首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess the long-term environmental impact of radioactive contamination of ecosystems, information on source terms including radionuclide speciation, mobility and biological uptake is needed. A major fraction of refractory radionuclides released from nuclear sources such as nuclear weapons tests and reactor accidents is present as radioactive particles, whilst radionuclides are also present as colloids or low molecular mass species in effluents from nuclear installations. Low molecular mass species are more mobile (lower apparent K(d)) and bioavailable (higher apparent BCF) than colloids and particles. Soils and sediments act as sinks for particles and colloids. Due to particle weathering, associated radionuclides can be remobilised over time. Thus, information on particle characteristics such as composition, particle size, crystalline structures and oxidation states influencing weathering rates and subsequent mobilisation is essential. The present article summarises current knowledge on radioactive particles released from different sources, and the relevance of radionuclide speciation for mobility and biological uptake.  相似文献   

2.
An overview of BORIS: Bioavailability of Radionuclides in Soils   总被引:1,自引:0,他引:1  
The ability to predict the consequences of an accidental release of radionuclides relies mainly on the level of understanding of the mechanisms involved in radionuclide interactions with different components of agricultural and natural ecosystems and their formalisation into predictive models. Numerous studies and databases on contaminated agricultural and natural areas have been obtained, but their use to enhance our prediction ability has been largely limited by their unresolved variability. Such variability seems to stem from incomplete knowledge about radionuclide interactions with the soil matrix, soil moisture, and biological elements in the soil and additional pollutants, which may be found in such soils. In the 5th European Framework Programme entitled Bioavailability of Radionuclides in Soils (BORIS), we investigated the role of the abiotic (soil components and soil structure) and biological elements (organic compounds, plants, mycorrhiza, and microbes) in radionuclide sorption/desorption in soils and radionuclide uptake/release by plants. Because of the importance of their radioisotopes, the bioavailability of three elements, caesium, strontium, and technetium has been followed. The role of one additional non-radioactive pollutant (copper) has been scrutinised in some cases. Role of microorganisms (e.g., K(d) for caesium and strontium in organic soils is much greater in the presence of microorganisms than in their absence), plant physiology (e.g., changes in plant physiology affect radionuclide uptake by plants), and the presence of mycorrhizal fungi (e.g., interferes with the uptake of radionuclides by plants) have been demonstrated. Knowledge acquired from these experiments has been incorporated into two mechanistic models CHEMFAST and BIORUR, specifically modelling radionuclide sorption/desorption from soil matrices and radionuclide uptake by/release from plants. These mechanistic models have been incorporated into an assessment model to enhance its prediction ability by introducing the concept of bioavailability factor for radionuclides.  相似文献   

3.
Many long-lived radionuclides are present in groundwater at the Nevada Test Site (NTS) as a result of 828 underground nuclear weapons tests conducted between 1951 and 1992. In conjunction with a comprehensive geochemical review of radionuclides ((3)H, (14)C, (36)Cl, (99)Tc and (129)I) that are presumably mobile in the subsurface, we synthesized a body of radionuclide activity data measured from groundwater samples collected at 18 monitoring wells, to qualitatively assess their migration at the NTS over distances of hundreds of meters and over timescales of decades. Tritium and (36)Cl showed little evidence of retardation, while the transport of (14)C may have been retarded by its isotopic exchange with carbonate minerals in the aquifer. Observed local reducing conditions (either natural or test-induced) will impact the mobility of certain redox-sensitive radionuclides (especially (99)Tc) that were otherwise soluble and readily transported under oxidizing conditions. Conversely, strongly oxidizing conditions may impact the mobility of (129)I which is mobile under reducing conditions. The effect of iodine speciation on its transport deserves further attention. Indication of delayed transport of some "mobile" radionuclides (especially (99)Tc) in the groundwater at the NTS suggested the importance of redox conditions of the natural system in controlling the fate and transport of radionuclides, which has implications in the enhanced performance of the potential Yucca Mountain repository, located adjacent to the NTS, to store high-level nuclear wastes as well as management of radionuclide contamination in legacy nuclear operations facilities.  相似文献   

