首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Fipronil is a phenylpyrazole insecticide used in agricultural and domestic settings for controlling various insect pests in crops, lawns, and residential structures. Fipronil is chiral; however, it is released into the environment as a racemic mixture of two enantiomers. In this study, the acute toxicity of the (S,+) and (R,-) enantiomers and the racemic mixture of fipronil were assessed using Simulium vittatum IS-7 (black fly), Xenopus laevis (African clawed frog), Procambarus clarkii (crayfish), Palaemonetes pugio (grass shrimp), Mercenaria mercenaria (hardshell clam), and Dunaliella tertiolecta (phytoplankton). Results showed that S. vittatum IS-7 was the most sensitive freshwater species to the racemic mixture of fipronil (LC50 = 0.65 microg/L) while P. pugio was the most sensitive marine species (LC50 = 0.32 microg/L). Procambarus clarkii were significantly more sensitive to the (S,+) enantiomer while larval P. pugio were significantly more sensitive to the (R,-) enantiomer. Enantioselective toxicity was not observed in the other organisms tested. Increased mortality and minimal recovery was observed in all species tested for recovery from fipronil exposure. These results indicate that the most toxic isomer of fipronil is organism-specific and that enantioselective toxicity may be more common in crustaceans than in other aquatic organisms.  相似文献   

2.
The first- and second-order streams, Brown and Horqueta, respectively, which are located in the main area of soybean production in Argentina were examined for insecticide contamination caused by runoff from nearby soybean fields. The insecticides most widely used in Argentina (chlorpyrifos, cypermethrin and endosulfan) were detected in sediments, suspended particles and water. Highest concentrations in suspended particles were 318 microg/kg for endosulfan in the stream Horqueta, while 226 microg/kg chlorpyrifos and 13.2 microg/kg cypermethrin were measured in the stream Brown. In the Horqueta stream 150 and 53 microg/kg chlorpyrifos and cypermethrin were detected in runoff sediments, respectively. Whereas cypermethrin concentrations in the suspended particles were relatively low, levels in the floodwater of Brown reached 0.7 microg/l. The highest chlorpyrifos concentration in floodwater was 0.45 microg/l in Brown. However, endosulfan was not detected in the water phase. In runoff water the highest concentrations measured were 0.3 microg/l for chlorpyrifos in Horqueta and 0.49 microg/l for cypermethrin in the Brown stream. On five sampling dates during the pesticide application period in Brown stream (2002/2003) the concentration of chlorpyrifos and cypermethrin in runoff and/or floodwater exceeded the water quality criteria for freshwater mentioned in this study. In three cases this insecticide concentration was measured in stream water, indicating an acute risk to aquatic life. The acute toxicity-exposure-ratio (TER) for chlorpyrifos and cypermethrin also shows an acute risk for aquatic invertebrates in the Brown stream. In the Horqueta chlorpyrifos concentrations in the runoff exceeded the safety levels three times during the application period (2001/2002), potentially endangering the aquatic fauna. Effects on aquatic macroinvertebrates after insecticide contamination were reported in earlier studies in Horqueta stream.  相似文献   

3.
Episodic coal mine drainage, caused by fluctuations in mine discharges relative to stream flow, has devastating effects on aquatic macroinvertebrate communities. Seven stream reaches in the Anthracite region of Pennsylvania were identified as chronically, episodically or not impaired by mine drainage, and sampled seasonally for 1 year to determine the effect of episodic mine drainage on macroinvertebrates. Specific conductance fluctuated seasonally in episodic sites; it was lower in winter when discharge increased and higher in summer when discharges decreased and mine drainage made up a larger proportion of stream flow. Although we hypothesized that episodic streams would have higher macroinvertebrate richness than chronic streams, comparisons showed no differences in richness between treatments. Episodic pollution may result from undersized or poorly maintained passive treatment systems; therefore, intensive macroinvertebrate monitoring may be needed to identify streams being affected by episodic mine drainage because macroinvertebrate richness may be sensitive to water quality fluctuations.  相似文献   

