism. In a factorial design, scallops were subjected to constant (10 °C) or a variable (6 to 15 °C) 8 d temperature cycle, and either a low (seston in filtered seawater) or high (seston supplemented with cultured phytoplankton) food diet. During the 48 d experiment scallop mortality was low and growth positive in all treatments. Shell and total tissue growth rate did not differ between temperature treatments, but growth in the high food treatments was 40 to 50% higher than in the low food treatments. However, soft tissue (excluding adductor) growth did show a temperature treatment effect; growth rates were significantly higher in the fluctuating temperature treatment, due in part to greater gonad development. Weight-standardized rates of scallop oxygen consumption (V sO2 , μmol O2 g−1 h−1) were 20 to 25% higher in high food than in low food treatments, consistent with the expected increase in respiration due to the higher growth rates. Scallop metabolism did not acclimate to the fluctuating temperature cycle; V sO2 and ammonium excretion (V sNH+ 4, μmol O2 g−1 h−1) remained dependent on ambient temperature throughout the experiment. V sNH+ 4 Q10 (2.77) was higher than V sO2 Q10 (2.01) which was reflected in a decrease in the O:N ratio at 15 °C, indicating a shift toward increased protein catabolism and a stressed state. At 10 °C, V sO2 and V sNH+ 4 in the variable temperature treatments were 15 to 18% lower than in the constant temperature treatments, a difference that was not detected in growth measurements. Results demonstrate that the metabolism of Placopecten magellanicus, unlike some bivalve species, is tightly coupled to fluctuations in ambient temperature. Although an absence of compensatory acclimation had a minimal effect on growth in this study, if high temperatures were combined with low food conditions a reduction in scallop production could result. Received: 23 June 1998 / Accepted: 8 February 1999  相似文献   

11.
The genetic structure of Alaria marginata Postels & Ruprecht was investigated spatially and seasonally using amplified-fragment length polymorphisms (AFLP). Using one primer, 206 scoreable bands were produced. Individual plants that were separated by as little as a few decimeters to >100 km could be distinguished, and followed an isolation-by-distance model. Genetic similarity (average April data) ranged from 76% for patches (a few decimeters in diameter), to 71% for individual kelp stands (15 m across) and 67% for a group of stands separated by 185 km. Greater genetic similarity of patches occurred at a wave-sheltered site than at a wave-exposed site. The lower wave action may limit meiospore dispersal, resulting in patches of related sporophytes. Genetic similarities between A. marginata stands indicated a pattern of gene flow that is consistent with local currents. In one stand, genetic similarities were markedly different between seasons. This seasonal pattern may be the result of different age groups dominating the sampled stands over time. The genetic structure of A. marginata comprises local scale (patch and within-stand) heterogeneity and larger scale (between-stands) homogeneity. Received: 30 September 1998 / Accepted: 26 October 1999  相似文献   

12.
The transparent goby Aphia minuta (Risso, 1810) is one of the main target species of the small-scale fishery off the Island of Majorca. Otolith microstructure and length-frequency analysis were used to study the age and growth of this species during the 1982/1983 and 1992/1993 fishing seasons. Daily periodicity of increment formation was determined by experiments with marked otoliths in individuals maintained in captivity. The length range of the catches during the 11 yr period was between 12 and 49 mm, with a main distribution (89%) between 24 and 40 mm. Otolith age-readings indicate that the population exploited in the commercial fishery consists of seven age-groups (2 to 8 mo old), with a very high proportion of individuals (95%) between 3 and 6 mo old. Population growth-curves revealed no differences between males and females. The growth parameters for the whole population are: asymptotic length, L = 53.69 mm; growth coefficient, K = 2.23 yr−1; theoretical age at length zero, t 0 = −0.005 yr. Those individuals of A. minuta caught in Majorca during the winter period reached a maximum age of 7 or 8 mo. Received: 30 December 1996 / Accepted: 16 April 1997  相似文献   

