首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent developments regarding environmental impact assessment methodologies for radioactivity have precipitated the need for information on levels of naturally occurring radionuclides within and transfer to wild flora and fauna. The objectives of this study were therefore to determine activity concentrations of the main dose forming radionuclides 210Po and 210Pb in biota from terrestrial ecosystems thus providing insight into the behaviour of these radioisotopes. Samples of soil, plants and animals were collected at Dovrefjell, Central Norway and Olkiluoto, Finland. Soil profiles from Dovrefjell exhibited an approximately exponential fall in 210Pb activity concentrations from elevated levels in humus/surface soils to “supported” levels at depth. Activity concentrations of 210Po in fauna (invertebrates, mammals, birds) ranged between 2 and 123 Bq kg−1 d.w. and in plants and lichens between 20 and 138 Bq kg−1 d.w. The results showed that soil humus is an important reservoir for 210Po and 210Pb and that fauna in close contact with this media may also exhibit elevated levels of 210Po. Concentration ratios appear to have limited applicability with regards to prediction of activity concentrations of 210Po in invertebrates and vertebrates. Biokinetic models may provide a tool to explore in a more mechanistic way the behaviour of 210Po in this system.  相似文献   

2.
The activity of 210Po and 210Pb was determined in mussels of the same size (3.5-4.0 cm shell length) sampled monthly over a 17-month period at the Atlantic coast of Portugal. Average radionuclide concentration values in mussels were 759 ± 277 Bq kg−1 for 210Po (range 460-1470 Bq kg−1 dry weight), and 45 ± 19 Bq kg−1 for 210Pb (range 23-96 Bq kg−1 dry weight). Environmental parameters and mussel biometric parameters were monitored during the same period. Although there was no seasonal variation of radionuclide concentrations in sea water during the study period, the concentration of radionuclide activity in mussels varied seasonally displaying peaks of high concentrations in winter and low concentrations in summer. Analysis of radionuclide data in relation to the physiological Condition Index of mussels revealed that 210Po and 210Pb activities in the mussel (average activity per individual) remained nearly constant during the investigation period, while mussel body weight fluctuated due to fat storage/expenditure in the soft tissues. Similar variation of radionuclide concentrations was observed in mussels transplanted from the sea coast into the Tejo Estuary. However, under estuarine environmental conditions and with higher food availability throughout the year, transplanted mussel Condition Index was higher than in coastal mussels and average radionuclide concentrations were 210 ± 75 Bq kg−1 (dry weight) for 210Po and 10 ± 4 Bq kg−1 (dry weight) for 210Pb, therefore lower than in coastal mussels with similar shell length. It is concluded that the apparent seasonal fluctuation and inter-site difference of radionuclide concentrations were mostly caused by mussel body weight fluctuation and not by radionuclide body burden fluctuation. This interpretation can be extended to the apparent seasonal fluctuation in concentrations of lipophilic and lipophobic contaminants in mussels, and provides an explanation for occasional high concentrations of 210Po and man-made contaminants measured in mussels far from pollution sources.  相似文献   

3.
The concentrations and vertical distribution of 239,240Pu, 241Am and 137Cs in the bottom sediments and water samples of Lake Päijänne were investigated. This lake is important, since the Päijänne area received a significant deposition from the Chernobyl fallout. Furthermore Lake Päijänne is the raw water source for the Helsinki metropolitan area. In addition no previous data on the distribution of plutonium and americium in the sediment profiles of Lake Päijänne exist. Only data covering the surface layer (0–1 cm) of the sediments are previously available. In the sediments the average total activities were 45 ± 15 Bq/m2 and 20 ± 7 Bq/m2 for 239,240Pu and 241Am, respectively. The average 241Am/239,240Pu ratio was 0.45 ± 0.14. The 241Am/239,240Pu ratio is lowest in the surface layer of the sediments and increases as a function of depth. The 238Pu/239,240Pu ratio of the sediment samples varied between 0.012 ± 0.025 and 0.162 ± 0.079, decreasing as a function of depth. The average activity in water was 4.9 ± 0.9 mBq/m3 and 4.1 ± 0.2 mBq/m3 for 239,240Pu and 241Am, respectively. The 241Am/239,240Pu ratio of water samples was 0.82 ± 0.17. 239,240Pu originating from the Chernobyl fallout calculated from the average total activities covers approximately 1.95 ± 0.01% of the total 239,240Pu activity in the bottom sediments. The average total 137Cs activity of sediment profiles was 100 ± 15 kBq/m2 and 19.3 ± 1.4 Bq/m3 in water samples.  相似文献   