4.
The impact of biotech-soybean technology on freshwater ecosystems is being evaluated in the Rolling Pampas region, Argentina. The effect of cypermethrin, the main soybean insecticide, on low-order temperate-stream fish populations was investigated for two consecutive crop cycles under field-use conditions in biotech-soybean production. Cypermethrin was unable to induce mortality or behavioral effects on any of the fish species resident in a first-order stream across a crop field (pulsed acute exposure scenario) sprayed according to conventional practices. No spatially or temporally dependent effects were observed on population parameters (size-class structure, abundance, survival, sex and immature/mature ratio, condition factor) of resident or caged Cnesterodon decemmaculatus after spraying or rainfall events, not even one year after, at the beginning of the next crop cycle. Although cypermethrin was "very highly toxic" to C. decemmaculatus in laboratory water (96h-LC(50)=0.43microg/l), its toxicity was reduced in filtered (78%) and unfiltered (92%) stream water. Changes in LC(50) values were mainly correlated with the OC content of each water fraction (r(2)=0.99; p<0.01; n=9), showing that both DOC and TOC contributed proportionally to toxicity reduction. Protective effects of stream water (12-fold reduction LC(50) values) explained the lack of effects on fish populations in the field, despite cypermethrin water concentrations after spraying reached values comparable with the 96h-LC(50). Therefore, cypermethrin under field-use conditions in transgenic-soybean production represents a low risk of acute exposure for fish populations inhabiting low-order temperate-streams rich in TOC. The relationship between LC(50) and TOC could be a convenient way to improve risk estimation based on laboratory toxicity testing.  相似文献   

5.
Several factors can contribute to the ecological degradation of stream catchments following urbanization, but it is often difficult to separate their relative importance. We isolated the impact of polluted sediment on the condition of an urban stream in Melbourne, Australia, using two complementary approaches. Using a rapid bioassessment approach, indices of stream condition were calculated based on macroinvertebrate field surveys. Urban stream reaches supported impoverished macroinvertebrate communities, and contained potentially toxic concentrations of heavy metals and hydrocarbons. Using a field microcosm approach, a bioassay was carried out to assess sediment pollution effects on native macroinvertebrates. Sediment from urban sites substantially altered the microcosm macroinvertebrate community, most likely due to elevated heavy metal and hydrocarbon concentrations. Macroinvertebrate surveys combined with a bioassay approach based on field microcosms can help isolate the effect of stream pollutants in degraded ecosystems.  相似文献   

6.
Seed-coating with the insecticide fipronil has been intensively used in sunflower cultivation to control soil pests such as wireworms. A research project was undertaken to determine the soil distribution of fipronil and of its main phenylpyrazole metabolites. Under agronomic conditions, the quantity of fipronil in the seed-coat (437 microg/seed) decreased continuously during the cultivation period (3.9 microg day(-1) during the first two months; 0.3 microg day(-1) during the next four months). At the end of the cultivation period, 42% of all phenylpyrazole compounds remained in the seed-coat. Fipro nil was poorly mobile in soil, and at the end of the cultivation period it was mostly concentrated in the soil layer close to the seed (3240 microg kg(-1) soil). Starting from the seed-coating, a fipronil concentration gradient was measured in the soil, up to a distance of 11 cm from the seed. Degradation in the soil occurred at a moderate rate, probably due to the fact that water solubilization of the solid active ingredient present in the seed coating was rate limiting. Indeed, after 6 months of cultivation, only 51% of the fipronil seed-coating was found in the soil, about 7% having been absorbed by the sunflower plant, and 42% remaining in the seed coat. The predominant metabolites produced in the soil were sulfone-fipronil, sulfide-fipronil and amide-fipronil, which were produced at average rates of 5 microg kg(-1) soil day(-1), 3 microg kg(-1) soil day(-1), and 0.4 microg kg(-1) soil day(-1), respectively. In contrast, the photoproduct, desulfinyl-fipronil, was barely detected. All phenylpyrazole compounds were poorly mobile, except for the amide derivative, which is devoid of insecticidal activity in marked contrast to the other metabolites. Furthermore, detectable soil contamination was limited to a zone of about 11 cm around the seed.  相似文献   