13.
We determined the temporal evolution of amylase, cellulase, laminarinase and protease in the digestive gland and crystalline style of cockles Cerastoderma edule held over 9 to 12 d in the presence and absence of food. Cockles were fed a constant diet of 1.5 mm3 l−1 of Tetraselmis suecica for 9 to 12 d and were then starved for 6 to 8 d in late summer (September 1992) and in winter (January 1993). Feeding increased the dry weight and total cellulase, laminarinase and protease activities of the digestive gland irrespective of season, whereas amylase activity remained unchanged. In winter (i.e. when cockles are metabolically weak) the response was faster and stronger, especially for protease. An additional experiment in September starved cockles for 20 d before resuming feeding. In agreement with the seasonal differences, the presence of food after prolonged starvation induced a rapid and marked increase in protease in the digestive gland of the cockles. In winter, the possible effects of the biochemical composition of food on their enzymatic response were tested by feeding two groups of cockles with the same ration of T. suecica but harvested at different growth phases. A compensatory induction of cellulases occurred in cockles fed on T. suecica with a lower carbohydrate content. In the crystalline style, the protein level and carbohydrase fell during the first day of feeding and increased during the first day of subsequent starvation. These results indicate that the release of enzymes from the style prevails over the incorporation of enzymes during the early stages of feeding, whereas the opposite occurs during starvation. Received: 15 February 1998 / Accepted: 22 February 1999  相似文献   

14.
The genetic structure of 12 reef populations of the soft coral Sinularia flexibilis (Octocorallia, Alcyoniidae) was studied along the Great Barrier Reef (GBR) at a maximum separation of 1,300 km to investigate the relative importance of sexual and asexual reproduction, genetic differentiation and gene flow among these populations. S. flexibilis is a widely distributed Indo-Pacific species and a gamete broadcaster that can form large aggregations of colonies on near-shore reefs of the GBR. Up to 60 individuals per reef were collected at a minimum sampling scale of 5 m at two sites per reef, from December 1998 to February 2000. Electrophoretic analyses of nine polymorphic allozymes indicated that genotypic frequencies in most populations and loci did not differ significantly from those expected from Hardy–Weinberg predictions. Analysis of multi-locus genotypes indicated a high number of unique genotypes (N go) relative to the number of individuals sampled (N) in each reef population (range of 0.69–0.95). The maximum number of individuals likely to have been produced sexually (N*) was similar to the number of individuals sampled (i.e. N*:N ˜ 1), suggesting that even repeated genotypes may have been produced sexually. These results demonstrated a dominant role of sexual reproduction in these populations at the scale sampled. Significant genetic differentiation between some populations indicated that gene flow is restricted between some reefs (F ST=0.026, 95% CI= 0.011 − 0.045) and even between sites within reefs (F ST=0.041, 95% CI=0.027 − 0.055). Nevertheless, there was no relationship between geographic separation and genetic differentiation. Analyses comparing groups of populations showed no significant differentiation on a north-south gradient in the GBR. The pattern in the number of significant differences in gene frequencies in pairwise population comparisons, however, suggested that gene flow may be more restricted among inner-shelf reef populations near to the coast than among mid/outer-shelf populations further from the coast. Received: 10 July 2000 / Accepted: 5 October 2000  相似文献   

15.
Samples of the scleractinian coral Pocillopora damicornis were collected from six sites located around four islands in the Ryukyu Archipelago, southern Japan, and subjected to allozyme electrophoresis. Seven polymorphic loci were examined for their allelic patterns. The ratio of observed to expected genotypic diversity (0.30 < G o :G e  < 0.64), the ratio of the observed number of genotypes to the number of individuals (0.47 < N g :N i  < 0.75), and deviations from Hardy–Weinberg equilibrium indicated that asexual reproduction plays a major role in the maintenance of established populations. However, populations were not completely dominated by a single or a few clones, and most clones were represented by only a few individual samples. The high frequency of typhoons in the region suggests that, in P. damicornis, fragmentation caused through occasional exposure to powerful waves is a major mode of asexual reproduction, but asexual production of planulae may also be contributing to the maintenance of populations. A significant genetic differentiation (F ST) was found between the six populations examined (0.027 < F ST < 0.092, average F ST = 0.056). The moderate gene flow is discussed according to characteristics of the larval stage of the species, and to circulation patterns in the region. Received: 7 August 1998 / Accepted: 18 May 1999  相似文献   

