首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
To study the Pu concentration and isotope ratio distributions present in China, the 239+240Pu total activities and 240Pu/239Pu atom ratios in core soil samples from Hubei Province in central China were investigated using Accelerator Mass Spectrometry (AMS). The activities ranged from 0.019 to 0.502 mBq g−1 and the 239+240Pu inventories of 45 and ∼55 Bq m−2 agree well with that expected from global fallout. The 240Pu/239Pu atom ratios in the soil ranged from 0.172 to 0.220. The ratios are similar to typical global fallout values. Hence, any close-in fallout contribution from the Chinese nuclear weapons tests, mainly conducted in the 1970s, must have either been negligible or had a similar 240Pu/239Pu ratio to that of global fallout. The top 10 cm layer of the soil contributes ∼90% of the total inventory and the maximum concentrations appeared in the 2-4 cm or 4-6 cm layers. It is suggested that climatic conditions and organic content are the two main factors that affect the vertical migration of plutonium in soil.  相似文献   

2.
A sediment core collected from the sub-aqueous delta of the Yangtze River estuary was subjected to analyses of 137Cs and plutonium (Pu) isotopes. The 137Cs was measured using γ-spectrometry at the laboratories at the Nanjing University and Pu isotopes were determined with Accelerator Mass Spectrometry (AMS), measurements made at the Australian National University. The results show considerable structure in the depth concentration profiles of the 137Cs and 239+240Pu. The shape of the vertical 137Cs distribution in the sediment core was similar to that of the Pu. The maximum 137Cs and 239+240Pu concentrations were 16.21 ± 0.95 mBq/g and 0.716 ± 0.030 mBq/g, respectively, and appear at same depth. The average 240Pu/239Pu atom ratio was 0.238 ± 0.007 in the sediment core, slightly higher than the average global fallout value. The changes in the 240Pu/239Pu atom ratios in the sediment core indicate the presence of at least two different Pu sources, i.e., global fallout and another source, most likely close-in fallout from the Pacific Proving Grounds (PPG) in the Marshall Islands, and suggest the possibility that Pu isotopes are useful as a geochronological tool for coastal sediment studies. The 137Cs and 239+240Pu inventories were estimated to be 7100 ± 1200 Bq/m2 and 407 ± 27 Bq/m2, respectively. Approximately 40% of the 239+240Pu inventory originated from the PPG close-in fallout and about 50% has derived from land-origin global fallout transported to the estuary by the river. This study confirms that AMS is a useful tool to measure 240Pu/239Pu atom ratio and can provide valuable information on sedimentary processes in the coastal environment.  相似文献   

3.
Recent advancements in analytical technology make it possible for artificial radionuclides released from nuclear explosions to be detected in Arctic ice core layers. The fission product, 137Cs, and the unexpended fission material, 239+240Pu, originating from the Nagasaki A-bomb of August 1945, were measured by collecting 10 ice cores on the Agassiz ice cap, Ellesmere Island, Canada. The deposition rates were 0·020 mBq cm-2 for 137Cs and 0·0016 mBq cm-2 for 239+240Pu, originating from Nagasaki. Assuming the radionuclides, excluding the amount fissioned from the explosion and deposi-ted as local fallout, are deposited evenly throughout the Northern Hemisphere, 67% of the expected amount of 137Cs reached the Arctic while 1·1% of 239+240Pu reached the Arctic. The results suggest that different transport mechanisms exist for various contaminants in the global transport system.  相似文献   