4.
Sediment deposits are the ultimate sink for anthropogenic radionuclides entering the marine environment. The major sources of anthropogenic radionuclides to the Barents Sea are fallout from nuclear weapons tests, long range transport from other seas, and river and non-point freshwater supplies. In this study we investigated activity concentrations, ratios, and inventories of the anthropogenic radionuclides, 137Cs, 238Pu, 239,240Pu in dated sediment cores collected along a north-south transect in the northwestern Barents Sea. The data were used to evaluate the influence of different sources on the derived spatial and temporal patterns of anthropogenic radionuclides in seafloor sediment deposits. Activity concentrations of 137Cs ranged from <0.1 Bq/kg to 10.5 Bq/kg while 239,240Pu ranged from <0.01 Bq/kg to 2.74 Bq/kg and 238Pu activity concentrations ranged from <0.01 Bq/kg to 0.22 Bq/kg. Total inventories of 137Cs ranged from 29.5 ± 1.5 Bq/m2 to 152.7 ± 5.6 Bq/m2 and for 239,240Pu inventories (6 sediment layers only) ranged from 9.5 ± 0.3 Bq/m2 to 29.7 ± 0.4 Bq/m2. Source contributions varied among stations and between the investigated radionuclides. The 238Pu/239,240Pu ratios up to 0.18 indicate discharges from nuclear fuel reprocessing plants as a main contributor of plutonium. Based on 238Pu/239,240Pu ratio, it was calculated that up to 19-27% of plutonium is supplied from sources other than atmospheric global fallout. Taking into account Atlantic current flow trajectories and that both activity concentrations and inventories of plutonium negatively correlate with latitude, Sellafield is a major source for the Barents Sea. Concentrations and inventories of 137Cs correlate positively with latitude and negatively with distance from the Svalbard archipelago. The 137Cs concentrations are highest in an area of intensive melting of sea ice formed along the Siberian coast. Thus, sea ice and supplies from Svalbard may be important source of 137Cs to the Barents Sea seafloor.  相似文献   

5.
The aim of this work is to determine the radioactivity concentration of 226Ra, 232Th and 40K in sub-surface (0-5 cm) soil samples collected from Awanda, Bikoué, Ngombas in the southwestern region of Cameroon, to assess their contribution to the external dose exposure relative to the United Nation Scientific Committee on Effects of Atomic Radiation (UNSCEAR) data. An HPGe p-type detector coupled to a multichannel analyzer was used to perform measurements and data processing. The activity concentrations of 226Ra varied from 0.06 ± 0.01 to 0.27 ± 0.02 kBq kg−1 with a mean value of 0.13 ± 0.01 kBq kg−1 wet weight. The activity concentrations of 232Th varied from 0.10 ± 0.01 to 0.70 ± 0.05 kBq kg−1 with a mean value of 0.39 ± 0.03 kBq kg−1 wet weight, and 40K concentrations varied from 0.37 ± 0.02 to 1.53 ± 0.11 kBq kg−1 with a mean value of 0.85 ± 0.07 kBq kg−1 wet weight, respectively. The mean value of outdoor annual effective doses were estimated to be 0.48 mSv y−1, 0.39 mSv y−1 and 0.38 mSv y−1 from Ngombas, Awanda and Bikoué, respectively. The studied areas can be said to have a high background radiation level.  相似文献   