7.
This study analyzed the toxicity of three pesticides (the herbicide atrazine, the insecticide chlorpyrifos and the fungicide chlorothalonil) individually, and in two mixtures (atrazine and chlorpyrifos; atrazine and chlorothalonil) to the marine phytoplankton species Dunaliella tertiolecta (Chlorophyta). A standard 96 h static algal bioassay was used to determine pesticide effects on the population growth rate of D. tertiolecta. Mixture toxicity was assessed using the additive index approach. Atrazine and chlorothalonil concentrations > or = 25 microg/L and 33.3 microg/L, respectively, caused significant decreases in D. tertiolecta population growth rate. At much higher concentrations (> or = 400 microg/L) chlorpyrifos also elicited a significant effect on D. tertiolecta population growth rate, but toxicity would not be expected at typical environmental concentrations. The population growth rate EC50 values determined for D. tertiolecta were 64 microg/L for chlorothalonil, 69 microg/L for atrazine, and 769 microg/L for chlorpyrifos. Atrazine and chlorpyrifos in mixture displayed additive toxicity, whereas atrazine and chlorothalonil in mixture had a synergistic effect. The toxicity of atrazine and chlorothalonil combined was approximately 2 times greater than that of the individual chemicals. Therefore, decreases in phytoplankton populations resulting from pesticide exposure could occur at lower than expected concentrations in aquatic systems where atrazine and chlorothalonil are present in mixture. Detrimental effects on phytoplankton population growth rate could impact nutrient cycling rates and food availability to higher trophic levels. Characterizing the toxicity of chemical mixtures likely to be encountered in the environment may benefit the pesticide registration and regulation process.  相似文献   

8.
To determine the potential impacts of lawn-care pesticides on aquatic ecosystems, the macroinvertebrate communities of six streams were assessed using a multimetric approach. Four streams flowed through residential neighborhoods of Peachtree City, GA, USA, with differing mean property values and two reference streams were outside the city limits. A series of correlation analyses were conducted comparing stream rank from water quality and physical stream parameters, habitat assessments, benthic macroinvertebrate metric, pesticide toxicity and metal toxicity data to determine relationships among these parameters. Significant correlations were detected between individual analyses of stream rank for pesticide toxicity, specific conductance, turbidity, temperature and dissolved oxygen with benthic macroinvertebrate metrics.  相似文献   

9.
Ecological risk assessments of pharmaceuticals are currently difficult because little-to-no aquatic hazard and exposure information exists in the peer-reviewed literature for most therapeutics. Recently several studies have identified fluoxetine, a widely prescribed antidepressant, in municipal effluents. To evaluate the potential aquatic toxicity of fluoxetine, single species laboratory toxicity tests were performed to assess hazard to aquatic biota. Average LC(50) values for Ceriodaphnia dubia, Daphnia magna, and Pimephales promelas were 0.756 (234 microg/l), 2.65 (820 microg/l), and 2.28 microM (705 microg/l), respectively. Pseudokirchneriella subcapitata growth and C. dubia fecundity were decreased by 0.044 (14 microg/l) and 0.72 microM (223 microg/l) fluoxetine treatments, respectively. Oryias latipes survival was not affected by fluoxteine exposure up to a concentration of 28.9 microM (8.9 mg/l). An LC(50) of 15.2 mg/kg was estimated for Chironomus tentans. Hyalella azteca survival was not affected up to 43 mg/kg fluoxetine sediment exposure. Growth lowest observed effect concentrations for C. tentans and H. azteca were 1.3 and 5.6 mg/kg, respectively. Our findings indicate that lowest measured fluoxetine effect levels are an order of magnitude higher than highest reported municipal effluent concentrations.  相似文献   

