首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 292 毫秒
1.
Acoustic equipment, including interferometric sonar and parametric sub-bottom profiler, have been used to determine the volume and lateral spread of dredged sediments disposed in the natural submarine depression in the Bekkelag Basin, inner Oslofjord since the beginning of the Oslo Harbor remediation project in 2006. This natural depression is used as a subaqueous confined disposal facility (CDF). Calculation of the volume of disposed sediments in the CDF is based on elevation change, derived from two high-resolution bathymetric datasets obtained in 2004, i.e. before the onset of the remediation project, and in April 2008. Seismic profiles across the CDF have been used to estimate the settlement of the original seabed, caused by loading-induced dewatering and compaction of the seabed sediments under the disposed masses.Detailed bathymetry and backscatter data demonstrate the lateral spread of disposed sediments within a well-confined area covering ca. 195,000 m2. The sea bottom within this area is distinctly softer than the surrounding seabed as shown by very low acoustic backscatter amplitude, signifying a very loose surface character of the disposed sediments. The thickness of the disposed sediments reaches 6 m the deepest part of the original depression. The volume calculation of the disposed sediments in the CDF, based solely on bathymetry data, gives a value of ca. 310,000–320,000 m3. Settlement of the original seabed as a result of loading has been estimated to be 30 cm at 5 m thickness of the disposed sediments. Under the condition that the settlement rate is linearly correlated to the thickness of disposed sediments, the settlement corrected volume of disposed sediments is ca. 330,000–340,000 m3. Presented results demonstrate high accuracy and good reproducibility of acoustic seafloor data, and indicate a great potential of such methods as monitoring tools in environmental projects that involve dredging and subaqueous disposal.  相似文献   

2.
Managed drainage ditches are common in the midwestern United States. These ditches are designed to remove water from fields as quickly as possible, and sediment buildup necessitates dredging, to ensure adequate water removal. This laboratory study was conducted to determine the impact of ditch dredging on soluble phosphorus (P) transport. Ditch sediments were collected from a drainage ditch in northeastern Indiana immediately before and after dredging. The sediments were placed in a stream simulator, and stream water was loaded with 0.55 mM P for 5 d (adsorption experiment). Water was then removed, and "clean" water (no P added) was used for a desorption experiment, lasting 1 d. During the adsorption experiment, pre-dredged sediments were able to remove P from the water column quicker, and P concentrations 120 h after introduction of high P water were lower for the pre-dredged sediments (0.075 mM P) than the dredged sediments (0.111 mM P). During the desorption experiment, P was released to the water column slower in the pre-dredged treatment than the dredged treatment (instantaneous flux at t = 0 was 0.205 microM P h(-1) for pre-dredged and 0.488 microM P h(-1) for dredged). This occurred despite higher Mehlich 3-extractable P in the pre-dredged sediments than the dredged sediments. Equilibrium phosphorus concentrations (EPCo) were lower in the pre-dredged sediments during both adsorption and desorption experiments. Transport of soluble P immediately after dredging will likely increase in drainage ditches; however, dredging is a necessary management tool to ensure adequate discharge of water from surrounding fields.  相似文献   

3.
Characteristic levels of metal ions in post dredged sediment and dredged sediments materials of a municipal creek in the Niger Delta show that significant concentrations of heavy metals are found to be accumulated more on the surface (0–15cm depth) of the dredged material as compared to the sub surface (15–30cm) and post dredged sediments. The distribution patterns were in the following order Fe > Mn > Zn > Cu > Pb > Ni > Cd and Fe > Mn > Zn > Pb > Cu > Ni > Cd for the post dredged sediment and dredged sediment materials respectively. The levels of the various metals were far below the EPA screening levels for open water disposal, consequently total levels of heavy metal found in these sediments pose no problem by open-water or upland disposal  相似文献   