16.
Rates of routine respiration (R R, μl O2 fish−1 h−1) and total ammonia nitrogen excretion (E R, μg NH4–N + NH3–N fish−1 h−1) were measured on larval and juvenile haddock (Melanogrammus aeglefinus) to ascertain how energy losses due to metabolism were influenced by temperature (T), dry body mass (M D, mg) and specific growth rate (SGR, % per day). R R and E R increased with M D according to y =  · M D b with b-values of 0.96, 0.98, 1.14, and 0.89, 0.78, 0.74, respectively, at 10, 7, and 4°C, respectively. Multiple regressions explained 98% of the variability in the combined effects of M D and T on R R and E R in larval haddock: R R = 0.97 · M D 0.98  · e0.092 · T ; E R = 0.06 · M D 0.79  · e0.092 · T . In young juvenile (24–30 mm standard length) haddock, R R tended to decline (P = 0.06) and E R significantly declined (P = 0.02) with increasing SGR. O:N ratios significantly increased with increasing SGR suggesting that N was spared in relatively fast-growing individuals. Our results for young larval and juvenile haddock suggest: (1) nearly isometric scaling of R R with increasing body size, (2) allometric scaling of E R with increasing body size, (3) Q 10 values of 2.5 for both R R and E R, (4) metabolic differences in substrate utilization between relatively fast- and slow-growing individuals, and (5) that rates of routine energy loss and growth were not positively related. The measurements in this study will provide robust parameter estimates for individual-based models that are currently being utilized to investigate how variability in climatic forcing influences the vital rates of early life stages of haddock. Our results also stress that inter-individual differences in rates of energy loss should not be overlooked as a factor influencing growth variability among individuals.  相似文献   

17.
 In the Black Sea, during summer stratification, Calanus euxinus (Hulsemann) undertakes diel vertical migrations with an amplitude of about 117 m from oxygenated, warm (18 °C) surface layers to hypoxic (∼0.8 mg O2 l−1) zones with lower temperature (7.9 °C). When such changes in temperature and oxygen concentration are reproduced in the laboratory, total metabolism, basal metabolism and scope of activity of copepods decrease 7.2, 7.8 and 6.7 times, respectively, while the frequency of locomotory acts and mechanical power decline 3.4- and 9.5-fold, respectively. These changes allowed the copepods to conserve a significant portion of food consumed near the surface for transformation to lipid reserves. Diel respiratory oxygen consumption of migrating individuals, calculated so as to include actual duration of residence in layers with different temperature and oxygen concentrations, is estimated at 17.87 μg O2 ind−1. The net energy cost of vertical migration made up only 11.6% of the total. Copepods expend 78.6% of diel energy losses during approximately 10 h in the surface layers, while about 5.4% is required during about 9 h at depth. Hypoxia is shown to have a significant metabolic advantage during diel vertical migrations of C. euxinus in the Black Sea. Received: 1 October 1999 / Accepted: 11 July 2000  相似文献   