4.
Anthropogenic Pu isotopes are important geochemical tracers for sediment studies. Their distributions and sources in the water columns as well as the sediments of the North Pacific have been intensively studied; however, information about Pu in the Southeast Asian seas is limited. To study the isotopic composition of Pu, and thus to identify its sources, we collected sediment core samples in the South China Sea and the Sulu Sea during the KH-96-5 Cruise of the R/V Hakuho Maru. We analysed the activities of 239+240Pu and the atom ratios of 240Pu/239Pu using isotope dilution sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS). The 240Pu/239Pu atom ratios in the sediments of both areas (inventory weighted mean: 0.251 for the South China Sea and 0.280 for the Sulu Sea) were higher than the global fallout value (0.178 ± 0.019), suggesting the existence of Pu from the Pacific Proving Grounds in the North Pacific. Low inventories of 239+240Pu in sediments were observed in the South China Sea (3.75 Bq/m2) and the Sulu Sea (1.38 Bq/m2). Most of the Pu input is still present in the water column. Scavenging and benthic mixing processes were considered to be the main processes controlling the distribution of Pu in the deep-sea sediments of both study areas.  相似文献   

5.
A radioactivity survey was launched in 1991 to determine the background levels of 239+240Pu in the marine environment off a commercial spent nuclear fuel reprocessing plant before full operation of the facility. Particular attention was focused on the 240Pu/239Pu atom ratio in seawater and bottom sediment to identify the origins of Pu isotopes. The concentration of 239+240Pu was almost uniform in surface water, decreasing slowly over time. Conversely, the 239+240Pu concentration varied markedly in the bottom water and was dependent upon the sampling point, with higher concentrations of 239+240Pu observed in the bottom water sample at sampling points having greater depth. The 240Pu/239Pu atom ratio in the seawater and sediment samples was higher than that of global fallout Pu, and comparable with the data in the other sea area around Japan which has likely been affected by close-in fallout Pu originating from the Pacific Proving Grounds. The 240Pu/239Pu atom ratio in bottom sediment samples decreased with sea depth. The land-originated Pu is not considered as the reason of the increasing 239+240Pu concentration and also decreasing the 240Pu/239Pu atom ratio with sea depth, and further study is required to clarify it.  相似文献   

6.
Plutonium in Polish forest soils and the Bór za Lasem peat bog is resolved between Chernobyl and global fallout contributions via inductively coupled plasma mass spectrometric measurements of 240Pu/230Pu and 241Pu/239Pu atom ratios in previously prepared NdF3 alpha spectrometric sources. Compared to global fallout, Chernobyl Pu exhibits higher abundances of 240Pu and 241Pu. The ratios 240Pu/230Pu and 241Pu/239Pu co-vary and range from 0.186 to 0.348 and 0.0029 to 0.0412, respectively, in forest soils (241Pu/239Pu = 0.2407 x [240Pu/239Pu] - 0.0413; r2 = 0.9924). Two-component mixing models are developed to apportion 239+240Pu and 241Pu activities; various estimates of the percentage of Chernobyl-derived 239+240Pu activity in forest soils range from < 10% to > 90% for the sample set. The 240Pu/230Pu - 241Pu/239Pu atom ratio mixing line extrapolates to estimate 241Pu/239Pu and the 241Pu/239+240Pu activity ratio for the Chernobyl source term (0.123 +/- 0.0007; 83 +/- 5; 1 May 1986). Sample 241Pu activities, calculated using existing alpha spectrometric 239+240Pu activities, and the 240Pu/230Pu and 241Pu/239Pu atom ratios, agree relatively well with previous liquid scintillation spectrometry measurements. Chernobyl Pu is most evident in locations from northeastern Poland. The 241Pu activities and/or the 241Pu/239Pu atom ratios are more sensitive than 240Pu/239Pu or 238Pu/239+240Pu activity ratios at detecting small Chernobyl 239+240Pu inputs, found in southern Poland. The mass spectrometric data show that the 241Pu activity is 40-62% Chernobyl-derived in southern Poland, and 58-96% Chernobyl in northeastern Poland. The Bór za Lasem peat bog (49.42 degrees N, 19.75 degrees E), located in the Orawsko-Nowotarska valley of southern Poland, consists of global fallout Pu.  相似文献   