10.
Capkin E  Altinok I  Karahan S 《Chemosphere》2006,64(10):1793-1800
The acute toxicity of endosulfan in juvenile rainbow trout (Oncorhynchus mykiss, 10.61+/-1.69 g) was evaluated in glass aquaria under static conditions. Nominal concentrations of endosulfan in the toxicity test ranged from 1.3 microg l(-1) to 29 microg l(-1). The concentrations of endosulfan that killed 50% of the rainbow trout within 24-h (24-h LC50), 48-h LC50, 72-h LC50, and 96-h LC50 were 19.78, 8.89, 5.28, and 1.75 microg l(-1), respectively. None of the unexposed control fish died, and the first fish died 4 h after exposure to 26.3 microg l(-1) of endosulfan. Survival of fish was significantly increased with increasing fish size and decreased with decreased fish size at the same temperature (p<0.001). Temperature also had a significant effect on survival of fish. Alkalinity at levels above 20 mg l(-1) as CaCO3 significantly increased survival of fish at 19.78 microg l(-1) of endosulfan. Increasing alkalinity from 20 mg l(-1) as CaCO3 to 42 or higher concentrations tested in this study (121 mg l(-1) as CaCO3) significantly increased survival of fish (p<0.01). Total hardness ranging from 55 mg l(-1) as CaCO3 to 126 mg l(-1) as CaCO3 did not affect survival of fish exposed to endosulfan. Endosulfan toxicity was found to be irreversible when fish were exposed to minimum concentrations of endosulfan tested. Histologically, fish gills had lamellar edema, separation of epithelium from lamellae, lamellar fusion, and swelling of the epithelial cells. Melanomacrophage centers were scattered throughout the trunk kidney, head kidney, and spleen. The liver of endosulfan-exposed fish had severe focal necrosis. None of these lesions were seen in unexposed control fish. Results indicate that alkalinity, temperature, and fish size affect endosulfan toxicity of rainbow trout.  相似文献   

11.
Metazachlor is a frequently used herbicide with concentrations in surface waters up to 100 microg L(-1). A long-term mesocosm study was performed in order to investigate effects on stream and pond communities also regarding recovery. Single metazachlor doses of 5, 20, 80, 200, and 500 microg L(-1) were given and the aquatic communities monitored for 140 days. In this paper, special attention is paid to the plankton response and the results of the entire study are summarised. Metazachlor strongly affected the stream and pond mesocosm communities at concentrations higher than 5 microg L(-1). Direct negative effects were most prominent for chlorophytes whereas diatoms and cryptophytes seemed insensitive. The effects on zooplankton were caused by changes in habitat structure due to the strong decline of macrophytes. The slow degradation of metazachlor combined with the absence of recovery in both chlorophytes and macrophytes is likely to cause long-lasting effects on aquatic ecosystems.  相似文献   

12.
The effectiveness of aquatic macrophytes in reducing runoff- and spray-drift-induced azinphos-methyl (AZP) input was compared in a vegetated stream. Water, sediment and plant samples were taken at increasing distances from a point of input during a spray-drift event and two runoff (10 and 22 mm/day) events. Peak concentrations of AZP decreased significantly (R2=0.99; p<0.0001; n=5) from 0.24 microg/l to 0.11 microg/l during the 10mm runoff event. No reduction took place during the 22 mm event. AZP concentrations were reduced by 90% following spray-drift input, with peak concentrations decreasing significantly (R2=0.93; p=0.0084; n=5) from 4.3 microg/l to 1.7 microg/l with increasing distance from the point of input. Plant samples taken after the spray-drift event showed increased AZP concentrations in comparison to before the event indicating sorption of the pesticide to the macrophytes. Although peak concentrations of AZP were as effectively mitigated during the 10mm runoff event as during the spray-drift event, predictive modelling revealed that maximum concentrations expected during a worst-case scenario 10mm runoff event (0 days after application) are an order of magnitude lower than what can be expected for a worst-case spray-drift and 22 mm runoff event, suggesting that spray-drift-derived pesticide concentrations are more effectively mitigated than those of runoff.  相似文献   

