首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
234U and 238U activity concentrations and their relative effective doses have been determined in 10 bottled mineral waters in Tunisia. Alpha spectrometry was used as technique to measure uranium isotopes. The obtained isotopic ratio 234U/238U varies between 1.1 and 3 which means that the two isotopes are not in radioactive equilibrium. Measured activity concentration varies between 3.2 and 40 mBq/l for 234U and between 1.5 and 26.3 mBq/l for 238U. Effective doses (assuming 2 litres per day of water consumption) coming from this two isotopes are found to vary between 0.16 and 2.02 μSv/a which is lower than the maximum recommended dose level by the WHO.  相似文献   

2.
The paper presents a systematic study on suitability of various gamma lines for monitoring of 238U activity in soil samples around a uranium mineralized zone of Kylleng Pyndengsohiong Mawthabah (Domiasiat), Meghalaya in India. The area lies in a plateau region which recieves the highest average annual rainfall (12,000 mm) in the world. The geochemical behaviour of the uranium and its daughter products at such wet climatic conditions imposes restrictions to assess 238U through gamma lines of radon decay products. Soil samples were collected from nine locations around the uranium mineralization zone for analysis. The ratio of the concentration of uranium obtained from gamma energies of radium daughter products to the 63.29 keV of 234Th was found to vary from 1.01 to 2.07, which indicates a pronounced disequilibrium between uranium and radium daughters. The results obtained from various gamma energies were validated from the data generated by Instrumental Neutron Activation Analysis (INAA) technique. The 238U activities from the two analytical methods show a well fitted regression line with correlation coefficient 0.99 which validates the reliability of 63.29 keV energy for estimation of uranium in such conditions.  相似文献   

3.
A study is presented on the distribution of 234U, 238U, 235U isotopes in surface water of the Llobregat river basin (Northeast Spain), from 2001 to 2006. Sixty-six superficial water samples were collected at 16 points distributed throughout the Llobregat river basin. Uranium isotopes were measured by alpha spectrometry (PIPS detectors). The test procedure was validated according to the quality requirements of the ISO17025 standard. The activity concentration for the total dissolved uranium ranges from 20 to 261 mBq L−1. The highest concentrations of uranium were detected in an area with formations of sedimentary rock, limestone and lignite. A high degree of radioactive disequilibrium was noted among the uranium isotopes. The 234U/238U activity ratio varied between 1.1 and 1.9 and the waters with the lowest uranium activity registered the highest level of 234U/238U activity ratio. Correlations between uranium activity in the tested water and chemical and physical characteristics of the aquifer were found.  相似文献   

4.
The vertical distribution of the 236U/238U isotopic ratio was investigated in soil samples from three different locations on La Palma (one of the seven Canary Islands, Spain). Additionally the 240Pu/239Pu atomic ratio, as it is a well establish tool for the source identification, was determined. The radiochemical procedure consisted of a U separation step by extraction chromatography using UTEVA® Resin (Eichrom Technologies, Inc.). Afterwards Pu was separated from Th and Np by anion exchange using Dowex 1x2 (Dow Chemical Co.). Furthermore a new chemical procedure with tandem columns to separate Pu and U from the matrix was tested. For the determination of the uranium and plutonium isotopes by alpha spectrometry thin sources were prepared by microprecipitation techniques. Additionally these fractions separated from the soil samples were measured by Accelerator Mass Spectrometry (AMS) to get information on the isotopic ratios 236U/238U, 240Pu/239Pu and 236U/239Pu, respectively. The 236U concentrations [atoms/g] in each surface layer (∼2 cm) were surprisingly high compared to deeper layers where values around two orders of magnitude smaller were found. Since the isotopic ratio 240Pu/239Pu indicated a global fallout signature we assume the same origin as the probable source for 236U. Our measured 236U/239Pu value of around 0.2 is within the expected range for this contamination source.  相似文献   

5.
Samples from a marine sediment core from the Irish Sea (54.416 N, 3.563 W) were analyzed for the isotopic composition of uranium, plutonium and americium by a combination of radiometric methods and AMS. The radiochemical procedure consisted of a Pu separation step by anion exchange, subsequent U separation by extraction chromatography using UTEVA® and finally Am separation with TRU® Resin.Additionally to radiometric determination of these isotopes by alpha spectrometry, the separated samples were also used for the determination of 236U/238U and plutonium isotope ratios by Accelerator Mass Spectrometry (AMS) at the VERA facility.  相似文献   