6.
Caesium-137 activity concentration in the water columns of the Gulf of Patras (Central Greece) and the North-Eastern Aegean Sea (easterward to Lemnos Island) was investigated in selected sampling stations during the period September 2004–June 2006. The methodology followed was based on the sorption of caesium (Cs) on cotton wound cartridge filters impregnated by Cu2[Fe(CN)6] via in-situ pumping. In terms of the horizontal and vertical records, the activity concentrations of 137Cs in the Gulf of Patras ranged between 1.2 and 6.7 Bq m−3, depending on the sampling period and the prevailing physicochemical regime at the sampling station. The general pattern of the decreased activity concentrations of 137Cs with increasing depth was reversed in the Gulf of Patras during the cold period attributed to the prevailing advective processes of the area. The activity concentrations of 137Cs in the North-Eastern Aegean Sea ranged from 2.6 to 12.8 Bq m−3, whereas significant stratified curves were observed during the warm period and also, in one station during the cold period. In terms of temporal variation, the discharges in the Gulf of Patras resulted in enhanced levels of 137Cs, whereas in the North Aegean Sea the incoming water masses form the Black Sea had an apparent influence throughout the year by increasing the 137Cs levels, hence presenting a weak seasonal variation. Comparing the two studied areas, one could say that the North Aegean Sea, as an open sea environment, presented higher concentrations due to the influence of the Black Sea water masses. The estimated inventories of 137Cs in the Gulf of Patras ranged 0.25 ± 0.03–0.79 ± 0.03 kBq m−2, whereas in the North-Eastern Aegean Sea they ranged 0.33 ± 0.02–0.92 ± 0.03 kBq m−2.  相似文献   

7.
Natural resources such as ores and rocks contain natural radioactive nuclides at various concentrations. If these resources contain high concentrations of natural radioactive nuclides, workers handling them might be exposed to significant levels of radiation. Therefore, it is important to investigate the radioactive activity in these resources. In this study, concentrations of radioactive nuclides in Th, Zr, Ti, Mo, Mn, Al, W, Zn, V, and Cr ores used as industrial raw materials in Japan were investigated. The concentrations of 238U and 232Th were determined by inductively coupled plasma mass spectrometry (ICP-MS), while those of 226Ra, 228Ra, and 40K were determined by gamma-ray spectrum. We found the concentrations of 238U series, 232Th series, and 40K in Ti, Mo, Mn, Al, W, Zn, V, and Cr ores to be lower than the critical values defined by regulatory requirements as described in the International Atomic Energy Agency (IAEA) Safety Guide. The doses received by workers handling these materials were estimated by using methods for dose assessment given in a report by the European Commission. In transport, indoor storage, and outdoor storage scenarios, an effective dose due to the use of Th ore was above 4.3 × 10−2 Sv y−1, which was higher than that of the other ores. The maximum value of effective doses for other ores was estimated to be about 4.5 × 10−4 Sv y−1, which was lower than intervention exemption levels (1.0 × 10−3 Sv y−1) given in International Commission of Radiological Protection (ICRP) Publication 82.  相似文献   

8.
Natural background gamma radiation and radioactivity concentrations were investigated from 2003 to 2005 in Kinta District, Perak, Malaysia. Sample locations were distant from any ‘amang’ processing plants. The external gamma dose rates ranged from 39 to 1039 nGy h−1. The mean external gamma dose rate was 222 ± 191 nGy h−1. Small areas of relatively enhanced activity were located having external gamma dose rates of up to 1039 ± 104 nGy h−1. The activity concentrations of 238U, 232Th and 40K were analyzed by using a high-resolution co-axial HPGe detector system. The activity concentration ranges were 12–426 Bq kg−1 for 238U, 19–1377 Bq kg−1 for 232Th and <19–2204 Bq kg−1 for 40 K. Based on the radioactivity levels determined, the gamma-absorbed dose rates in air at 1 m above the ground were calculated. The calculated dose rates and measured dose rates had a good correlation coefficient, R of 0.94. To evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity, the gamma-absorbed dose rate and the mean population weighted dose rate were calculated. An isodose map for the Kinta District was also produced.  相似文献   