4.
New best estimates for the solid–liquid distribution coefficient (Kd) for a set of radionuclides are proposed, based on a selective data search and subsequent calculation of geometric means. The Kd best estimates are calculated for soils grouped according to the texture and organic matter content. For a limited number of radionuclides this is extended to consider soil cofactors affecting soil–radionuclide interaction, such as pH, organic matter content, and radionuclide chemical speciation. Correlations between main soil properties and radionuclide Kd are examined to complete the information derived from the best estimates with a rough prediction of Kd based on soil parameters. Although there are still gaps for many radionuclides, new data from recent studies improve the calculation of Kd best estimates for a number of radionuclides, such as selenium, antimony, and iodine.  相似文献   

5.
Phosphogypsum, a waste by-product derived from the wet process production of phosphoric acid, represents one of the most serious problems facing the phosphate industry in Florida today. This by-product gypsum precipitates during the reaction of sulfuric acid with phosphate rock and is stored at a rate of about 40 million tons per year on several stacks in central and northern Florida. The main problem associated with this material concerns the relatively high levels of natural uranium-series radionuclides and other impurities which could have an impact on the environment and prevent its commercial use. We have studied the potential release of radionuclides from phosphogypsum by: (i) analysis of stack fluids, groundwaters, and soils associated with gypsum stacks; and (ii) geochemical modeling. Stack fluids were observed to be very high in dissolved uranium and 210Pb with only moderate concentrations of 226Ra. Underlying soils tend to be enriched in U and 210Pb indicating precipitation when acidic stack fluids enter a buffered environment. Modeling results showed significant increases in radionuclide complexes with sulfate and phosphate, resulting in relatively mobile uncharged or negatively charged solution species within the stacks with likely precipitation of multicomponent solids with increasing pH below the stack. Our evidence thus suggests that, while phosphogypsum stacks do contain significant quantities of dissolved radionuclides, removal mechanisms appear to prevent large-scale migration of radionuclides to the underlying aquifer.  相似文献   

6.
This paper presents new data on the distribution of long-lived radionuclides in Irish Sea subtidal sediments, contaminated as a result of the BNFL Sellafield discharges. The results from different sampling campaigns in 1999 have been combined to assess the extent of radionuclide mobility relative to earlier surveys, in both the eastern and western Irish Sea areas, and to investigate changes in radionuclide distribution over time. The results appear to confirm the trend of continuing re-distribution and transfer of contamination away from the English coast. West of the Isle of Man, radionuclide concentrations and inventories have remained more or less constant. The inventory of radionuclides in sandy sediments in the eastern Irish Sea is still under-represented by current sampling, but could be improved by deeper and more extensive vibrocoring.  相似文献   

7.
Radionuclides from past uranium mining in rivers of Portugal   总被引:2,自引:0,他引:2  
During several decades and until a few years ago, uranium mines were exploited in the Centre of Portugal and wastewaters from uranium ore milling facilities were discharged into river basins. To investigate enhancement of radioactivity in freshwater ecosystems, radionuclides of uranium and thorium series were measured in water, sediments, suspended matter, and fish samples from the rivers Vouga, D?o, Távora and Mondego. The results show that these rivers carry sediments with relatively high naturally occurring radioactivity, and display relatively high concentrations of radon dissolved in water, which is typical of a uranium rich region. Riverbed sediments show enhanced concentrations of radionuclides in the mid-section of the Mondego River, a sign of past wastewater discharges from mining and milling works at Urgeiri?a confirmed by the enhanced values of (238)U/(232)Th radionuclide ratios in sediments. Radionuclide concentrations in water, suspended matter and freshwater fish from that section of Mondego are also enhanced in comparison with concentrations measured in other rivers. Based on current radionuclide concentrations in fish, regular consumption of freshwater species by local populations would add 0.032 mSv a(-1) of dose equivalent (1%) to the average background radiation dose. Therefore, it is concluded that current levels of enhanced radioactivity do not pose a significant radiological risk either to aquatic fauna or to freshwater fish consumers.  相似文献   