6.
The distributions of 238U and 234U in groundwater from the “Jeffara aquifer” were studied by using alpha spectrometric methods. The concentration ranges of 238U and 234U/238U activity ratios were 1.34 ± 0.17 to 3.43 ± 0.38 ppb, and 1.43 ± 0.23 to 1.82 ± 0.27 respectively. Variations in concentrations can be related not only to lithostratigraphic formations but also to different origins of groundwater. U content of Jeffara are found very similar to those of Continental Intercalaire aquifer in both El Hamma and Chenchou regions, indicating that the Continental Intercalaire is the dominant source of the groundwater.  相似文献   

7.
The aim of this work was to determine the concentrations and isotopic compositions of plutonium and uranium in environmental samples for safeguards purposes. An analytical method was developed with a plutonium and uranium separation procedure based on extraction chromatography (using 2 mL TEVA and UTEVA columns) and detection with a quadrupole ICP-MS applying an ultra-sonic nebulizer coupled with a membrane desolvation system. Starting from blank swipes, the background equivalent concentration (BEC) was 8 fg for 239Pu and 1 ng 238U. The method was successfully applied to certified reference materials as well as to round robin samples obtained in the framework of the inter-laboratory exercise program, promoted by the Brazilian–Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), together with the US Department of Energy (USDOE). After the introduction of an additional ion-exchange separation step, the methodology was applied to the IAEA-384 sediment reference sample with precise and accurate total plutonium and uranium, 240Pu/239Pu, 241Pu/239Pu, 234U/238U and 235U/238U atomic ratio results.  相似文献   

8.
In order to determine whether or not uranium depleted in 235U and derived from the British Nuclear Fuels Ltd (BNFL) nuclear fuel reprocessingg plant at Sellafield, Cumbria, UK can be detected in environmental samples, we have investigated the isotopic composition of uranium in ammonium carbonate leachates from marine and terrestial samples from near Sellafield. Some show a depletion in 235U and the presence of 236U which unequivocally identifies the presence of uranium derived from BNFL. The 234U/238U activity ratio and total uranium content of samples are not significantly different from those of natural uranium abundances. The highest concentrations of uranium are found in anaerobic organic-rich silts and the lowest in sandy silts and coarse-grained sands.  相似文献   

9.
Natural background gamma radiation and radioactivity concentrations were investigated from 2003 to 2005 in Kinta District, Perak, Malaysia. Sample locations were distant from any ‘amang’ processing plants. The external gamma dose rates ranged from 39 to 1039 nGy h−1. The mean external gamma dose rate was 222 ± 191 nGy h−1. Small areas of relatively enhanced activity were located having external gamma dose rates of up to 1039 ± 104 nGy h−1. The activity concentrations of 238U, 232Th and 40K were analyzed by using a high-resolution co-axial HPGe detector system. The activity concentration ranges were 12–426 Bq kg−1 for 238U, 19–1377 Bq kg−1 for 232Th and <19–2204 Bq kg−1 for 40 K. Based on the radioactivity levels determined, the gamma-absorbed dose rates in air at 1 m above the ground were calculated. The calculated dose rates and measured dose rates had a good correlation coefficient, R of 0.94. To evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity, the gamma-absorbed dose rate and the mean population weighted dose rate were calculated. An isodose map for the Kinta District was also produced.  相似文献   

10.
The concentration of naturally occurring radionuclides 232Th, 238U was determined using Instrumental Neutron Activation Analysis (INAA) in different food groups namely cereals, vegetables, leafy vegetables, roots and tubers cultivated and consumed by tribal population residing around the proposed uranium mine. The study area is a part of rural area K. P. Mawthabah (Domiasiat) in the west Khasi Hills District of Meghalaya, India located in the tropical region of high rainfall that remains steeped in tribal tradition without much outside influence. Agriculture by Jhum (slash and burn) cultivation and animal husbandry are the main occupation of the tribal populations. A total of 89 samples from locally grown food products were analyzed. The concentration of 238U and 232Th in the soil of the study area was found to vary 1.6-15.5 and 2.0-5.0 times respectively to the average mean value observed in India. The estimated daily dietary intake of 238U and 232Th were 2.0 μg d−1 (25 mBq d−1) and 3.4 μg d−1 (14 mBq d−1) is comparable with reported range 0.5-5.0 μg d−1 and 0.15-3.5 μg d−1 respectively for the Asian population.  相似文献   

11.
Isotopes of uranium in the sea-water sediments collected from two different areas (El Hamraween harbour and Ras El Behar) on the Egyptian coast of the red sea have been studied using radiochemical separation procedures and alpha-particle spectrometry. Activity concentrations of 238U, 235U, 234U were calculated. The activities observed indicated enhanced radioactivity levels in sea-water sediments of El Hamraween harbour area due to the activities of phosphate shipment operation. Secular equilibrium between 234U and 238U was found in the analyzed samples. The average activity ratio of 235U/238U was close to the value 0.046 for uranium in nature.  相似文献   