9.
Results are presented for 137Cs, 90Sr and plutonium activity concentrations in more than 20 samples of terrestrial invertebrates, including species of beetles, ants, spiders and millipedes, collected in the highly contaminated area of the Chernobyl exclusion zone. The majority of samples were collected in Belarus, with some also collected in the Ukraine. Three other samples were collected in an area of lower contamination. Results show that seven samples exceed an activity concentration of 100 kBq/kg (ash weight - a.w.) for 137Cs. The maximum activity concentration for this isotope was 1.52 ± 0.08 MBq/kg (a.w.) determined in ants (Formica cynerea). Seven results for 90Sr exceeded 100 kBq/kg (a.w.), mostly for millipedes. Relatively high plutonium activity concentrations were found in some ants and earth-boring dung beetles. Analyses of activity ratios showed differences in transfer of radionuclides between species. To reveal the correlation structure of the multivariate data set, the Partial Least-Squares method (PLS) was used. Results of the PLS model suggest that high radiocesium activity concentrations in animal bodies can be expected mainly for relatively small creatures living on the litter surface. In contrast, high strontium activity concentrations can be expected for creatures which conduct their lives within litter, having mixed trophic habits and a moderate lifespan. No clear conclusions could be made for plutonium.  相似文献   

10.
Concentrations of the natural radionuclides 238U, 226Ra, 232Th and 40K have been measured by γ-ray spectrometry in 796 topsoil samples from the Pearl River Delta Zone (PRDZ) of Guangdong, China. The mean concentrations for 238U, 226Ra, 232Th and 40K were found to be 140 ± 37 Bq kg−1, 134 ± 41 Bq kg−1, 187 ± 80 Bq kg−1 and 680 ± 203 Bq kg−1 dry mass, respectively. These values were all higher than the mean values in soil for China and the world. Outdoor air-absorbed dose rates, calculated from activity concentrations of 226Ra, 232Th and 40K, ranged from 86 to 237 nGy h−1, with a mean value of 165 ± 46 nGy h−1. The corresponding annual outdoor effective dose rate per person was estimated to be between 0.11 and 0.29 mSv y−1, with a mean value of 0.20 ± 0.06 mSv y−1, which was also higher than the world mean value of 0.07 mSv y−1. The radium equivalent activity (Raeq) and the external hazard index (Ir) resulted from the natural radionuclides in soil, were also calculated and found to vary from 230 to 676 Bq kg−1 and from 0.6 to 1.8, respectively. The Raeq and the Ir in all the investigated regions were up to 75% higher than the set limits of 370 Bq kg−1 and 1.0, respectively.  相似文献   

11.
This study focuses on the cesium-137 (137Cs) contamination in grass and in different compartments of oak trees growing in ecosystems, located in the zone with sub-mediterranean climate in South Bulgaria, characterized with high summer temperatures, low precipitation and often periods of drought. In 2008, three experimental sites - PP1, PP2, PP3 - were sampled in oak ecosystems from Maleshevska Mountain at 900 m above sea level. Samples from grass species and oak tree leaves, branches with different diameter, wood disks and bark were analyzed for 137Cs activity with γ-spectrometry. The soil-to-plant transfer factor (TF) values for 137Cs were estimated differentiating different tree compartments. Our findings showed relatively high activity concentrations of 137Cs in oak trees even 22 years after the Chernobyl accident. The grass under oak was less contaminated compared with the oak trees. The different organs of oak trees could be distinguished according to the 137Cs contamination as follows: bark > branches (d < 1 cm) > leaves > branches (d > 3 cm) > wood. The relatively higher contamination of bark compared with the new-formed biomass suggested that a significant part of 137Cs was accumulated as a result of direct adsorption at the time of the main contamination event. The TF values obtained and the presence of 137Cs in the branches, leaves and in the wood formed after 1986 confirmed that 22 years after the contamination, the main mechanism of 137Cs entrance in tree biomass was the root uptake.  相似文献   