4.
It is common to use the results of various solid-phase and aqueous-fraction toxicity tests as part of the decision-making process for selecting disposal options for dredged sediments. The mere presence of toxicity, however, does not provide a logical basis for selecting economical, environmentally protective disposal techniques. To achieve this, it is necessary to be able to identify specific compounds responsible for sediment toxicity. Toxicity identification evaluation (TIE) procedures, originally developed for complex effluents, represent a useful approach for identifying acutely toxic compounds in dredged materials. Herein we present a conceptual overview for TIE use in part of the decision-making framework for selecting dredged material disposal options; included are discussions concerning appropriate test fractions and species for TIE analyses, and specific TIE manipulations useful for ascertaining whether toxicity is due to any of a number of common sediment contaminants including ammonia, hydrogen sulfide, metals, or nonpolar organics.  相似文献   

5.
Willow (Salix spp.) stands are often proposed as vegetation covers for the restoration and stabilization of contaminated and derelict land. Planting willows on dredged sediment disposal sites for biomass production can be an alternative to traditional capping techniques. However, with the introduction of willow stands on dredged sediment disposal sites, the possibility of increased contaminant availability in the root zone must be acknowledged as it can increase the risk of leaching. Two trials investigated the availability of Cd, Zn, Cu, and Pb in the root zones of willows grown on contaminated sediment. To assess the effects of willow root growth on metal extractability and mobility, bulk and rhizosphere sediment samples were extracted with deionized water, ammonium acetate at pH 7, and ammonium acetate-EDTA at pH 4.65. A rhizobox experiment was used to investigate the short-term effect of willow roots on metal availability in oxic and anoxic sediment. Longer-term effects were assessed in a field trial. The rhizobox trial showed that Cd, Zn, and Cu extractability in the rhizosphere increased while the opposite was observed for Pb. This was attributed to the increased willow-induced oxidation rate in the root zone as a result of aeration and evapotranspiration, which masked the direct chemical and biological influences of the willow roots. The field trial showed that Cu and Pb, but not Cd, were more available in the root zone after water and ammonium acetate (pH 7) extraction compared with the bulk sediment. Sediment in the root zone was better structured and aggregated and thus more permeable for downward water flows, causing leaching of a fraction of the metals and significantly lower total contents of Cd, Cu, and Pb. These findings indicate that a vegetation cover strategy to stabilize sediments can increase metal availability in the root zone and that potential metal losses to the environment should be considered.  相似文献   

6.
Sedimentation of the Illinois River in central Illinois has greatly diminished the utility and ecological value of the Peoria Lakes reach of the river. Consequently, a large dredging project has been proposed to improve its wildlife habitat and recreation potential, but disposal of the dredged sediment presents a challenge. Land placement is an attractive option. Previous work in Illinois has demonstrated that sediments are potentially capable of supporting agronomic crops due to their high natural fertility and water holding capacity. However, Illinois River sediments have elevated levels of heavy metals, which may be important if they are used as garden or agricultural soil. A greenhouse experiment was conducted to determine if these sediments could serve as a plant growth medium. A secondary objective was to determine if plants grown on sediments accumulated significant heavy metal concentrations. Our results indicated that lettuce (Lactuca sativa L.), barley (Hordeum vulgare L.), radish (Raphanus sativus L.), tomato (Lycopersicon lycopersicum L.), and snap bean (Phaseolus vulagaris L. var. humillis) grown in sediment and a reference topsoil did not show significant or consistent differences in germination or yields. In addition, there was not a consistent statistically significant difference in metal content among tomatoes grown in sediments, topsoil, or grown locally in gardens. In the other plants grown on sediments, while Cd and Cu in all cases and As in lettuce and snap bean were elevated, levels were below those considered excessive. Results indicate that properly managed, these relatively uncontaminated calcareous sediments can make productive soils and that metal uptake of plants grown in these sediments is generally not a concern.  相似文献   

