首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
本研究借助传统的从三氧化二铝为载体的废钯催化剂中提取钯的工艺,确认了试验及生产中的技术条件,并在精提中筛选出还原剂,使用了代号A的络合剂,很好地解决了精提工艺中的钯铝分离的技术难题,而使回收钯的工艺取得了技术性突破。  相似文献   

2.
本文介绍了以传统工艺从氧化铝为载体的含钯废催化剂中产出的粗钯,采用盐酸体系加浸出溶钯,加氨络合沉出钯盐精制粗钯的工艺,避免了王水溶钯,赶硝,较好斛敢钯铝分离的技术问题。  相似文献   

3.
从碳质载体的钯废催化剂中回收钯工艺的研究   总被引:2,自引:0,他引:2  
碳质载体钯废催化剂高温焚烧除去大量的载体,钯富集在残渣中,残渣先经湿法还原处理,使其中难溶的氧化钯转化成金属钯,然后用王水溶解,氨络合,酸化,水合肼还原,制得海绵钯,回收率达95%以上,产品纯度达99.9%以上。  相似文献   

4.
从含钯电子废料中直接生产含钯精细化工产品的研究   总被引:1,自引:0,他引:1  
提出了从含钯电子废料中直接生产二氯化四氨合钯(Ⅱ)[Pd(NH3)4Cl2]、二氯化二氨合钯(Ⅱ)[Pd(NH3)2Cl2]和海绵钯的工艺及条件。该工艺将传统的回收与钯精细化工产品的生产结合起来,具有操作简便、回收率高和产品纯度高的特点,避免了回收-粗钯-含钯产品的冗长回收线路,具有一定的实用价值。  相似文献   

5.
介绍了利用废钯催化剂制备氯化钯的方法,研究了液碱浓度以及液碱用量对溶解过程中残留物含量的影响,以及王水浸出过程中硝酸残留量对钯回收率的影响。通过对影响因素的考察,确定最佳条件,钯的总回收率可达93%以上。  相似文献   

6.
从微电子元件废料中回收钯,银   总被引:1,自引:0,他引:1  
本文论述了从微电子元件(PdAgCuNi0.1-10)废料中回收钯,银的方法,采用硝酸溶样,氯化钠沉淀分离银,氨络合盐酸化除铜,镍,铁等贱金属而制取高纯度钯,银。  相似文献   

7.
本文介绍了从废独石电容中提取钯和银的工艺方法、采用氧化性溶剂浸出,氨络合-盐酸酸化沉淀分别提取钯和银的工艺,而精制成纯度达99.95%以上的海锦钯和银。  相似文献   

8.
从厚膜工艺产生的废料中回收金铂钯   总被引:3,自引:0,他引:3  
厚膜工艺过程中的金基废料分别进行蒸发,燃烧和破碎,然后集中焙烧,焙渣用盐酸洗除可溶性杂质,用王水浸出金、铂、钯。用Na2SO3优先沉淀金、用锌粉共沉铂和钯。铂、钯混粉用硝酸分离钯。王水浸出后的残渣经湿法还原PdO后,再用王水提取残余的钯。金、伯、钯分离提纯后,再用于生产浆料,本工艺适用于含银少的金基废料的回收。  相似文献   

9.
对废钯炭催化剂分析方法进行了研究,将废钯炭催化剂用高温煅烧的方法除去其中的活性炭并收集燃烧气体中的含钯微粒,采用甲酸代替碱性甲醛溶液或氨性水合肼作还原剂,过氧化氢-盐酸混合溶液代替王水作溶剂,提出了一种方法简单、浸出效果好、易操作的废钯炭催化剂分析钯的方法。试验表明,本方法适用于实际分析检测应用。  相似文献   

10.
由大庆化工研究中心开发的“从废Pd—C催化剂中回收钯的方法”,近日获得国家发明专利。  相似文献   

11.
采用洗涤、烘干和过滤等工艺对废钯炭催化剂中的钯进行回收,并重新用于制备钯炭催化剂,可减少氯化钯原料的年使用量,从而降低生产成本,对其他的废钯炭催化剂产生企业有借鉴意义。  相似文献   

12.
系统介绍了钯膜分离这种流程简洁、静音紧凑的氢气纯化技术和钯膜对氢气具有单一选择性分离原理所达到的安全、高效氢气分离提纯的有益效果。综述了钯基复合膜的制备方法并对比了不同制备方法之间的优缺点。重点分析了钯膜分离技术相比于低温蒸馏、变压吸附、深冷分离等常规氢气分离技术的优势。总结了钯膜反应器应用于原位重整制氢反应、催化加氢、脱氢反应等过程中,在推动反应热力学平衡、提高反应转化率等方面优于传统反应器的技术特征。  相似文献   

13.
氯化浸出钯后,浸渣中的银以氯化银状态存在,用铁粉置换使氯化银转变成金属银,经过滤,洗涤后用硝酸浸出,氯化钠沉银,然后还原得银粉。  相似文献   

14.
采用研究相对较少的螯合萃取剂——丁二酮肟-氯仿萃取体系螯合萃取分离Pt(Ⅳ)、Pd(Ⅱ),用NaOH反萃,对丁二酮肟-氯仿体系萃取铂、钯的性能进行了研究.实验考察了萃取的反应温度、混相时间、反应剂用量、相比、酸度、氢氧化钠浓度以及干扰离子对钯的萃取率及反萃率的影响.在反应温度为70℃、pH=1、相比V(O)/V(A)=1∶1、混相时间为5min的最佳萃取条件下,进行含铂、钯废催化剂浸出液的分离,系数为βPd/P1=12629,其它共存离子Fe(Ⅲ)、Al(Ⅲ)、Mg(Ⅱ)、Ni(Ⅱ)、Pb(Ⅱ)、Cu(Ⅱ)的萃取率小于1%.  相似文献   