12.
We summarize the patterns of 137Cs activity concentrations and transfer into fish and other biota in four small forest lakes in southern Finland during a twenty-year period following the Chernobyl accident in April 1986. The results from summer 1986 showed fastest accumulation of 137Cs into planktivorous fishes, i.e. along the shortest food chains. Since 1987, the highest annual mean values of 137Cs have been recorded in fish occupying the highest trophic levels, for perch (Perca fluviatilis) 13,600 Bq/kg (ww) and for pike (Esox lucius) 20,700 Bq/kg (ww). At the same time, activity concentrations of 137Cs in crustacean zooplankton and Asellus aquaticus have ranged between 1000 and 19,500 Bq/kg (dw). In 2006, 5-28% of the 1987 137Cs activity concentration levels were still present in perch and pike. Since 1989 their 137Cs activity concentrations in oligohumic seepage lakes have remained significantly higher than in polyhumic drainage lakes due to the increased transfer of 137Cs into fish in the seepage lakes with lower electrolyte concentrations, longer water retention times and lower sedimentation rate.  相似文献   

13.
The vertical distribution of 137Cs activity in peat soil profiles and 137Cs activity concentration in plants of various species was studied in samples collected at two sites on a raised bog in central Sweden. One site (open bog) was in an area with no trees and only a few sparsely growing plant species, while the other (low pine) was less than 100 m from the open bog site and had slowly growing Scots pine, a field layer dominated by some ericaceous plants and ground well-covered by plants. The plant samples were collected in 2004–2007 and were compared with samples collected in 1989 from the same open bog and low pine sites. Ground deposition of 137Cs in 2005 was similar at both sites, 23?000 Bq m−2. In the open bog peat profile it seems to be an upward transport of caesium since a clear peak of 137Cs activity was found in the uppermost 1–4 cm of Sphagnum layers, whereas at the low pine site 137Cs was mainly found in deeper (10–12 cm) layers. The migration rate was 0.57 cm yr−1 at the open bog site and the migration centre of 137Cs was at a depth of 10.7, while the rate at the low pine site was 0.78 cm yr−1 and the migration centre was at 14.9 cm. Heather (Calluna vulgaris) was the plant species with the highest 137Cs activity concentrations at both sites, 43.5 k Bq−1 DM in 1989 decreasing to 20.4 in 2004–2007 on open bog and 22.3 k Bq kg−1 DM in 1989 decreasing to 11.2 k Bq−1 DM by the period 2004–2007 on the low pine site. 137Cs transfer factors in plants varied between 0.88 and 1.35 on the open bog and between 0.48 and 0.69 m2 kg−1 DM at the low pine site.  相似文献   

14.
234U and 238U activity concentrations and their relative effective doses have been determined in 10 bottled mineral waters in Tunisia. Alpha spectrometry was used as technique to measure uranium isotopes. The obtained isotopic ratio 234U/238U varies between 1.1 and 3 which means that the two isotopes are not in radioactive equilibrium. Measured activity concentration varies between 3.2 and 40 mBq/l for 234U and between 1.5 and 26.3 mBq/l for 238U. Effective doses (assuming 2 litres per day of water consumption) coming from this two isotopes are found to vary between 0.16 and 2.02 μSv/a which is lower than the maximum recommended dose level by the WHO.  相似文献   

