首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The vertical distribution of 137Cs activity in peat soil profiles and 137Cs activity concentration in plants of various species was studied in samples collected at two sites on a raised bog in central Sweden. One site (open bog) was in an area with no trees and only a few sparsely growing plant species, while the other (low pine) was less than 100 m from the open bog site and had slowly growing Scots pine, a field layer dominated by some ericaceous plants and ground well-covered by plants. The plant samples were collected in 2004–2007 and were compared with samples collected in 1989 from the same open bog and low pine sites. Ground deposition of 137Cs in 2005 was similar at both sites, 23?000 Bq m−2. In the open bog peat profile it seems to be an upward transport of caesium since a clear peak of 137Cs activity was found in the uppermost 1–4 cm of Sphagnum layers, whereas at the low pine site 137Cs was mainly found in deeper (10–12 cm) layers. The migration rate was 0.57 cm yr−1 at the open bog site and the migration centre of 137Cs was at a depth of 10.7, while the rate at the low pine site was 0.78 cm yr−1 and the migration centre was at 14.9 cm. Heather (Calluna vulgaris) was the plant species with the highest 137Cs activity concentrations at both sites, 43.5 k Bq−1 DM in 1989 decreasing to 20.4 in 2004–2007 on open bog and 22.3 k Bq kg−1 DM in 1989 decreasing to 11.2 k Bq−1 DM by the period 2004–2007 on the low pine site. 137Cs transfer factors in plants varied between 0.88 and 1.35 on the open bog and between 0.48 and 0.69 m2 kg−1 DM at the low pine site.  相似文献   

2.
Least squares (LS), Theil’s (TS) and weighted total least squares (WTLS) regression analysis methods are used to develop empirical relationships between radium in the ground, radon in soil and radon in dwellings to assist in the post-closure assessment of indoor radon related to near-surface radioactive waste disposal at the Low Level Waste Repository in England. The data sets used are (i) estimated 226Ra in the <2 mm fraction of topsoils (eRa226) derived from equivalent uranium (eU) from airborne gamma spectrometry data, (ii) eRa226 derived from measurements of uranium in soil geochemical samples, (iii) soil gas radon and (iv) indoor radon data. For models comparing indoor radon and (i) eRa226 derived from airborne eU data and (ii) soil gas radon data, some of the geological groupings have significant slopes. For these groupings there is reasonable agreement in slope and intercept between the three regression analysis methods (LS, TS and WTLS). Relationships between radon in dwellings and radium in the ground or radon in soil differ depending on the characteristics of the underlying geological units, with more permeable units having steeper slopes and higher indoor radon concentrations for a given radium or soil gas radon concentration in the ground. The regression models comparing indoor radon with soil gas radon have intercepts close to 5 Bq m−3 whilst the intercepts for those comparing indoor radon with eRa226 from airborne eU vary from about 20 Bq m−3 for a moderately permeable geological unit to about 40 Bq m−3 for highly permeable limestone, implying unrealistically high contributions to indoor radon from sources other than the ground. An intercept value of 5 Bq m−3 is assumed as an appropriate mean value for the UK for sources of indoor radon other than radon from the ground, based on examination of UK data. Comparison with published data used to derive an average indoor radon: soil 226Ra ratio shows that whereas the published data are generally clustered with no obvious correlation, the data from this study have substantially different relationships depending largely on the permeability of the underlying geology. Models for the relatively impermeable geological units plot parallel to the average indoor radon: soil 226Ra model but with lower indoor radon: soil 226Ra ratios, whilst the models for the permeable geological units plot parallel to the average indoor radon: soil 226Ra model but with higher than average indoor radon: soil 226Ra ratios.  相似文献   

3.
The 7Be wet deposition has been intensively investigated in a semiarid region at San Luis Province, Argentina. From November 2006 to May 2008, the 7Be content in rainwater was determined in 58 individual rain events, randomly comprising more than 50% of all individual precipitations at the sampling period. 7Be activity concentration in rainwater ranged from 0.7 ± 0.3 Bq l−1 to 3.2 ± 0.7 Bq l−1, with a mean value of 1.7 Bq l−1 (sd = 0.53 Bq l−1). No relationship was found between 7Be content in rainwater and (a) rainfall amount, (b) precipitation intensity and (c) elapsed time between events. 7Be ground deposition was found to be well correlated with rainfall amount (R = 0.92). For the precipitation events considered, the 7Be depositional fluxes ranged from 1.1 to 120 Bq m−2, with a mean value of 32.7 Bq m−2 (sd = 29.9 Bq m−2). The annual depositional flux was estimated at 1140 ± 120 Bq m−2 y−1. Assuming the same monthly deposition pattern and that the 7Be content in soil decreases only through radioactive decay, the seasonal variation of 7Be areal activity density in soil was estimated. Results of this investigation may contribute to a valuable characterization of 7Be input in the explored semiarid ecosystem and its potential use as tracer of environmental processes.  相似文献   