7.
ABSTRACT: Fresh water lake sediment removal is usually undertaken to deepen a lake and increase its volume to enhance fish production, to remove nutrient rich sediment, to remove toxic or hazardous material, or to reduce the abundance of rooted aquatic plants. Review of more than 60 projects and five case histories reveals that the first three objectives are usually met through sediment removal. Dredging to control aquatic plants has not been well documented. Disadvantages of dredging include cost, temporary phosphorus release from sediment, increased phytoplankton productivity, noise, lake drawdown, temporary reduction in benthic fish food organisms, the potential for toxic material release to the overlying water and potential for environmental degradation at the dredged material disposal site. The technique is recommended for deepening and for long range reduction of phosphorus release from sediment. Sediment removal to control toxic materials is possible with minimal environmental impact when proper equipment is used, but it may more than double the cost. Lack of definitive information about rooted plant regrowth rates in dredged areas prohibits explicit recommendations on sediment removal to control plant growth.  相似文献   

8.
Abstract: Drainage ditches can be a key conduit of phosphorus (P) between agricultural soils of the Atlantic Coastal Plain and local surface waters, including the Chesapeake Bay. This study sought to quantify the effect of a common ditch management practice, sediment dredging, on fate of P in drainage ditches. Sediments from two drainage ditches that had been monitored for seven years and had similar characteristics (flow, P loadings, sediment properties) were sampled (0‐5 cm) after one of the ditches had been dredged, which removed fine textured sediments (clay = 41%) with high organic matter content (85 g/kg) and exposed coarse textured sediments (clay = 15%) with low organic matter content (2.2 g/kg). Sediments were subjected to a three‐phase experiment (equilibrium, uptake, and release) in recirculating 10‐m‐long, 0.2‐m‐wide, and 5‐cm‐deep flumes to evaluate their role as sources and sinks of P. Under conditions of low initial P concentrations in flume water, sediments from the dredged ditch released 13 times less P to the water than did sediments from the ditch that had not been dredged, equivalent to 24 mg dissolved P. However, the sediments from the dredged ditch removed 19% less P (76 mg) from the flume water when it was spiked with dissolved P to approximate long‐term runoff concentrations. Irradiation of sediments to destroy microorganisms revealed that biological processes accounted for up to 30% of P uptake in the coarse textured sediments of the dredged ditch and 18% in the fine textured sediments of the undredged ditch. Results indicate that dredging of coastal plain drainage ditches can potentially impact the P buffering capacity of ditches draining agricultural soils with a high potential for P runoff.  相似文献   

9.
A comprehensive Dredged Material Management Plan (DMMP) has been developed by the US Army Corps of Engineers, New York District (USACE-NYD) and the Port Authority of New York and New Jersey (PANY/NJ). The primary objective of the DMMP is to identify cost-effective and environmentally acceptable alternatives for the placement of dredged material derived from ongoing and proposed navigation improvements within the PANY/NJ. A significant portion of this dredged material is classified as unsuitable for open-ocean disposal. One suite of alternatives presented within the DMMP is the beneficial use of dredged material for habitat creation, enhancement, and restoration within the NY/NJ Harbor Estuary. Proposed beneficial use/habitat development projects include the use of dredged material for construction of artificial reefs, oyster reef restoration, intertidal wetland and mudflat creation, bathymetric recontouring, filling dead-end canals/basins, creation of bird/wildlife islands, and landfill/brownfields reclamation. Preliminary screening of the proposed beneficial use alternatives identified advantages, disadvantages, potential volumes, and estimated costs associated with each project type. Continued study of the proposed beneficial use alternatives has identified areas of environmental research or technology development where further investigation is warranted.  相似文献   

10.
Contaminated sediments dredged from navigable waterways often are placed in confined disposal facilities to prevent further spread of the pollutants. Reducing contaminants to acceptable levels would allow for disposal of the sediments and further dredging activity. A greenhouse study was conducted to evaluate plant treatments and the addition of an organic amendment to decrease the concentration of PCB congeners found in Arochlor 1260. Sediment treated with the amendment and either low transpiring plants or no plants had the greatest removal of the PCB congeners. High-transpiring plants apparently prevented the highly reducing conditions required for reductive dechlorination of highly chlorinated PCBs. Most likely, the amendment provided labile carbon that initiated the reducing conditions needed for dechlorination. The sediment moisture content and moisture-related plant parameters were significant predictors of the PCB loss. Carex aquatalis and Spartina pectinata are predicted to be the most effective plant treatments for phytoremediation of PCBs.  相似文献   