12.
Radon-222 was measured in groundwater sources of Extremadura (Spain), analyzing 350 samples from private and public springs, wells, and spas by liquid scintillation counting (LSC) and gamma spectrometry. The 222Rn activity concentrations ranged from 0.24 to 1168 Bq L−1. The statistical analysis showed a log-normal distribution with a mean of (111 ± 7) Bq L−1 and a median of (36 ± 3) Bq L−1. A hydrogeological study revealed correlations between the activity concentration and the aquifer material's characteristics. A map of 222Rn in groundwater was elaborated and compared with the natural gamma radiation map for this region. About 35% of the samples showed 222Rn activity concentrations above the Euratom recommended limit of 100 Bq L−1. Three uranium series radionuclides (238U, 234U, and 226Ra) were also assayed by alpha-particle spectrometry, estimating the annual effective dose due to the presence of these natural radionuclides in drinking water.  相似文献   

13.
Groundwaters from the Sebkhet Essijoumi drainage basin, situated in northern Tunisia, West of the city of Tunis, were sampled and analyzed for uranium and radium isotopes. Low (234)U/(238)U activity ratios coupled with relatively high (228)Ra and (238)U concentrations were found in the Manouba plain phreatic aquifer, at the northern part of the basin, where remote sensing has indicated that this plain corresponds to the main humid zone of the area. Low (234)U/(238)U ratios probably reflected short residence time for waters in the Manouba plain, and high ratios longer residence time in the south, where water reaching the phreatic aquifer seems to have previously circulated in rocks constituting the southern hills. Assuming that, in the Manouba plain aquifer, the groundwater flows downstream from the Oued Lill pass area to the South-West of the Sebkha, the difference in the (228)Ra/(226)Ra activity ratio suggests that the residence time of water has been 2.8 years longer near the Sebkha than upstream.  相似文献   

14.
Some important naturally occurring α- and β-radionuclides in drinking water samples collected in Italy were determined and the radiological quality evaluated. The mean activity concentrations (mBq L−1) of the radionuclides in the water samples were almost in the order: 26 ± 36 (234U) > 21 ± 30 (238U) > 8.9 ± 15 (226Ra) > 4.8 ± 6.3 (228Ra) > 4.0 ± 4.1 (210Pb) > 3.2 ± 3.7 (210Po) > 2.7 ± 1.2 (212Pb) > 1.4 ± 1.8 (224Ra) > 1.1 ± 1.3 (235U) > 0.26 ± 0.39 (228Th) > 0.0023 ± 0.0009 (230Th) > 0.0013 ± 0.0006 (232Th). The mean estimated dose (μSv yr−1) to an adult from the water intake was in this order: 2.8 ± 3.3 (210Po) > 2.4 ± 3.2 (228Ra) > 2.1 ± 2.1 (210Pb) > 1.8 ± 3.1 (226Ra) > 0.94 ± 1.30 (234U) > 0.70 ± 0.98 (238U) > 0.069 ± 0.087 (224Ra) > 0.036 ± 0.044 (235U) > 0.014 ± 0.021 (228Th) > 0.012 ± 0.005 (212Pb) > 0.00035 ± 0.00029 (230Th) > 0.00022 ± 0.00009 (232Th). It is obvious that 210Po, 228Ra, 210Pb and 226Ra are the most important dose contributors in the drinking water intake. As far as the seventeen brands of analysed drinking water were concerned, the committed effective doses were in the range of 2.81–38.5 μSv yr−1, all well below the reference level of the committed effective dose (100 μSv yr−1) recommended by the WHO. These data throw some light on the scale of the radiological impact on the public from some naturally occurring radionuclides in drinking water, and can also serve as a comparison for the dose contribution from artificial radionuclides released to the environment as a result of human practices. Based on the radionuclide composition in the analysed waters, comment was made on the new screening level for gross α activity in guidelines for drinking-water quality recommended by the WHO, 2004.  相似文献   