4.
The calibration of scintillation detectors for gamma radiation in a well characterized setup can be transferred to other geometries using Monte Carlo simulations to account for the differences between the calibration and the other geometry. In this study a calibration facility was used that is constructed from bricks of well-known activity concentrations of 40K and of radionuclides from the 238U- and 232Th-series. Transfer of the calibration was attempted to a Marinelli beaker geometry with the detector inside a lead shield and to an in situ application with the detector positioned on a sand bed. In general this resulted in good correspondence (within 5-10%) between the activity concentrations derived using the transferred calibration and activities that were derived by independent measurements. Some discrepancies were identified that were attributed to coincident summing in the natural decay series and interference of radon.  相似文献   

5.
In case of an accidental release of radioactive substances into the environment, it is important to quickly and reliably estimate the radiation dose received by people in the affected area, and to determine the extent of the contamination. Measurements of the extent of the release and the subsequent contamination can be facilitated if there are predetermined reference sampling sites with known background radiation and inventory of radionuclides. Since 1996, 34 reference sites for soil sampling, field gamma, and intensimeter measurements have been established in western Sweden. Time series data for dose rates and radioisotope inventory have been collected at these sites, allowing for the investigation of changes in these parameters over time. The mass activity densities for the uranium and thorium series elements varied approximately between 10 and 50 Bq/kg and between 10 and 40 Bq/kg, respectively. The mass activity density of 40K was approximately in the range 300–800 Bq/kg. The radiation exposure due to 137Cs was rather small in this area. The dose rates calculated from in situ measurement data showed that the contribution to the total dose rate was almost entirely due to naturally occurring radionuclides. The measured dose rate was about twice as high as the calculated rate, even after subtracting the contribution from cosmic radiation. This may be explained by the fact that intensimeters generally are calibrated to measure the quantity ambient dose equivalent, which should not underestimate the effective dose.  相似文献   

6.
Monthly plutonium and thorium depositions at Tsukuba (28 m asl) and Mt. Haruna (1370 m asl) were measured during 2006 and 2007 (Jan 2006-Dec 2007 at Tsukuba, Nov 2006-Dec 2007 at Mt. Haruna). The monthly 239,240Pu depositions ranged from 0.044 to 2.67 mBq m−2 at Tsukuba and from 0.05 to 0.9 mBq m−2 at Mt. Haruna during the measurement periods. Monthly 239,240Pu deposition did not differ markedly between the two sites except in April 2007. Seasonal pattern of monthly 239,240Pu depositions at both sites showed high in spring and low in summer, and typical of seasonal variations in northeastern Asia. Thorium deposition at Tsukuba was higher than that at Mt. Haruna except in May and June 2007. 230Th/232Th activity ratios were used to partition deposition samples into locally and remotely derived fractions. The results revealed that a major proportion of total 239,240Pu and Th deposits are derived from remote sources, especially in spring.  相似文献   

7.
The spatial pattern of soil redistribution rate was investigated using cesium-137 (137Cs) within a cultivated complex hillslope in western Iran. The relationship between soil redistribution rate and soil organic carbon and total nitrogen pattern were studied using co-regionalization analysis. Ninety-one soil cores were sampled for 137Cs, total nitrogen, and soil organic carbon measurements. The simplified mass balance model estimated a gross erosion rate of 29.8 t ha−1 yr−1 and a net soil deposition rate of 21.8 t ha−1 yr−1; hence, a net soil loss rate of 8 t ha−1 yr−1. This magnitude of soil erosion rate is higher than the acceptable rate in semiarid regions. Co-regionalization analysis and co-dispersive coefficients among the selected variables showed that only a small fraction of the variability in total nitrogen and soil organic carbon could be explained by soil redistribution and that the remaining might be the result of different management practices by local farmers.  相似文献   