15.
研究了在汞膜电极上用阳极溶出伏安法测定微量钯的方法。在0.8mol/LKCL—0.02mol/L吡啶溶液中,其半微分阳极溶出峰清晰,峰高易测量,灵敏度高。样品测定回收率为96%—102%,变异系数小于10%。  相似文献   

16.
ICP-AES测定电镀污泥中的金和钯   总被引:1,自引:0,他引:1  
介绍了含贵金属电镀污泥的样品采集、制备和预处理方法,并对有关问题进行了讨论.研究了电感耦合等离子体-原子发射光谱(ICP-AES)直接测定电镀污泥中微量金、钯的分析方法.结果表明:在选定的最佳仪器工作条件下,金、钯的检出限分别为0.015和0.018 mg/L,加标回收率为94.0%~104.0%,相对标准偏差小于3%.该方法可用于电镀污泥中微量金、钯的测定   相似文献   

17.
以粪肠球菌(Enterococcus faecalis)Z5菌株(CCTCC M2012445)为菌种资源,探讨了其在外源电子供体条件下以纳米颗粒形式回收溶液中钯的可能性,研究了工业废液(IW)、废旧电路板(PCBS)和废汽车催化剂(SAC)3种模拟废水中钯的回收率,分析了废水中其它离子对钯回收率的影响.结果表明,粪肠球菌Z5菌株可以从3种模拟废水中回收钯纳米颗粒.X射线衍射和透射电镜分析表明,回收产物为10 nm左右粒径的钯纳米颗粒,主要分布于细胞周质.3种废水中钯的回收率依次为IWSACPCBS,其中吸附率依次为99.8%(6 h)、99.7%(8 h)、90.3%(12 h),还原率依次为99.9%(4 h)、99.9%(6 h)、80.4%(36 h).模拟废水中Pt(Ⅳ)、Ag(Ⅰ)、Cu(Ⅱ)、Au(Ⅲ)和Fe(Ⅱ)对钯的还原和吸附过程都存在影响.具体地,钯的还原效率受影响程度依次为Au(Ⅲ)Pt(Ⅳ)Cu(Ⅱ)Ag(Ⅰ)Fe(Ⅱ).进一步将回收所得的纳米钯掺杂四氧化三铁,可应用于非均相芬顿反应中染料亚甲基蓝降解,80 min内亚甲基蓝的降解率为96.7%,显示出良好的催化性能.  相似文献   

18.
铂、钯蜂窝催化剂高温老化对甲醇深度氧化的影响   总被引:1,自引:0,他引:1  
本研究对铂、钯蜂窝催化剂及分别添加助化剂CeO_2或WO_3,并于500℃、700℃、900℃或1100℃下经受热老化4h后,考察催化剂比表面、晶相结构及其对甲醇深度氧化活性、产物分布及反应动力学网络变化的情况。实验证明,添加CeO_2后,降低了铂催化剂的耐高温性能,但对钯催化剂无明显影响。添加WO_3,降低了钯催化剂对甲醇的氧化活性。经X-线衍射分析证明,在1100℃高温下,WO_3与堇青石载体中的氧化镁和氧化钙发生强相互作用,生成了相应的钨酸盐。甲醇氧化反应动力学研究表明,甲醇在新鲜和高温热老化的铂催化剂上,反应动力学网络表示式是有区别的。  相似文献   

19.
以苯蒸气作为催化燃烧气,研究了3 种不同载体和3 种不同制备方法对金属负载型钯催化剂芳烃催化燃烧性能的影响,并用SEM 对催化剂的表现形貌进行了分析.结果表明,载体及催化剂制备方法不同,催化剂的活性及耐热性不同.经一定的高温预处理后的含有稀土的FeCrAl 合金作载体性能较另两种载体优良;并提出了该催化剂较好的制备方法.  相似文献   

20.
王昕睿  郑宇  张昕  全向春 《环境科学学报》2019,39(11):3772-3778
为了提高厌氧颗粒污泥(AGS)对难降解卤代有机物的还原降解能力,本文研究了厌氧颗粒污泥原位还原制备纳米钯构建载钯型厌氧颗粒污泥(Pd-AGS)的方法与条件,以及Pd-AGS在不同电子供体及烘干方式下对双氯芬酸(DCF)的降解特性.研究表明,当Pd(II)浓度为50~200 mg·L~(-1),Pd/生物量比为1/40~1/10时,被颗粒污泥还原的Pd(II)超过90%,且Pd/生物量比越高,与污泥微生物结合的纳米钯(Pd NPs)越多;添加氧化还原介体蒽醌-2,6-二磺酸(AQDS)不能加快Pd(II)的还原速率,但可以使与胞外聚合物(EPS)结合的Pd NPs增多.Pd NPs的负载显著强化了AGS对DCF的降解性能,甲酸钠和氢气都能够作为电子供体激活Pd-AGS降解DCF,氢气更为有效.氢气存在下,初始浓度为20 mg·L~(-1) DCF在90 min降解率达到96.47%,而不载钯的AGS最终对DCF的降解率仅为16.19%.烘干处理会降低Pd-AGS对DCF的降解效率,但相比121℃和600℃的烘干方式,冷冻干燥和80℃烘干方法对Pd-AGS的降解性能影响较小.Pd-AGS将微生物降解性能与纳米钯的催化性能相结合,提高了对卤代难降解有机物的降解能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号