13.
Canivet V  Gibert J 《Chemosphere》2002,46(7):999-1009
The impact of waste storage on aquatic systems is a regulatory requirement in Europe, but it is nowadays only considered to a limited extent. The complexity of mixtures, which contain many inorganic and organic compounds, requires the use of combining chemical measurements with ecotoxicological observations. This research employed an integrated laboratory and outdoor mesocosms approach to assess the effects of mixtures on freshwater macroinvertebrates. The effects of percolates coming from water having percolated through maturated secondary smelting slags, on freshwater macroinvertebrates (molluscs, crustaceans and insect larvae) were investigated under laboratory conditions using a continuous flow-through testing apparatus. Lethality (LC50 96 and 240 h) was chosen as the endpoint. The results indicate that the difference in sensitivity of macroinvertebrates is correlated with their ability to regulate or neutralize contaminants in the mixture during short-term exposure. Moreover, differences in sensitivity were dependent on duration of exposure. Because of the variability of toxicity among mixtures coming from the same waste, bioassays are required to determine the toxicities of these mixtures.  相似文献   

14.
Dias V  Vasseur C  Bonzom JM 《Chemosphere》2008,71(3):574-581
Among non-biologically essential metals, data concerning uranium effects on freshwater benthic macroinvertebrates are scarce. The effects of uranium on survival, development time, growth and mouthpart deformities of midge Chironomus riparius were investigated. A 10-day static laboratory bioassay was performed exposing first instar larvae to artificial sediment spiked with four concentrations of uranium (2.97; 6.07; 11.44; 23.84 microg U g(-1) dry wt). As uranium was released from the sediment to the overlying water during this bioassay, both the sediment and the water column act as contamination pathways in giving rise to the observed effects. Significant negative effects on survival, development time, and growth were detected at 6.07, 6.07 and 2.97 microg U g(-1) dry wt, respectively. An LC20 of 2.49 microg U g(-1) dry wt (95% CI=1.48-4.27), and an LC50 of 5.30 microg U g(-1) dry wt (95% CI=3.94-7.25) were estimated. With respect to effects of uranium on larvae mouthpart deformities, we found that the lower the concentrations, the higher the deformity rates. These results highlight the potential impact of uranium at population level in environmentally realistic concentrations.  相似文献   

15.
This study investigated the toxicity of various concentrations of technical resmethrin and Scourge on adult and larval Palaemonetes pugio, a common grass shrimp species. Two types of tests were conducted for each of the resmethrin formulations using adult and larval grass shrimp life stages, a 96-h static renewal aqueous test without sediment, and a 24-h static nonrenewal aqueous test with sediment. For resmethrin, the 96-h aqueous LC50 value for adult shrimp was 0.53 microg/L (95% confidence interval (CI): 0.46-0.60 microg/L), and for larval shrimp was 0.35 microg/L (95% CI: 0.28-0.42 microg/L). In the presence of sediment, technical resmethrin produced a 24-h LC50 value for adult shrimp of 5.44 microg/L (95% CI: 4.52-6.55 microg/L), and for larval shrimp of 2.15 microg/L (95% CI: 1.35-3.43 microg/L). For Scourge, the 96-h aqueous LC50 for adult shrimp was 2.08 microg/L (95% CI: 1.70-2.54 microg/L), and for larval shrimp was 0.36 microg/L (95% CI: 0.24-0.55 microg/L). The 24-h sediment test yielded an LC50 value of 16.12 microg/L (95% CI: 14.79-17.57 microg/L) for adult shrimp, and 14.16 microg/L (95% CI: 12.21-16.43 microg/L) for larvae. Adjusted LC50 values to reflect the 18% resmethrin concentration in Scourge are 0.37 microg/L (adult), 0.07 microg/L (larvae) for the 96-h aqueous test, and 2.90 microg/L (adult), 2.6 microg/L (larvae) for the 24-h sediment test. Larval grass shrimp were more sensitive to technical resmethrin and Scourge than the adult life stage. The results also demonstrate that synergized resmethrin is more toxic to P. pugio than the nonsynergized form, and that the presence of sediment decreases the toxicity of both resmethrin and Scourge.  相似文献   