8.
Significantly high radiation level and radionuclide concentration along Quilon beach area of coastal Kerala have been reported by several investigators. Detailed gamma radiation level survey was carried out using a portable scintillometer. Detailed studies on radionuclides concentration in different environmental matrices of high background areas were undertaken in the coastal areas of Karunagapalli, Kayankulam, Chavara, Neendakara and Kollam to study the distribution and enrichment of the radionuclides in the region. The absorbed gamma dose rates in air in high background area are in the range 43-17,400 nGyh−1. Gamma radiation level is found to be maximum at a distance of 20 m from the sea waterline in all beaches. The soil samples collected from different locations were analysed for primordial radionuclides by gamma spectrometry. The activity of primordial radionuclides was determined for the different size fractions of soil to study the enrichment pattern. The highest activity of 232Th and 226Ra was found to be enriched in 125-63 μ size fraction. The preferential accumulation of 40K was found in <63 μ fraction. The minimum 232Th activity was 30.2 Bq kg−1, found in 1000-500 μ particle size fraction at Kollam and maximum activity of 3250.4 Bq kg−1 was observed in grains of size 125-63 μ at Neendakara. The lowest 226Ra activity observed was 33.9 Bq kg−1 at Neendakara in grains of size 1000-500 μ and the highest activity observed was 482.6 Bq kg−1 in grains of size 125-63 μ in Neendakara. The highest 40K activity found was 1923 Bq kg−1 in grains of size <63 μ for a sample collected from Neendakara. A good correlation was observed between computed dose and measured dose in air. The correlation between 232Th and 226Ra was also moderately high. The results of these investigations are presented and discussed in this paper.  相似文献   

9.
The total 239+240Pu activities and 240Pu/239Pu atom ratios in surface soil samples (0–5 cm) in the Kumtag Desert in western Gansu Province, and in a soil core sample in Lanzhou were investigated using a sector-field ICP-MS. In the surface soil samples, 239+240Pu activities in fine particles (<150 μm) were 1.3–2.1 times of those in coarse particles (150 μm–1 mm) which ranged from 0.005 to 0.157 mBq/g. Atom ratios of 240Pu/239Pu in the surface soils ranged from 0.168 to 0.192 with a mean of 0.182 ± 0.008. The mean ratio was similar to the typical global fallout value although the Kumtag Desert was believed to have received close-in fallout derived from Chinese nuclear weapons tests mainly conducted in the 1970s. Furthermore, the mean 240Pu/239Pu atom ratio observed in the soil core sample in Lanzhou was similar to the typical global fallout value. In the soil core sample, 239+240Pu activities in the various layers ranged from 0.012 to 0.23 mBq/g, and the inventory of 239+240Pu (32.4 Bq/m2, 0–23 cm) was slightly lower than that expected from global fallout (42 Bq/m2) at the same latitude. Rapid downward migration of Pu isotopes was observed in Lanzhou soil core sample layers. The contribution of the 10-cm deep top layers of surface soils to total inventory was only 17%, while the contribution of deeper layers (10–23 cm) was as high as 83%. The 239+240Pu activity levels and 240Pu/239Pu atom ratios in soils in Gansu Province, China are similar to those in atmospheric deposition samples collected in the spring in recent years in Japan.  相似文献   

10.
This paper describes a quantitative radioactivity analysis method especially suitable for environmental samples with low-level activity. The method, consisting of a multi-group approximation based on total absorption and Compton spectra of gamma rays, is coherently formalized and a computer algorithm thereof designed to analyze low-level activity NaI(Tl) gamma ray spectra of environmental samples. Milk powder from 1988 was used as the example case. Included is a special analysis on the uncertainty estimation. Gamma sensitiveness is defined and numerically evaluated. The results reproduced the calibration data well, attesting to the reliability of the method. The special analysis shows that the uncertainty of the assessed activity is tied to that of the calibration activity data. More than 77% of measured 1461-keV photons of 40K were counted in the range of clearly lower energies. Pile-up of single line photons (137Cs) looks negligible compared to that of a two-line cascade (134Cs). The detection limit varies with radionuclide and spectrum region and is related to the gamma sensitiveness of the detection system. The best detection limit always lies in a spectrum region holding a line of the radionuclide and the highest sensitiveness. The most radioactive milk powder sample showed a activity concentration of 21 ± 1 Bq g−1for 137Cs, 323 ± 13 Bq g−1 for 40K and no 134Cs.  相似文献   