8.
The mobility, biological uptake and accumulation of radionuclides are essentially dependent on the physico-chemical form of the nuclides. As a major fraction of refractory radionuclides released during historical nuclear events is associated with particles, a key analytical challenge within environmental impact and risk assessments is to characterise radioactive particles with respect to properties influencing particle weathering, remobilisation and the subsequent ecosystem transfer of associated radionuclides. Preanalysis techniques are needed to fractionate, identify and localize individual particles in contaminated samples. To obtain information on particle characteristics such as particle size distributions, structures, elemental and radionuclide particle composition as well as oxidation state of matrix elements, solid-state speciation techniques are needed. Electron microscopy as well as X-ray microscopic techniques utilising synchrotron X-ray radiation have proved most useful in providing such information. The present paper summarises the present status on advanced techniques and presents historical sources that have contributed to radioactive particle contamination.  相似文献   

9.
Numerous studies have employed anthropogenic radionuclides deposited in accumulating sediments to derive chronologies for use in investigations of geomorphological processes and in reconstructing temporal trends in contaminant deposition. However, relatively few have interrogated their use in systems that erode as well as accrete sediment, or have addressed limitations in their applicability in systems that experience variable rates of accumulation. This paper examines the utility of Sellafield-derived radionuclides for reconstructing sedimentary processes in two contrasting saltmarsh systems in the south-west of Scotland. Sedimentation rates and patterns derived from the radionuclide chronologies are outlined and compared to results established through conventional geomorphological methods. The results confirm that the vertical distribution of anthropogenic radionuclides can be useful in determining sedimentation rates, but that these cannot always be used as indicators of contemporary processes, particularly where erosion is occurring. Their use is also limited unless profiles are obtained from spatially diverse geomorphological units. Integrating the use of chronologies with other independent methods secures more robust data for assessing both marsh sustainability and their longevity as radionuclide sinks.  相似文献   

10.
Many long-lived radionuclides are present in groundwater at the Nevada Test Site (NTS) as a result of 828 underground nuclear weapons tests conducted between 1951 and 1992. In conjunction with a comprehensive geochemical review of radionuclides (3H, 14C, 36Cl, 99Tc and 129I) that are presumably mobile in the subsurface, we synthesized a body of radionuclide activity data measured from groundwater samples collected at 18 monitoring wells, to qualitatively assess their migration at the NTS over distances of hundreds of meters and over timescales of decades. Tritium and 36Cl showed little evidence of retardation, while the transport of 14C may have been retarded by its isotopic exchange with carbonate minerals in the aquifer. Observed local reducing conditions (either natural or test-induced) will impact the mobility of certain redox-sensitive radionuclides (especially 99Tc) that were otherwise soluble and readily transported under oxidizing conditions. Conversely, strongly oxidizing conditions may impact the mobility of 129I which is mobile under reducing conditions. The effect of iodine speciation on its transport deserves further attention. Indication of delayed transport of some “mobile” radionuclides (especially 99Tc) in the groundwater at the NTS suggested the importance of redox conditions of the natural system in controlling the fate and transport of radionuclides, which has implications in the enhanced performance of the potential Yucca Mountain repository, located adjacent to the NTS, to store high-level nuclear wastes as well as management of radionuclide contamination in legacy nuclear operations facilities.  相似文献   