11.
A multi-criteria approach was applied for the disposal into the sea of ~1 100 000 m3 of sediment, dredged from a coastal area in the northeastern part of the Thermaikos Gulf. This sediment (classified as muddy) is distributed vertically into two distinct Layers (A and B) with the thickness of the surficial sedimentary unit ranging from 7 to 54 cm. Its geochemistry reveals increased Cr and Ni concentrations, which may be attributed to natural enrichment through the erosion of the adjacent igneous and metamorphic rocks. In addition, a low to moderate contamination from urban-originated heavy metals, like Cu, Pb and Zn as well as from aliphatic and polycyclic hydrocarbons was identified for the upper Layer A. However, the limited proportion (5.5%) of the polluted Layer A in the total volume of the dredged material could not affect the good quality (assessed by the Sediment Quality Guidelines) of the bulk sediment. The identification of the optimum marine dumping site was based on (a) the physicochemical similarity (detected by the application of a cluster analysis) of the dredged material with the surficial deposits of potential dumping sites in the Outer Thermaikos Gulf, and (b) the consideration, based on previous studies, of various criteria related to the disposal area such as deep-water circulation, influence on living resources, impact on economical (aquaculture, fishing, navigation), recreational (fishing) and military activities.  相似文献   

12.
Environmental dredging is an efficient means to counteract the eutrophication of water bodies caused by endogenous release of nitrogen and/or phosphorus from polluted sediments. The huge operational cost and subsequent disposal cost of the dredged polluted sediments, as well as the adverse effect on the benthic environment caused by excessive dredging, make the currently adopted dredging methods unfavorable. Precise dredging, i.e., determining the dredging depth based on the pollution level, not only significantly decreases the costs but also leaves a uniform favorable environment for benthos. However, there is still no feasible process to make this promising method executable. Taking a river heavily polluted by organic compounds as an example, we proposed an executable precise dredging process, including sediment survey, model establishment, data interpolation, and calculation of dredging amount. Compared with the traditional dredging method, the precise one would save 16 to 45 % of cost according to different pollutant removal demands. This precise dredging method was adopted by the National Water Project of China to treat the endogenous pollution of Nanfei River in 2010. This research provides a universal scientific and engineering basis for sediment dredging projects.  相似文献   

13.
为了解西溪湿地底泥质量现状,2012年9月采集保护区内不同干扰类型的底泥样本,测试了底泥中重金属和POPs中PCBs、OCPs和PAHs的含量,并对湿地底泥污染进行了生态风险初步评价。结果表明,底泥中未检出PCBs和OCPs,但检测出14种EPA优控PAHs,总PAHs的浓度范围为115.9~217.8 ng·g^-1,低于潜在生态风险的效应区间低值ERL,其中列入中国"水中优先控制污染黑名单"的7种PAHs均有检出并且其总量占∑PAHs 1/2左右(平均为50.08%);底泥中8种重金属含量平均值低于《土壤环境质量标准》(GB 15618—1995)的二级标准,但Hg、Zn、Pb、Ni含量在多个位点已超过一级标准;分别采用土壤背景值和国家一级标准为参比值对湿地底泥中重金属进行单因子污染风险指数评价,发现分别有7种和4种元素的污染指数大于1;综合分析不同干扰类型的底泥质量,发现底泥疏浚能有效降低有机质含量、全氮和PAHs含量,但对全磷、重金属含量则无明显效果,封闭水体的干塘措施能显著减少污泥量和有机物含量。研究结果表明,西溪湿地底泥中高环PAHs和重金属污染水平可能对西溪湿地生物具有潜在的生物毒性作用及不利的生态影响效应,其疏浚底泥农用则无生态风险。  相似文献   