16.
G. Jean  J.F. Fruget   《Chemosphere》1994,28(12):2249-2267
Bioassays allow the appreciation of the toxicity of complex effluents, which is difficult to characterize by the sole measurement of some physico-chemical parameters. We have developed a macroinvertebrate multi-test (M.M.T.) with species characteristic of different trophic levels in order to appreciate the ecotoxicological impact of various effluents (especially landfill leachates) and chemicals on aquatic environments. Our aim was: (i) to compare the sensitivity of the macroinvertebrates among themselves and with regard to those of three standard bioassays; (ii) to characterize the effluents according to their toxicity on one hand and according to their physico-chemical composition on the other hand; (iii) to search for possible correlations between the physico-chemical composition of an effluent and its toxicity. In order to achieve these objectives we used first a combination of graphical displays of the raw data, and secondly multivariate analyses: clustering techniques and scaling (ordination) techniques (Principal Components Analysis).  相似文献   

17.
Acid mine drainage (AMD) is frequently linked with changes in macroinvertebrate assemblages, but the relative contribution of water and sediment to toxicity is equivocal. We have shown that the macroinvertebrate fauna of Neubecks Ck, a mine impacted stream in New South Wales, Australia, was much poorer than in two reference streams. Multivariate RELATE analyses indicated that the patterns in the biological data were more strongly correlated with the concentrations of common metals in the surface water than the pore water of these streams. From this we hypothesised that the water was more toxic to the biota than the sediment and we tested this hypothesis with a sediment transplant experiment. Sediment from Neubecks Ck that was placed in reference streams retained high concentrations of metals throughout the experiment, yet supported a macroinvertebrate assemblage similar to that in the reference streams. Sediment from the reference streams that was placed in Neubecks Ck supported few, if any, animals. This indicates that water in Neubecks Ck is toxic to biota, but that sediment is able to support aquatic biota in clean water. Therefore, remediation should focus on improving water quality rather than sediment quality.  相似文献   

18.
GOAL, SCOPE AND BACKGROUND: In 1998, the International Council of Chemical Associations (ICCA) launched a global initiative to investigate more than 1,000 HPV chemicals (High Production Volume, > or = 1,000 t/a) within the refocused OECD HPV Chemicals Programme. Up to the OECD SIDS Initial Assessment Meeting in April 2004 (SIAM 18) 147 ICCA dossiers (ca. 230 CAS-No) have been assessed based on a harmonised data set. The environmental profile and an ecotoxicological characterisation of these chemicals are presented here. Data for acute aquatic toxicity were correlated among each other, as well as data for fish (LC50, LD50) and rodents (LD50). The data for acute aquatic toxicity are compared with other existing chemicals. METHODS: Data of the ICCA HPV chemicals from the OECD SIAM 11-18 are presented for: log Kow (as an indicator for bioaccumulation potential), biodegradation, acute aquatic toxicity and availability of long-term toxicity data. Correlation analysis was performed with log transformed data and a linear regression model was fitted to the data, if a significant correlation was found. Acute toxicity for fish and acute oral toxicity for rodents were correlated on a molar basis. Acute aquatic toxicity of the chemicals is compared with data from BUA reports 1-234 and a random EINECS sample (Knacker et al. 1995). RESULTS AND DISCUSSION: According to the dossier information, 71 of the 147 ICCA chemicals are not 'readily biodegradable', 21 have a log Kow > or = 3, and 44 are 'toxic' (LC/EC50 < or = 10 mg/L) or 'very toxic' (LC/EC50 < or = 1 mg/L) to aquatic organisms. For 77, only the base set (acute fish, Daphnia and algae) is available, for the rest at least one long-term test (fish or Daphnia) is available and three tests for a mere 14 others. Based on the data presented, the SIAM gives recommendations for Environment and Human Health. 22 chemicals have been identified as a 'candidate for further work' for Environment and 16 for Human Health. The highest correlation coefficient was obtained correlating fish and Daphnia (r2 = 0.79). LC50 (fish) is significantly correlated with LD50 (rodent), but data are widely scattered. The correlation is not improved after transforming LC50 (fish) to LD50 (fish), using BCF QSAR. Based on acute aquatic toxicity, 25.1% of the chemicals from the BUA reports 1-234 are classified as 'very toxic' (LC/EC50 < or = 1 mg/L). This proportion is 2.5-fold higher than the ICCA HPV chemicals and 1.4-fold higher than the random EINECS sample. CONCLUSIONS: Correlation coefficients for aquatic toxicity data are rather uniform (0.57-0.79) compared with literature data, but also the best correlation was observed between fish and Daphnia. Because the scatter around the regression lines is still considerable, simple predictions of ecotoxicity between species are not possible. Correlation of LC50 (fish) and LD50 (rodent) indicates that toxicity is different. Surprisingly, the correlation of fish and rodent toxicity is not improved by transforming LC50 values to internal LD50s. The selection of ICCA chemicals by market significance (production volume) leads to a classification of toxicity, which is more comparable to a random sample of EINECS chemicals than to German BUA chemicals. The latter were chosen for concern (for Environment or Human Health). RECOMMENDATIONS AND OUTLOOK: Of 147 dossiers assessed between SIAM 11-18, ca. 75% were sponsored by the three following countries: Germany (42), USA (37) and Japan (33). The current output is about 50 dossiers per year (70-100 CAS-No), but a trend for an increase of output is noticeable. Industry, national authorities, and OECD work on a further development to speed up the output. The number of chemicals with 'low priority for further work' and the work recommended for the 'candidates' (mainly exposure assessment) indicate that the data presented were adequate for an initial hazard assessment according to OECD requirements. From the ICCA HPV list (n = 880, state of 1999) 44% of the chemicals have data available to cover all SIDS endpoints for Environment and only 33% for Human Health (Allanou et al. 1999). This indicates the importance of the Initiative to provide information on existing chemicals. The authors agree with the expectation "...that the scientific information provided by this global initiative will be considered as an internationally accepted and harmonised basis for further steps of chemicals management." (ICCA 2002 b).  相似文献   