11.
A gamma-ray survey and analysis of 16 riverbed samples from the Reedy River watershed near Simpsonville, SC were conducted and compared with national and international studies of primordial radionuclides. The study reported here follows on a recent discovery of anomalously high uranium concentrations in several private well waters in the area. An HPGe spectrometer was used for quantification of gamma emitting radionuclides in the sediments. All sediments contained radionuclides from the uranium and thorium series as well as (40)K. Uranium-238 concentrations in sediment samples ranged from 11.1 to 74.2Bqkg(-1). The measured radionuclide concentrations were compared with data from UNSCEAR and NURE reports. The river and stream sediment data were augmented by in situ NaI(Tl) gamma-ray spectrometer measurements. Comparisons between the ex situ and in situ measurements indicate equivalently distributed uranium in the surface soils and stream sediments, the source of which is likely attributed to the monazite belts that are known to exist in the area.  相似文献   

12.
The available literature on the transfer of radionuclides from soil to fruit has been reviewed with the aim of identifying the main variables and processes affecting the behaviour of radionuclides in fruit plants. Where available, data for transfer of radionuclides from soil to other components of fruit plant have also been collected, to help in understanding the processes of translocation and storage in perennial plants. Soil-to-fruit transfer factors were derived from agricultural ecosystems, both from temperate and subtropical or tropical zones. Aggregated transfer factors have also been collected from natural or semi-natural ecosystems. The data concern numerous fruits and various radionuclides. Soil-to-fruit transfer is nuclide specific. The variability for a given radionuclide is first of all ascribable to the different properties of soils. Fruit plant species are very heterogeneous, varying from woody trees and shrubs to herbaceous plants. In temperate areas the soil-to-fruit transfer is higher in woody trees for caesium and in shrubs for strontium. Significant differences between the values obtained in temperate and subtropical and tropical regions do not necessarily imply that they are ascribable to climate. Transfer factors for caesium are higher in subtropical and tropical fruits, while those for strontium, as well as for plutonium and americium, in the same fruits, are lower; these results can be interpreted taking into account different soil characteristics.  相似文献   

13.
Soil-fungus transfer coefficients are usually defined as the ratio between the content of the fruiting bodies and that of the soil. Since, however, the methodology of how to determine the soil content is not firmly established, there exist a variety of definitions in the literature. We analyzed the 137Cs, 90Sr, 40K, and 226Ra content of mushroom and soil samples from two pine-wood ecosystems in Spain. The location of the mycelium in the soil profiles of these ecosystems was determined by means of the ergosterol concentration. The results showed the mycelium to generally be localized in the surface layer of soil (0-5 cm). We also carried out a speciation procedure for this layer of soil to determine the different degrees of association of the radionuclides in the soil. The results led us to propose some variations to the traditional definition used in quantifying radionuclide transfer. With these modifications, we were able to analyze Cs-K competition in several species of mycorrhizal and saprophytic fungi.  相似文献   

14.
One of the roles of the BIOMASS Theme 3 Fruit Working Group was to identify significant radionuclides to support its work programme. This paper provides a short review of radionuclide emissions to atmosphere together with comments on their relative dosimetric impacts to identify those radionuclides most relevant to the Fruit Working Group. Speciation of the identified radionuclides is also discussed to identify the most likely chemical forms to which fruits might be exposed. It is noted that no information currently exists on radionuclide speciation in regard to the uptake and retention of radionuclides in fruit crops.  相似文献   

15.
A big fertilizer industrial complex and a vast extension of phosphogypsum piles (12 km2), sited in the estuary formed by the Odiel and Tinto river mouths (southwest of Spain), are producing an unambiguous radioactive impact in their surrounding aquatic environment through radionuclides from the U-series. The levels and distribution of radionuclides in sediments from this estuarine system have been determined. The analyses of radionuclide concentrations and activity ratios have provided us with an interesting information to evaluate the extension, degree and routes of the radioactive impact, as well as for the knowledge of the different pathways followed for the radioactive contamination to disturb this natural system. The obtained results indicate that the main pathway of radioactive contamination of the estuary is through the dissolution in its waters of the radionuclides released by the industrial activities and their later fixation on the particulate materials. Tidal activity also plays an important role in the transport and homogenization along the estuary of the radioactivity released from the fertilizer plants.  相似文献   