14.
At present, coastal disposal of maintenance dredged material constitutes one of the most important problems in coastal zone management and in some coastal areas represents the major anthropogenic disturbance to the benthos. In this review we first propose, based on the classic literature, that macrofaunal communities typical of environmentally stressed habitats are more resilient than those of more environmentally stable habitats, and we outline the macrofaunal successional changes following a disturbance. Second, from a review and analysis of the published and unpublished literature on macrofaunal recovery following maintenance dredged material deposition in the coastal environment, we compare the successional sequences and recovery rates in euhaline and polyhaline systems. The review reveals that invertebrate recovery following dredged material disposal in relatively unstressed marine environments generally takes between 1 and 4 years, while in more naturally stressed areas, recovery is generally achieved within 9 months, although deeper polyhaline habitats can take up to 2 years to recover. Differences in recovery times are attributed to the number of successional stages required to regain the original community composition and that species typical of naturally unstressed assemblages do not possess life-history traits to allow rapid recolonization of disturbances. In the last section of this review, the management implications of these findings are discussed in terms of minimizing dredged material disposal impacts on fisheries resources. Since the natural disturbance regime appears to be very important in determining the response of a benthic community following dredged material disposal, it is recommended that when predicting the potential environmental impact of an operation, the nature of the physical environment in combination with the status (and role) of associated marine benthic communities should be considered.  相似文献   

15.
The horizontal, fluorophore enhanced, rep-PCR (HFERP) DNA fingerprinting technique was used to identify potential sources of in water, nearshore sand, and sediment at two beaches in the Duluth-Superior Harbor, near Duluth, MN, and Superior, WI, during May, July, and September 2006. An animal or environmental source could be identified for 35, 29, and 30% of strains in water, sand, and sediments, respectively. Waterfowl, including Canada geese, ring-billed gulls, and mallard ducks, were the largest source of that could be identified in water (55-100%), sand (59-100%), and sediment (92-100%) at both beaches. Although ring-billed gulls were more abundant in this harbor, Canada geese were usually the dominant source of waterfowl found at these beaches. The percentage of identified from treated wastewater was always less than the percentage of originating from waterfowl. At both beaches, the percentage of in water contributed by treated wastewater was higher in May compared with July and September. The larger proportion of wastewater-derived seen in May probably reflected a smaller contribution of from geese when these birds were less abundant rather than an absolute increase in from treated wastewater. Microbial source analysis and bird census data both indicated that waterfowl were a major source of at beaches in the Duluth-Superior Harbor. These data also indicated it is risky to assume that the most abundant waterfowl species present in waterways will also be the largest source of avian-derived in water, nearshore sand, and sediments at beaches.  相似文献   

16.
Ocoee Lake No. 3 is the first reservoir receiving suspended sediments contaminated with trace metals discharged by acid mine effluents from the Ducktown Mining District, Tennessee. Bottom sediments (0-5 cm) from the lake were sampled to assess the potential for future adverse environmental effects if no remediation controls or activities are implemented. The sediments were found to include a major component (173 +/- 19 g kg(-1)) that dissolved in 6 mol L(-1) HCl within 24 h. This acid-soluble and relatively labile fraction contained high concentrations of Fe (460 +/- 40 g kg(-1)), Al (99 +/- 11 g kg(-1)), Mn (10 +/- 8 g kg(-1)), Cu (2000 +/- 700 mg kg(-1)), Zn (1300 +/- 200 mg kg(-1)), and Pb (300 +/- 200 mg kg(-1)). When the pH of water in contact with the sediment was decreased experimentally from 6.4 to 2.6, the concentrations of dissolved trace metals increased by factors of 2200 for Pb, 160 for Cu, 21 for Zn, 9 for Cd, 8 for Ni, and 5 for Co. The order in which metals were released with decreasing pH was the reverse of that reported for pH-dependent sorption of these metals in upstream systems. Substantial release of trace metals from the sediment was observed even by a modest decrease of pH from 6.4 to 5.9. Therefore, the metal-rich sediment of the lake should be considered as potentially hazardous to bottom-dwelling aquatic species and other organisms in the local food chain. In addition, if the reservoir is dredged or if the dam is removed, the accumulated sediment may have to be treated for recovery of sorbed metals.  相似文献   