18.
The growth rates of two fish species, the winter flounder Pseudopleuronectes americanus (Walbaum) (19.3 to 42.6 mm total length, TL) and the tautog Tautogaonitis (Linnaeus) (23.9 to 55.9 mm TL), were used to evaluate habitat quality under and around municipal piers in the Hudson River estuary, USA. Growth rates were measured in a series of 10 d field caging-experiments conducted at two large piers in the summers of 1996 and 1997. Cages (0.64 m2) were deployed along␣transects that stretched from underneath the piers to beyond them, encompassing the pier edge (the transitional zone between the pier interior and the outside). Growth in weight (G w ) was determined at five locations along the transect, 40 m beneath the pier, 20 m beneath the pier, at the pier edge, 20 m beyond the pier edge, and 40 m beyond. Under piers, mean growth rates of winter flounder and tautogs were negative (xˉG W  = −0.02 d−1), and rates were comparable to laboratory-starved control fishes (xˉG W  = −0.02 d−1). In contrast, mean growth rates at pier edges and in open waters beyond piers were generally positive (xˉG W ranged from −0.001 to +0.05 d−1), with growth at pier edges often being more variable and less rapid than at open-water sites. Analyses of stomach contents upon retrieval of caged fishes revealed that dry weights of food were generally higher among fishes caged at open-water stations ( range = 0.02 to 0.72 mg dry wt) than at pier-edge ( range = 0.01 to 0.54 mg) or under-pier ( range = 0.03 to 0.11 mg) stations, although it was apparent that benthic prey were available at all stations on the transect. Our results indicate poor feeding conditions among fishes caged under piers, and suboptimal foraging among fishes caged at pier edges. Inadequate growth rates can lead to higher rates of mortality, and, based on these and other earlier experiments, we conclude that under-pier environments are poor-quality habitats for some species of juvenile fishes. Received: 12 March 1998 / Accepted: 9 November 1998  相似文献   

19.
A curious feature of the honeybee's waggle dance is the imprecision in the direction indication for nearby food sources. One hypothesis for the function of this imprecision is that it serves to spread recruits over a certain area and thus is an adaptation to the typical spatial configuration of the bees' food sources, i.e., flowers in sizable patches. We report an experiment that tests this tuned-error hypothesis. We measured the precision of direction indication in waggle dances advertising a nest site (typically a tree cavity, hence a target that is almost a point) and compared it with that of dances advertising a food source (typically a flower patch, hence a target that covers an area). The precision of dances for a nearby nest site was significantly higher than that of dances for an equidistant feeder. This was demonstrated four times with four colonies. Our evidence therefore supports the hypothesis that the level of precision in the direction indication for nearby food sources is tuned to its optimum without being at its maximum. Received: 9 December 1998 / Received in revised form: 24 February 1999 / Accepted 12 March 1999  相似文献   

20.
The annual occurrence of hypoxia (<25% oxygen saturation) in the bottom waters along the Swedish west coast coincides with the postlarval settlement of Norway lobster, Nephrops norvegicus (L.). This study investigates behaviour and the experimental effects of low oxygen concentrations in juvenile N. norvegicus of different ages. All experimental individuals were reared to the juvenile (postlarval) stage in the laboratory and then given sediment as a substratum. Behavioural responses to low oxygen concentrations were tested in early and late Postlarvae 1 exposed to normoxia (>80% oxygen saturation, pO2 > 16.7 kPa), moderate hypoxia (30% oxygen saturation, pO2 = 6.3 kPa) and hypoxia (25% oxygen saturation, pO2 = 5.2 kPa). The experiments were run for a maximum period of 24 h or until individuals died. Behaviour was studied using sequential video recordings of four behavioural activities: digging, walking, inactivity or flight (escape swimming up into the water column). Behaviour and mortality changed with lowered oxygen concentrations; energetically costly activities (such as walking) were reduced, and activity in general declined. In normoxia, juveniles initially walked and then burrowed, but when exposed to hypoxia they were mainly inactive with occasional outbursts of escape swimming. To increase oxygen availability the juveniles were observed to raise their bodies on stilted legs (similar to adults in hypoxic conditions), but oxygen saturations of 25% were lethal within 24 h. The results suggest that the main gas exchanges of early postlarval stages occur over the general body surface. Burrowing behaviour was tested in Postlarvae 1 and 2 of different ages held in >80% oxygen saturation for 1 wk. The difference in time taken to complete a V-shaped depression or a U-shaped burrow was measured. The results showed a strong negative relationship between postlarval age and burrowing time, but all individuals made a burrow. Juveniles were more sensitive to hypoxia than adults. Thus, the possible consequences of episodic hypoxia for the recruitment of Nephrops norvegicus and for the recolonization of severely affected areas are discussed. Received: 4 August 1996 / Accepted: 11 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号