16.
Protection of the environment post-mining is a key objective of rehabilitation, especially where runoff and erosion from rehabilitated mine sites could potentially lead to contamination of the surrounding land and watercourses. As part of an overall assessment of the success of rehabilitation at the former Nabarlek uranium (U) mine, an appraisal of stable lead (Pb) isotopes, radionuclides and trace metals within sediments and soils was conducted to determine the off site impacts from a spatial and temporal perspective. The study found localised areas on and adjacent to the site where soils had elevated levels of trace metals and radionuclides. Lead isotope ratios are highly radiogenic in some samples, indicating the presence of U-rich material. There is some indication that erosion products with more radiogenic Pb isotope ratios have deposited in sediments downstream of the former ore body. However, there is no indication that the radiogenic erosion products found on the mine site at present have significantly contaminated sediments further downstream of Cooper Creek.  相似文献   

17.
Long-term safety assessments for geological disposal of radioactive waste in Switzerland involve the demonstration that the annual radiation dose to humans due to the potential release of radionuclides from the waste repository into the biosphere will not exceed the regulatory limit of 0.1 mSv. Here, we describe the simple but robust approach used by Nagra (Swiss National Cooperative for the Disposal of Radioactive Waste) to quantify the dose to humans as a result to time-dependent release of radionuclides from the geosphere into the biosphere. The model calculates the concentrations of radionuclides in different terrestrial and aquatic compartments of the surface environment. The fluxes of water and solids within the environment are the drivers for the exchange of radionuclides between these compartments. The calculated radionuclide concentrations in the biosphere are then used to estimate the radiation doses to humans due to various exposure paths (e.g. ingestion of radionuclides via drinking water and food, inhalation of radionuclides, external irradiation from radionuclides in soils). In this paper we also discuss recent new achievements and planned future work.  相似文献   

18.
This article illustrates the experimental experience achieved in the research of the self-restoration of radioactive-contaminated natural ecosystems. The main directions of studies were: the content and geochemical stability of "hot" particles in radioactive fallout from Chernobyl accident; the physicochemical forms (water-soluble, exchangeable, mobile and fixed) of Cs-137, Sr-90, Pu-239, 240 and Am-241 in the wide varieties of soils; the biological accessibility of radionuclides and their contents in soil pore solutions; and the dynamics and migration parameters of radionuclides vertical redistribution in different landscape conditions.  相似文献   

19.
The advantages of using radionuclides for laboratory studies of environmental processes include the wide range of element concentrations that can be studied, the capability to simultaneously study several isotopes in a single experiment, the direct applicability to the behaviour of radioactive waste or fallout, and the ability to study the mechanisms, reversibility and kinetics of environmental reactions under controlled conditions. These attributes are demonstrated using specific examples drawn from case studies in Australia, including radionuclide fallout onto tropical soils, the association of trace metals with harbour sediments and the behaviour of uranium in natural and contaminated systems.  相似文献   

20.
Experimental data are presented for the soil to plant transfer of plutonium and americium into the main species of grass vegetation of Belarusian grasslands contaminated as a result of the Chernobyl catastrophe of 1986. The content of radionuclides in pore soil solutions and the total reserve of biologically available forms of plutonium and americium in rooting layers of different soil varieties have been established. The distribution coefficients of (239,240)Pu and 241Am between the solid phase and pore waters of soils have been evaluated. The migration ability and biological availability of radionuclides in soils with different structures of the absorbing complex have been analyzed for various landscape conditions. The dependence of soil to plant transfer of plutonium and americium on the content and composition of organic matter, and other characteristics of the soil complex has been studied. On the basis of these data, predictions of the contamination levels of the main grass species of natural and agricultural ecosystems by 241Am are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号