19.
To examine the effects of environmentally realistic fipronil concentrations on estuarine ecosystems, replicated mesocosms containing intact marsh plots and seawater were exposed to three treatments of fipronil (150, 355, and 5000 ng/L) and a Control. Juvenile fish (Cyprinidon variegatus), juvenile clams (Mercenaria mercenaria), oysters (Crassostrea virginica), and grass shrimp (Palaemonetes pugio) were added prior to fipronil in an effort to quantify survival, growth, and the persistence of toxicity during the planned 28-day exposure. Results indicated that there were no fipronil-associated effects on the clams, oysters, or fish. Shrimp were sensitive to the highest two concentrations (40% survival at 355 ng/L and 0% survival at 5000 ng/L). Additionally, the highest fipronil treatment (5000 ng/L) was toxic to shrimp for 6 weeks post dose. These results suggest that fipronil may impact shrimp populations at low concentrations and further use in coastal areas should be carefully assessed.  相似文献   

20.
Alkylphenol polyethoxylates (APEOs) have been widely used as nonionic surfactants in a variety of industrial and commercial products. Typical compounds are nonylphenol polyethoxylates (NPEOs) and octylphenol polyethoxylates (OPEOs), which serve as precursors to nonylphenol (NP) and octylphenol (OP), respectively. NP and 4-t-OP are known to have endocrine disrupting effects on fish (medaka, Oryzias latipes), so it is important to know the concentrations of APEOs in the environment. Because the analytical characteristics of these compounds depend on the length of the ethoxy chain, it is necessary to use appropriate compounds as internal standards or surrogates. We synthesized two 13C-labeled surrogate compounds and used these compounds as internal standards to determine NPEOs and OPEOs by high-performance liquid chromatography (LC)-mass spectrometry. Method detection limits were 0.015 microg/L for NP (2)EO to 0.037 microg/L for NP(12)EO, and 0.011 microg/L for OP(3,6)EO to 0.024 microg/L for OP (4)EO. NPEO concentrations in water from a sewage treatment plant were less than 0.05-0.52 microg/L for final effluent and 1.2-15 microg/L for influent. OPEO concentrations were less than 0.05-0.15 microg/L for the final effluent and less than 0.05-1.1 microg/L for influent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号