11.
The activity concentrations of Beryllium-7 (7Be), a naturally occurring radioisotope produced in the atmosphere, were measured in leaves of birch-trees, above-ground parts of grass, soil and rainwater in the mountain massive Kralicky Sneznik (the northeast of the Czech Republic, altitude about 750 m) in the years of 2005, 2006 and 2007. Dried and ground samples of the plants and soils, and water samples from wet deposition were used to determine the 7Be content using a semiconductor gamma spectrometer. The 7Be values ranged from 147.0 to 279.6 Bq kg−1, from 48.7 to 740.8 Bq kg−1, from 2.1 to 8.7 Bq kg−1, and from 0.6 to 1.9 Bq kg−1 in birch-tree leaves, grass samples, soils, and rainwater, respectively. Insignificant inter-annual variations but significant increase in the 7Be activity concentrations during the spring and summer months were observed in birch-tree leaves and grass samples. The seasonal variation of the 7Be concentrations in grass samples correlated (R2 = 0.4663 and 0.6489) with precipitation. No similar correlation was found for 7Be in birch-tree leaves. Beryllium-7 content in birch-tree leaves and in aerial parts of grass was mainly caused by direct transport of 7Be from wet deposition into aerial parts of the observed plants.  相似文献   

12.
The indoor radon (222Rn) activity concentration was measured between January and June in the schools of two geothermal areas in Tuscany, central Italy. One of these areas (the Larderello area) is characterized by a large number of geothermal power plants, covering about 9% of the world’s geothermal power production. In contrast, the other area, Monte Pisano, has not any such facilities. About 250 measurements were made using track etch detectors. Only a slight difference in the concentrations between the two major sampling areas (98 Bq m−3 for Larderello area and 43 Bq m−3 for Monte Pisano area) was found, and this was related to different geological characteristics of the ground and not the presence of the geothermal plants. The measured radon concentrations were always well below the intervention levels in both areas, and health risks for students and personnel in the examined schools were excluded.  相似文献   

13.
Distribution of cesium (134Cs and 137Cs) and strontium (Sr-II) between soil/water phases depends on many factors such as concentration of these ions between phases, the cation exchange capacity (CEC) of the soil as well as its clay content, chemical composition (especially Na, K, Ca, and Mg ions), grain size distribution, calcite, iron oxide content, and organic coatings. Distribution coefficients (Kd) of cesium (labeled with 137Cs) and strontium were measured on the grain size distributions ≥32 μm of four soil samples. These soils were obtained from four different locations within Inshas site in Egypt and three groundwater samples were obtained from the same site locations. X-ray diffraction showed that the soil samples consisted mainly of quartz mixed with the minor amounts of kaolonite and clay minerals. Sorption experiments were carried out at strontium aqueous concentrations range 10−7 to 10−4 mol l−1. The CEC and Kds for cesium and strontium were measured at the same metal concentrations range. Distribution coefficients of cesium were found to be influenced by the composition of the soil, while the distribution coefficients of strontium were found to depend on calcium concentrations in the soil/groundwater system. The aim of this study was to determine the safety assessment of disposal 137Cs radionuclide and Sr(II) in the aquifer regions inside the Inshas site. Sequential extraction tests showed that, strontium was associated with the carbonate fractions and majority of cesium was sorbed on the iron oxides and the residue.  相似文献   

14.
Analysis of soil redistribution and sediment sources in semiarid and arid watersheds provides information for implementing management practices to improve rangeland conditions and reduce sediment loads to streams. The purpose of this research was to develop sediment budgets and identify potential sediment sources using 137Cs and other soil properties in a series of small semiarid subwatersheds on the USDA ARS Walnut Gulch Experimental Watershed near Tombstone, Arizona, USA. Soils were sampled in a grid pattern on two small subwatersheds and along transects associated with soils and geomorphology on six larger subwatersheds. Soil samples were analyzed for 137Cs and selected physical and chemical properties (i.e., bulk density, rocks, particle size, soil organic carbon). Suspended sediment samples collected at measuring flume sites on the Walnut Gulch Experimental Watershed were also analyzed for these properties. Soil redistribution measured using 137Cs inventories for a small shrub-dominated subwatershed and a small grass-dominated subwatershed found eroding areas in these subwatersheds were losing −5.6 and −3.2 t ha−1 yr−1, respectively; however, a sediment budget for each of these subwatersheds, including depositional areas, found net soil loss to be −4.3 t ha−1 yr−1 from the shrub-dominated subwatershed and −0.1 t ha−1 yr−1 from the grass-dominated subwatershed. Generally, the suspended sediment collected at the flumes of the six other subwatersheds was enriched in silt and clay. Using a mixing model to determine sediment source indicated that shrub-dominated subwatersheds were contributing most of the suspended sediment that was measured at the outlet flume of the Walnut Gulch Experimental Watershed. The two methodologies (sediment budgets and sediment source analyses) indicate that shrub-dominated systems provide more suspended sediment to the stream systems. The sediment budget studies also suggest that sediment yields measured at the outlet of a watershed may be a poor indicator of actual soil redistribution rates within these semiarid watersheds. Management of these semiarid rangelands must consider techniques that will protect grass-dominated areas from shrub invasion to improve rangeland conditions.  相似文献   