15.
Coal, like most materials found in nature, contains trace quantities of the naturally occurring primordial radionuclides, i.e. of 40K and of 238U, 232Th and their decay products. Therefore, the combustion of coal results in the released into the environment of some natural radioactivity (1.48 TBq y−1), the major part of which (99 %) escapes as very fine particles, while the rest in fly ash. The activity concentrations of natural radionuclides measured in coals originated from coal mines in Greece varied from 117 to 435 Bq kg−1 for 238U, from 44 to 255 Bq kg−1 for 226Ra, from 59 to 205 Bq kg−1 for 210Pb, from 9 to 41 Bq kg−1 for 228Ra (232Th) and from 59 to 227 Bq kg−1 for 40K. Fly ash escapes from the stacks of coal-fired power plants in a percentage of 3-1% of the total fly ash, in the better case. The natural radionuclide concentrations measured in fly ash produced and retained or escaped from coal-fired power plants in Greece varied from 263 to 950 Bq kg−1 for 238U, from 142 to 605 Bq kg−1 for 226Ra, from 133 to 428 Bq kg−1 for 210Pb, from 27 to 68 Bq kg−1 for 228Ra (232Th) and from 204 to 382 Bq kg−1 for 40K. About 5% of the total ash produced in the coal-fired power plants is used as substitute of cement in concrete for the construction of dwellings, and may affect indoor radiation doses from external irradiation and the inhalation of radon decay products (internal irradiation) is the most significant. The resulting normalized collective effective doses were 6 and 0.5 man-Sv (GW a)−1 for typical old and modern coal-fired power plants, respectively.  相似文献   

16.
Significantly high radiation level and radionuclide concentration along Quilon beach area of coastal Kerala have been reported by several investigators. Detailed gamma radiation level survey was carried out using a portable scintillometer. Detailed studies on radionuclides concentration in different environmental matrices of high background areas were undertaken in the coastal areas of Karunagapalli, Kayankulam, Chavara, Neendakara and Kollam to study the distribution and enrichment of the radionuclides in the region. The absorbed gamma dose rates in air in high background area are in the range 43-17,400 nGyh−1. Gamma radiation level is found to be maximum at a distance of 20 m from the sea waterline in all beaches. The soil samples collected from different locations were analysed for primordial radionuclides by gamma spectrometry. The activity of primordial radionuclides was determined for the different size fractions of soil to study the enrichment pattern. The highest activity of 232Th and 226Ra was found to be enriched in 125-63 μ size fraction. The preferential accumulation of 40K was found in <63 μ fraction. The minimum 232Th activity was 30.2 Bq kg−1, found in 1000-500 μ particle size fraction at Kollam and maximum activity of 3250.4 Bq kg−1 was observed in grains of size 125-63 μ at Neendakara. The lowest 226Ra activity observed was 33.9 Bq kg−1 at Neendakara in grains of size 1000-500 μ and the highest activity observed was 482.6 Bq kg−1 in grains of size 125-63 μ in Neendakara. The highest 40K activity found was 1923 Bq kg−1 in grains of size <63 μ for a sample collected from Neendakara. A good correlation was observed between computed dose and measured dose in air. The correlation between 232Th and 226Ra was also moderately high. The results of these investigations are presented and discussed in this paper.  相似文献   

17.
In the framework of a 222Rn screening campaign that was carried out in 58 public secondary schools in Galicia (NW Spain), the largest radon-prone area in the Iberian Peninsula, a positive correlation between indoor 222Rn concentration and outdoor gamma exposure rate was obtained. A new approach to the data acquisition in screening surveys was tested, improving the performances of this type of study and gathering useful data for future remedial actions. Using short-period detectors (charcoal canisters) firstly, in order to detect places showing 222Rn concentrations over 400 Bq m−3, the number of locations to be measured with long-period detectors (etched track detectors) is reduced. In this screening campaign, 34% of the schools surveyed presented at least one site exceeding the 400 Bq m−3 recommended action level established by the EU, and 15% had at least one site with 222Rn values over 800 Bq m−3. The maximum value recorded was 2084 ± 63 Bq m−3. These results are discussed and compared with data obtained in schools of several countries with similar geology. Seven schools were also studied for seasonal variations of 222Rn activity concentration. The results were not conclusive, and no significant correlation between season and 222Rn concentration was established. Finally, a continuous 222Rn concentration monitor was placed in the secondary school exhibiting a mean value of the 222Rn concentration very close to 400 Bq m−3. Maximum 222Rn concentration values were found to occur at times when the school was unoccupied.  相似文献   