15.
Groundwater samples obtained from the Okchun Belt in Korea were separated into particulate and filtered fraction using a 0.45 microm membrane filter and concentrations and activity ratios of uranium isotopes in the fractions were determined by chemical separation and alpha-spectrometric measurements. Most of the uranium isotopes in the groundwater were found in the filtered water. Only less than 1% of the total uranium was detected in the particulate fraction. The concentrations and activity ratios of uranium isotopes in the groundwater measured in this study were variable, depending upon sampling site. Owing to a rapid material exchange between the subterranean hot waters and the rock strata, the concentrations of 238U in the groundwater in the hot spring area were found to be about four times higher than those elsewhere. Because of the alpha-particle recoil effect, the activity ratios of 234U/238U in the groundwater taken at "cold" spring sites were variable within the range 1.20 to 3.58, depending on the residence time of the groundwater. In the hot spring area, the activity ratios of 234U/238U were close to the equilibrium value (1.10 +/- 0.07) due to rapid erosion of the rock strata by the hot spring water.  相似文献   

16.
Spatial distribution of 238U and 226Ra activities in sediment columns along the Krka River and estuary, were studied using gamma spectrometry. Markedly different 238U and 226Ra activities between riverine, estuarine and marine sediments were observed. Distribution of these radionuclides, as well as their anthropogenic and natural origin, was evaluated by activity measurements, taking into account sedimentation rates estimated by 137Cs distribution in sediment columns.  相似文献   

17.
The present study was conducted to compare the 137Cs, 40K, 232Th, and 238U activity concentrations in epigeic moss (Hypnum cupressiforme) and lichen (Cladonia rangiformis). The activity levels in 37 moss and 38 lichen samples collected from the Marmara region of Turkey were measured using a gamma spectrometer equipped with a high purity germanium (HPGe) detector. The activity concentrations of 137Cs, 40K, 232Th, and 238U in the moss samples were found to be in the range of 0.36-8.13, 17.1-181.1, 1.51-6.17, and 0.87-6.70 Bq kg−1 respectively, while these values were below detection limit (BDL)-4.32, 16.6-240.0, 1.32-6.47, and BDL-3.57 Bq kg−1 respectively in lichen. The average moss/lichen activity ratios of 137Cs, 40K, 232Th, and 238U were found to be 1.32 ± 0.57, 2.79 ± 1.67, 2.11 ± 0.82, and 2.19 ± 1.02, respectively. Very low 137Cs concentrations were observed in moss and lichen samples compared to soil samples collected from the same locations in a previous study. Seasonal variations of the measured radionuclide activities were also examined in the three sampling stations.  相似文献   

18.
Gamma-ray spectrometry was used to determine uranium activity and investigate the presence of depleted uranium in soil samples collected from camping sites of the Greek expeditionary force in Kosovo. Assessment of 238U concentrations was based on measurements of the 63.3 keV and 92.38 keV emissions of its first daughter nuclide, 234Th. To determine the isotopic ratio of 238U/235U, secular equilibrium along the two radioactive series was first ensured and thereby the contribution of 235U under the 186 keV peak was deduced. The uranium activity in the samples varied from 48 to 112 Bq kg(-1), whereas the activity ratio of 238U/235U averaged 23.1+/-4.3.  相似文献   

19.
Hydrothermal deep-sea vent fauna is naturally exposed to a peculiar environment enriched in potentially toxic species such as sulphides, heavy metals and natural radionuclides. It is now well established that some of the organisms present in such an environment accumulate metals during their lifespan. Though only few radionuclide measurements are available, it seems likely that hydrothermal vent communities are exposed to high natural radiation doses. Various archived biological samples collected on the East Pacific Rise and the Mid-Atlantic Ridge in 1996, 2001 and 2002 were analysed by ICP-MS in order to determine their uranium contents (238U, 235U and 234U). In addition 210Po–Pb were determined in 2 samples collected in 2002. Vent organisms are characterized by high U, and Po–Pb levels compared to what is generally encountered in organisms from outside hydrothermal vent ecosystems. Though the number of data is low, the results reveal various trends in relation to the site, the location within the mixing zone and/or the organisms' trophic regime.  相似文献   

20.
As a result of former uranium mining and milling activities at ?irovski vrh, Slovenia, 0.6 million tons of uranium mill tailings (UMT) were deposited onto a nearby waste pile Boršt. Resulting enhanced levels of natural radionuclides in UMT could pose threat for the surrounding environment. Therefore, sequential extraction protocol was performed to assess mobility and bioavailability of 238U, 234U, 230Th and 226Ra in soils from the waste pile and its surrounding. The radionuclides associated with exchangeable, organic, carbonate, Fe/Mn oxides and residual fraction, respectively, were determined. Results showed that the highest activity concentrations for the studied radionuclides were on the bottom of the waste pile. In non-contaminated locations, about 80% of all radionuclides were in the residual fraction. Considering activity concentrations in the UMT, 238U and 234U are the most mobile. Mobility of 226Ra is suppressed by high sulphate concentrations and is similar to mobility of 230Th.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号