15.
Establishment of 137Cs inventories is often used to gain information on soil stability. The latter is crucial in mountain systems, where ecosystem stability is tightly connected to soil stability. In-situ measurements of 137Cs in steep alpine environments are scarce. Most studies have been carried out in arable lands and with Germanium (Ge) detectors. Sodium Iodide (NaI) detector system is an inexpensive and easy to handle field instrument, but its validity on steep alpine environments has not been tested yet. In this study, a comparison of laboratory measurements with GeLi detector and in-situ measurements with NaI detector of 137Cs gamma soil radiation has been done in an alpine catchment with high 137Cs concentration (Urseren Valley, Switzerland). The aim of this study was to calibrate the in-situ NaI detector system for application on steep alpine slopes. Replicate samples from an altitudinal transect through the Urseren Valley, measured in the laboratory with a GeLi detector, showed a large variability in 137Cs activities at a meter scale. This small-scale heterogeneity determined with the GeLi detector is smoothed out by uncollimated in-situ measurements with the NaI detector, which provides integrated estimates of 137Cs within the field of view (3.1 m2) of each measurement. There was no dependency of 137Cs on pH, clay content and carbon content, but a close relationship was determined between measured 137Cs activities and soil moisture. Thus, in-situ data must be corrected for soil moisture. Close correlation (R2 = 0.86, p < 0.0001) was found for 137Cs activities (in Bq kg−1) estimated with in-situ (NaI detector) and laboratory (GeLi detector) methods. We thus concluded that the NaI detector system is a suitable tool for in-situ measurements in alpine environments. This paper describes the calibration of the NaI detector system for field application under elevated 137Cs activities originating from Chernobyl fallout.  相似文献   

16.
Natural radioactive materials under certain conditions can reach hazardous radiological levels. So, it becomes necessary to study the natural radioactivity levels in soil to assess the dose for the population in order to know the health risks and to have a baseline for future changes in the environmental radioactivity due to human activities. The natural radionuclide (226Ra, 232Th, and 40K) contents in soil were determined for 26 locations around the Upper Siwaliks of Kala Amb, Nahan and Morni Hills, Northern India, using high-resolution gamma-ray spectrometric analysis. It was observed that the concentration of natural radionuclides viz., 226Ra, 232Th and 40K, in the soil varies from 28.3 ± 0.5 to 81.0 ± 1.7 Bq kg−1, 61.2 ± 1.3 to 140.3 ± 2.6 Bq kg−1 and 363.4 ± 4.9 to 1002.2 ± 11.2 Bq kg−1 respectively. The total absorbed dose rate calculated from activity concentration of 226Ra, 232Th and 40K ranged from 71.1 to 162.0 nGy h−1. The radium equivalent (Req) and the external hazard index (Hex), which resulted from the natural radionuclides in soil, were also calculated and found to vary from 149.4 to 351.8 Bq kg−1and from 0.40 to 0.95 respectively. These values in Upper Siwaliks area were compared with that from the adjoining areas of Punjab. The radium equivalent activities in all the soil samples were lower than the limit (370 Bq kg−1) set in the Organization for Economic Cooperation and Development (OECD) report and the dose equivalent was within the safe limit of 1 mSv y−1.  相似文献   