18.
We have been continuously observing the daily 7Be concentrations in surface air at Yamagata, Japan (38.25° N, 140.35° E) since 2000. The yearly profile of the 7Be concentration indicates the variation in galactic cosmic rays owing to solar modulation. Over 8 y, the 7Be concentration, cosmic neutrons, and number of sunspots varied by 37.4%, 12.2%, and 92.8%, respectively. The influence of precipitation on the 7Be variability was approximately 5%. Hence, the yearly 7Be concentration was mainly varied by the solar modulation of the 7Be production rates. Based on the production rates found in an EXPACS simulation, the observed variability indicates 7Be transport from high latitudes. The daily 7Be concentrations have two significant periodic components of 19 d and 36 d. The 36-d component implies a relationship between the sun's rotation and the vertical transport of air masses under quiet solar activity.  相似文献   

19.
Least squares (LS), Theil’s (TS) and weighted total least squares (WTLS) regression analysis methods are used to develop empirical relationships between radium in the ground, radon in soil and radon in dwellings to assist in the post-closure assessment of indoor radon related to near-surface radioactive waste disposal at the Low Level Waste Repository in England. The data sets used are (i) estimated 226Ra in the <2 mm fraction of topsoils (eRa226) derived from equivalent uranium (eU) from airborne gamma spectrometry data, (ii) eRa226 derived from measurements of uranium in soil geochemical samples, (iii) soil gas radon and (iv) indoor radon data. For models comparing indoor radon and (i) eRa226 derived from airborne eU data and (ii) soil gas radon data, some of the geological groupings have significant slopes. For these groupings there is reasonable agreement in slope and intercept between the three regression analysis methods (LS, TS and WTLS). Relationships between radon in dwellings and radium in the ground or radon in soil differ depending on the characteristics of the underlying geological units, with more permeable units having steeper slopes and higher indoor radon concentrations for a given radium or soil gas radon concentration in the ground. The regression models comparing indoor radon with soil gas radon have intercepts close to 5 Bq m−3 whilst the intercepts for those comparing indoor radon with eRa226 from airborne eU vary from about 20 Bq m−3 for a moderately permeable geological unit to about 40 Bq m−3 for highly permeable limestone, implying unrealistically high contributions to indoor radon from sources other than the ground. An intercept value of 5 Bq m−3 is assumed as an appropriate mean value for the UK for sources of indoor radon other than radon from the ground, based on examination of UK data. Comparison with published data used to derive an average indoor radon: soil 226Ra ratio shows that whereas the published data are generally clustered with no obvious correlation, the data from this study have substantially different relationships depending largely on the permeability of the underlying geology. Models for the relatively impermeable geological units plot parallel to the average indoor radon: soil 226Ra model but with lower indoor radon: soil 226Ra ratios, whilst the models for the permeable geological units plot parallel to the average indoor radon: soil 226Ra model but with higher than average indoor radon: soil 226Ra ratios.  相似文献   

20.
The gross alpha and gross beta activity concentrations were measured in human tooth taken from 3 to 6 age-groups to 40 and over ones. Accumulated teeth samples are investigated in two groups as under and above 18 years. The gross alpha and beta radioactivity of human tooth samples was measured by using a gas-flow proportional counter (PIC-MPC 9604-α/β counter). In tooth samples, for female age-groups, the obtained results show that the mean gross alpha and gross beta activity concentrations varied between 0.534-0.203 and 0.010-0.453 Bq g−1 and the same concentrations for male age-groups varied between 0.009-1.168 and 0.071-0.204 Bq g−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号