7.
Historical 239Pu activity concentrations and 240Pu/239Pu atom ratios were determined in skeletons of dated modern corals collected from three locations (Chuuk Lagoon, Ishigaki Island and Iki Island) to identify spatial and temporal variations in Pu inputs to the Northwest Pacific Ocean. The main Pu source in the Northwest Pacific is fallout from atmospheric nuclear weapons testing which consists of global fallout and close-in fallout from the former US Pacific Proving Grounds (PPG) in the Marshall Islands. PPG close-in fallout dominated the Pu input in the 1950s, as was observed with higher 240Pu/239Pu atom ratios (> 0.30) at the Ishigaki site. Specific fallout Pu contamination from the Nagasaki atomic bomb and the Ivy Mike thermonuclear detonation at the PPG were identified at Ishigaki Island from the 240Pu/239Pu atom ratios of 0.07 and 0.46, respectively. During the 1960s and 1970s, global fallout was the major Pu source to the Northwest Pacific with over 60% contribution to the total Pu. After the cessation of the atmospheric nuclear tests, the PPG again dominated the Pu input due to the continuous transport of remobilised Pu from the Marshall Islands along the North Equatorial Current and the subsequent Kuroshio Current. The Pu contributions from the PPG in recent coral bands (1984 onwards) varied over time with average estimated PPG contributions between 54% and 72% depending on location.  相似文献   

8.
Plutonium isotopes, 239Pu and 240Pu, were measured in liver samples from Surume squid using a sector-field high resolution ICP-MS after radiochemical purification. Surume squid samples were obtained from nine landing ports in Japanese inshore during fishery season from September to December 2002. Concentrations of 239Pu and 240Pu ranged from 1.5 to 28 mBq kg(-1) and 1.1 to 24 mBq kg(-1), respectively. Plutonium (239,240Pu) concentrations in liver were several thousand times higher than levels found in seawater. The concentration factor (CF) compared to seawater for 239,240Pu and 13 other elements ranged from 10(0) to 10(7). The CF values for 239,240Pu, V and Th were 10(2)-10(4). Pu had an intermediate CF between conservative and scavenged elements. 240Pu/239Pu atomic ratios in the squid liver ranged from 0.177 to 0.237 which were slightly higher than 0.178+/-0.014 for global fallout. The variations of 240Pu/239Pu atomic ratios in ocean currents with different source functions are important for interpreting high 240Pu/239Pu atomic ratios in Surume squid liver. It seems likely that Pu with high 240Pu/239Pu atomic ratio is continuously transported through the solubilization and seawater transport from the North Equatorial Current to Kuroshio and its branch, Tsushima Current. By assuming that Pu found in Surume squid liver is a mixture of global fallout Pu (0.178) and close-in fallout Pu with high 240Pu/239Pu atomic ratio (0.30-0.36) around Bikini Atoll, Pu contribution from Bikini close-in fallout Pu accounts for close to 35% of the whole plutonium in Surume squid liver. These results highlight that Surume squid is a useful organism for evaluating environmental Pu levels of larger sea area and facilitate the development of models to understand oceanic transport of close-in fallout Pu from Bikini Atoll.  相似文献   

9.
Seawater samples were collected in Sagami Bay, western Northwest Pacific Ocean, and their (239+240)Pu activities and (240)Pu/(239)Pu atom ratios were determined by alpha-spectrometry and sector field high-resolution ICP-MS. A few samples also were analyzed for (137)Cs activities. The (239+240)Pu inventory of 41.1 Bq m(-2) was equivalent to the expected cumulative deposition density of atmospheric global fallout at the same latitude and this inventory was considerably lower than inventories in the underlying sediment columns. This result indicated that a significant amount of (239+240)Pu has been removed into the underlying sediments through enhanced scavenging from the water column by the high fluxes of particles in this region. The atom ratio of (240)Pu/(239)Pu showed no notable variation from the surface to the bottom; the average value was 0.234+/-0.004. This atom ratio was significantly higher than the mean global fallout ratio of 0.18, proving the existence of close-in fallout plutonium originating from the Pacific Proving Grounds (PPG). The relative contributions of the global stratospheric fallout and the PPG close-in fallout were evaluated by using the two end-member mixing model. The contribution of the PPG close-in fallout was estimated to be 15.2 Bq m(-2), which corresponded to 37% of the (239+240)Pu inventory in the water column. Thus (239)Pu and (240)Pu from the two sources of global fallout and close-in fallout have been homogenized in the water masses in the western Northwest Pacific margin during the past three decades.  相似文献   