17.
The evaluation of 131I air and ground contamination field formation in the territory of Ukraine was made using the model of atmospheric transport LEDI (Lagrangian–Eulerian DIffusion model). The 131I atmospheric transport over the territory of Ukraine was simulated during the first 12 days after the accident (from 26 April to 7 May 1986) using real aerological information and rain measurement network data. The airborne 131I concentration and ground deposition fields were calculated as the database for subsequent thyroid dose reconstruction for inhabitants of radioactive contaminated regions. The small-scale deposition field variability is assessed using data of 137Cs detailed measurements in the territory of Ukraine. The obtained results are compared with available data of radioiodine daily deposition measurements made at the network of meteorological stations in Ukraine and data of the assessments of 131I soil contamination obtained from the 129I measurements.  相似文献   

18.
The paper presents a systematic study on suitability of various gamma lines for monitoring of 238U activity in soil samples around a uranium mineralized zone of Kylleng Pyndengsohiong Mawthabah (Domiasiat), Meghalaya in India. The area lies in a plateau region which recieves the highest average annual rainfall (12,000 mm) in the world. The geochemical behaviour of the uranium and its daughter products at such wet climatic conditions imposes restrictions to assess 238U through gamma lines of radon decay products. Soil samples were collected from nine locations around the uranium mineralization zone for analysis. The ratio of the concentration of uranium obtained from gamma energies of radium daughter products to the 63.29 keV of 234Th was found to vary from 1.01 to 2.07, which indicates a pronounced disequilibrium between uranium and radium daughters. The results obtained from various gamma energies were validated from the data generated by Instrumental Neutron Activation Analysis (INAA) technique. The 238U activities from the two analytical methods show a well fitted regression line with correlation coefficient 0.99 which validates the reliability of 63.29 keV energy for estimation of uranium in such conditions.  相似文献   

19.
The concentrations and vertical distribution of 239,240Pu, 241Am and 137Cs in the bottom sediments and water samples of Lake Päijänne were investigated. This lake is important, since the Päijänne area received a significant deposition from the Chernobyl fallout. Furthermore Lake Päijänne is the raw water source for the Helsinki metropolitan area. In addition no previous data on the distribution of plutonium and americium in the sediment profiles of Lake Päijänne exist. Only data covering the surface layer (0–1 cm) of the sediments are previously available. In the sediments the average total activities were 45 ± 15 Bq/m2 and 20 ± 7 Bq/m2 for 239,240Pu and 241Am, respectively. The average 241Am/239,240Pu ratio was 0.45 ± 0.14. The 241Am/239,240Pu ratio is lowest in the surface layer of the sediments and increases as a function of depth. The 238Pu/239,240Pu ratio of the sediment samples varied between 0.012 ± 0.025 and 0.162 ± 0.079, decreasing as a function of depth. The average activity in water was 4.9 ± 0.9 mBq/m3 and 4.1 ± 0.2 mBq/m3 for 239,240Pu and 241Am, respectively. The 241Am/239,240Pu ratio of water samples was 0.82 ± 0.17. 239,240Pu originating from the Chernobyl fallout calculated from the average total activities covers approximately 1.95 ± 0.01% of the total 239,240Pu activity in the bottom sediments. The average total 137Cs activity of sediment profiles was 100 ± 15 kBq/m2 and 19.3 ± 1.4 Bq/m3 in water samples.  相似文献   

20.
Concentrations of the natural radionuclides 238U, 226Ra, 232Th and 40K have been measured by γ-ray spectrometry in 796 topsoil samples from the Pearl River Delta Zone (PRDZ) of Guangdong, China. The mean concentrations for 238U, 226Ra, 232Th and 40K were found to be 140 ± 37 Bq kg−1, 134 ± 41 Bq kg−1, 187 ± 80 Bq kg−1 and 680 ± 203 Bq kg−1 dry mass, respectively. These values were all higher than the mean values in soil for China and the world. Outdoor air-absorbed dose rates, calculated from activity concentrations of 226Ra, 232Th and 40K, ranged from 86 to 237 nGy h−1, with a mean value of 165 ± 46 nGy h−1. The corresponding annual outdoor effective dose rate per person was estimated to be between 0.11 and 0.29 mSv y−1, with a mean value of 0.20 ± 0.06 mSv y−1, which was also higher than the world mean value of 0.07 mSv y−1. The radium equivalent activity (Raeq) and the external hazard index (Ir) resulted from the natural radionuclides in soil, were also calculated and found to vary from 230 to 676 Bq kg−1 and from 0.6 to 1.8, respectively. The Raeq and the Ir in all the investigated regions were up to 75% higher than the set limits of 370 Bq kg−1 and 1.0, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号