10.
The activity concentration of plutonium in an environmental sample does not usually constitute sufficient information to determine if it is due only to fallout. Alpha and gamma spectrometry are used here conjointly in the study of environmental soil samples to distinguish between samples showing plutonium contamination due to fallout exclusively, and samples contaminated with plutonium from another source. The method was applied to soil samples collected in Palomares (Spain), where an accidental release of aerosols contaminated with plutonium occurred. The two contributions (fallout and accidentally released plutonium) were separated by means of the activity ratios between various radionuclides present in the samples analyzed. The fallout level was estimated from the 239 + 240Pu/137Cs activity ratio. For samples showing contamination due to the accident, the 238Pu/239 + 240Pu and 239Pu/240Pu activity ratios were also calculated to determine the grade of plutonium of this contamination.  相似文献   

11.
The concentrations and vertical distribution of 239,240Pu, 241Am and 137Cs in the bottom sediments and water samples of Lake Päijänne were investigated. This lake is important, since the Päijänne area received a significant deposition from the Chernobyl fallout. Furthermore Lake Päijänne is the raw water source for the Helsinki metropolitan area. In addition no previous data on the distribution of plutonium and americium in the sediment profiles of Lake Päijänne exist. Only data covering the surface layer (0–1 cm) of the sediments are previously available. In the sediments the average total activities were 45 ± 15 Bq/m2 and 20 ± 7 Bq/m2 for 239,240Pu and 241Am, respectively. The average 241Am/239,240Pu ratio was 0.45 ± 0.14. The 241Am/239,240Pu ratio is lowest in the surface layer of the sediments and increases as a function of depth. The 238Pu/239,240Pu ratio of the sediment samples varied between 0.012 ± 0.025 and 0.162 ± 0.079, decreasing as a function of depth. The average activity in water was 4.9 ± 0.9 mBq/m3 and 4.1 ± 0.2 mBq/m3 for 239,240Pu and 241Am, respectively. The 241Am/239,240Pu ratio of water samples was 0.82 ± 0.17. 239,240Pu originating from the Chernobyl fallout calculated from the average total activities covers approximately 1.95 ± 0.01% of the total 239,240Pu activity in the bottom sediments. The average total 137Cs activity of sediment profiles was 100 ± 15 kBq/m2 and 19.3 ± 1.4 Bq/m3 in water samples.  相似文献   

12.
New data are reported on the concentrations, isotopic composition and speciation of americium, plutonium and uranium in surface and ground waters in the Sarzhal region of the Semipalatinsk Test Site, and an adjacent area including the settlement of Sarzhal. The data relate to filtered water and suspended particulate from (a) streams originating in the Degelen Mountains, (b) the Tel′kem 1 and Tel′kem 2 atomic craters, and (c) wells on farms located within the study area and at Sarzhal. The measurements show that 241Am, 239,240Pu and 238U concentrations in well waters within the study area are in the range 0.04–87 mBq dm−3, 0.7–99 mBq dm−3, and 74–213 mBq dm−3, respectively, and for 241Am and 239,240Pu are elevated above the levels expected solely on the basis of global fallout. Concentrations in streams sourced in the Degelen Mountains are similar, while concentrations in the two water-filled atomic craters are somewhat higher. Suspended particulate concentrations in well waters vary considerably, though median values are very low, at 0.01 mBq dm−3, 0.08 mBq dm−3 and 0.32 mBq dm−3 for 241Am, 239,240Pu and 238U, respectively. The 235U/238U isotopic ratio in almost all well and stream waters is slightly elevated above the ‘best estimate’ value for natural uranium worldwide, suggesting that some of the uranium in these waters is of test-site provenance. Redox analysis shows that on average most of the plutonium present in the microfiltered fraction of these waters is in a chemically reduced form (mean 69%; 95% confidence interval 53–85%). In the case of the atomic craters, the proportion is even higher. As expected, all of the americium present appears to be in a reduced form. Calculations suggest that annual committed effective doses to individual adults arising from the daily ingestion of these well waters are in the range 11–42 μSv (mean 21 μSv). Presently, the ground water feeding these wells would not appear to be contaminated with radioactivity from past underground testing in the Degelen Mountains or from the Tel′kem explosions.  相似文献   

13.
The vertical distribution of the 236U/238U isotopic ratio was investigated in soil samples from three different locations on La Palma (one of the seven Canary Islands, Spain). Additionally the 240Pu/239Pu atomic ratio, as it is a well establish tool for the source identification, was determined. The radiochemical procedure consisted of a U separation step by extraction chromatography using UTEVA® Resin (Eichrom Technologies, Inc.). Afterwards Pu was separated from Th and Np by anion exchange using Dowex 1x2 (Dow Chemical Co.). Furthermore a new chemical procedure with tandem columns to separate Pu and U from the matrix was tested. For the determination of the uranium and plutonium isotopes by alpha spectrometry thin sources were prepared by microprecipitation techniques. Additionally these fractions separated from the soil samples were measured by Accelerator Mass Spectrometry (AMS) to get information on the isotopic ratios 236U/238U, 240Pu/239Pu and 236U/239Pu, respectively. The 236U concentrations [atoms/g] in each surface layer (∼2 cm) were surprisingly high compared to deeper layers where values around two orders of magnitude smaller were found. Since the isotopic ratio 240Pu/239Pu indicated a global fallout signature we assume the same origin as the probable source for 236U. Our measured 236U/239Pu value of around 0.2 is within the expected range for this contamination source.  相似文献   

14.
The aim of this work was to determine the concentrations and isotopic compositions of plutonium and uranium in environmental samples for safeguards purposes. An analytical method was developed with a plutonium and uranium separation procedure based on extraction chromatography (using 2 mL TEVA and UTEVA columns) and detection with a quadrupole ICP-MS applying an ultra-sonic nebulizer coupled with a membrane desolvation system. Starting from blank swipes, the background equivalent concentration (BEC) was 8 fg for 239Pu and 1 ng 238U. The method was successfully applied to certified reference materials as well as to round robin samples obtained in the framework of the inter-laboratory exercise program, promoted by the Brazilian–Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), together with the US Department of Energy (USDOE). After the introduction of an additional ion-exchange separation step, the methodology was applied to the IAEA-384 sediment reference sample with precise and accurate total plutonium and uranium, 240Pu/239Pu, 241Pu/239Pu, 234U/238U and 235U/238U atomic ratio results.  相似文献   

15.
The result of a general survey on the concentration of fall-out (239+240)Pu in soil collected from several regions in Iran are presented. The samples represent mixed soil averaged over the depth of 0-50 mm. According to the results obtained by alpha spectrometry on 96 soil samples from 32 locations, the (239+240)Pu concentrations vary in the range 80-360 mBq kg(-1). Under normal operating conditions and present counting setup, the minimum detectable activity (MDA) was approximately 8 mBq kg(-1) for soil samples.  相似文献   

16.
A radiochemical technique for determination of plutonium isotopes and 241Am in soil samples is tested against IAEA-standard reference materials to determine its accuracy and precision for reliable results. The technique is then used in the investigation of topsoil samples, collected from the natural environment of the central region of Saudi Arabia, to assess the effect of fallout accumulation of these radionuclides in the region. Plutonium and americium were sequentially separated from all other components of the sample by anion-exchange chromatography and co-precipitated with Nd3+ as fluorides. The precipitates were mounted on membrane filters and measured using a high-resolution alpha-spectrometer. The results of the analysis of the reference materials showed satisfactory sensitivity and precision of the technique. The results of the analyzed soil samples show activity levels ranging from < LLD to 0.089 and from 相似文献   

17.
More than 50 soil samples were analysed from different parts of the country, the activity concentration of 239+240Pu was in the range of 0.01-0.84 Bq/kg dry soil with the average of 0.10 Bq/kg. 238Pu could be detected only in few moss samples and 238Pu/239+240Pu ratio determines the origin of plutonium. 241Pu was determined by liquid scintillation spectrometry. The activity concentration of this isotope in the soil is between 0.04 and 3.74 Bq/kg with the average of 0.82 Bq/kg, while in the moss is also similar 0.01-2.07 Bq/kg fresh mass with the average of 0.43 Bq/kg. Significant difference could not be observed between the different types of soils occurring in the country, but the results could be sorted according to the sampling carried out on undisturbed or cultivated area. The isotope ratios 241Pu/239+240Pu prove that the origin of the plutonium in Hungary is the global fallout determined by the atmospheric nuclear weapon tests.  相似文献   

18.
Plutonium isotopes in forest soils collected in Nishiyama area, Nagasaki, were successfully determined by high resolution inductively coupled plasma mass spectrometry after the treatment with a microwave decomposition system. The (240)Pu/(239)Pu atom ratios observed in the samples in the Nishiyama area were obviously lower than the range of the global fallout. The low ratios (minimum 0.032) observed in Nishiyama area indicated the influence of detonation of the Pu nuclear weapon in 1945. Since the area is contaminated also by global fallout, the (240)Pu/(239)Pu atom ratio can be more sensitive indicator of bomb-derived Pu than Pu activity concentration.  相似文献   

19.
The objective of this paper is to report on the results of a study of 238Pu, 239 + 240Pu and 241Am inventories onto Blelham Tarn in Cumbria (UK). The atmospheric fallout inventory was obtained by analysing soil cores and the results are in good agreement with the literature: 101 Bq m(-2) for 239 + 240Pu; 4.5 Bq m(-2) for 238Pu and 37 Bq m(-2) for 241Am. The sediment core inventory for the whole lake is compared to the atmospheric fallout inventory. The sediment activity is 60-80% higher than the estimated fallout activity, showing a catchment area contribution and in particular the stream input.  相似文献   

20.
We investigated the vertical profiles of 239+240Pu, 137Cs, and excess 210Pb (210Pbex) in sediment core samples obtained from two freshwater lakes and two brackish lakes situated near the first commercial spent nuclear fuel reprocessing plant in Rokkasho, Japan, before the final test of the plant using actual spent nuclear fuel. The inventory of 239+240Pu in those lakes was larger than that in soil in Rokkasho, which indicated the inflow of 239+240Pu from the catchment area in addition to direct deposition on the lake surfaces. The 137Cs inventory in sediments of the brackish lakes was lower than that in the soil, which showed that part of the 137Cs was removed from the sediments by the brackish water or that it was not deposited into the sediments, because of the high solubility of Cs in brackish water. The 137Cs inventory in sediments of the freshwater lakes was higher than that of the brackish lakes, and comparable with that in soil except for one core sample out of four. The 239+240Pu/137Cs ratio in freshwater lake sediments was higher than that in soil, and that indicated that part of the 137Cs was lost from the sediments. The low inventory of 137Cs may be attributable to competition for absorption sites in sediments with ammonium ions formed in the reducing environment which occurs from summer to fall in the sediments. Those data will be used as background data on the artificial radionuclides in the lakes to assess the effect of released radionuclides on their concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号