17.
Abstract: Siltation and subsequent biological impairment is a national problem prompting state regulatory agencies to develop sediment total maximum daily loads (TMDL) for many streams. To support TMDL targets for reduced sediment yield in disturbed watersheds, a critical need exists for stream assessments to identify threshold concentrations of suspended sediment that impact aquatic biota. Because of the episodic nature of stream sediment transport, thresholds should not only be a function of sediment concentration, but also of duration and dose frequency. Water quality sondes can collect voluminous amounts of turbidity data, a surrogate for suspended sediment, at intervals that can be used to characterize concentration, duration, and frequency of elevated turbidity events. To characterize turbidity sonde data in an ecologically relevant manner, a methodology for concentration‐duration‐frequency (CDF) curves was developed using turbidity doses that relate to different levels of biological impairment. To illustrate this methodology, turbidity CDF curves were generated for two sites on Little Pigeon River in the Great Smoky Mountains National Park, Tennessee, using over 30,000 sonde data measurements per site for a one‐year period. Utilizing a Poisson arrival approach, turbidity spikes were analyzed stochastically by observing the frequency and duration of recorded events over a turbidity level that relates to a biological dose response. An exponential equation was used to fit duration and frequency of a specified turbidity level to generate concentric‐shaped CDF curves, where at specific turbidities longer durations occurred less frequently and conversely shorter durations occurred more frequently. The significance of the equation fit to the data was accomplished with a Kolmogorov‐Smirnov goodness‐of‐fit test. Our findings showed that the CDF curves derived by an exponential function performed reasonable well, with most curves significant at a 95% confidence level. These CDF curves were then used to demonstrate how they could be used to assess biological impairment, and identify future research needs for improved development of sediment TMDLs.  相似文献   

18.
Benji Dam in the Gonarezhou National Park, Zimbabwe, which was built in 1974 with the potential to hold in excess of 200000 m3 of water, is at risk from siltation. The cause of the siltation is catchment degradation due to overgrazing and declining woodland cover. A cost–benefit analysis highlighted the importance of Benji Dam to tourism. The possible disposal of the dredged silt creates a dilemma, as it constitutes a possible environmental hazard. A strong mitigating factor exists against dredging in a national park unless a suitable site for the silt disposal can be found.  相似文献   

19.
This is a study of the scientific component of an effort to restore an urban river by removing a low-head dam. The Secor Dam is owned by a local government entity near Toledo, Ohio. The proposed removal of the last structure impeding flow on the Ottawa River has broad appeal, but the owner is concerned about liability issues, particularly potential changes to the flood regime, the presence of contaminated sediments behind the dam, and possible downstream transport of reservoir sediments. Assessing sediment contamination involved sediment sampling and analysis of trace metals and organic contaminants. Forecasting sediment transport involved field methods to determine the volume and textural properties of reservoir and upstream sediment and calculations to determine the fate of reservoir sediments. Forecasting changes in the flood regime involved HEC-RAS hydrological models to determine before and after dam removal flood scenarios using LiDAR data imported into an ArcGIS database. The resulting assessment found potential sediment contamination to be minor, and modeling showed that the removal of the dam would have minimal impacts on sediment transport and flood hazards. Based on the assessment, the removal of the dam has been approved by its owners.  相似文献   

20.
This study aims at describing, analyzing and evaluating the relation between management styles and process dynamics of a complex planning process confronted with unexpected dynamics. The development of an aquatic disposal site for dredged contaminated sediments in Oslo was managed by a project management style focused on timely and cost-effective implementation. Coupling the remediation project with another infrastructural project and the actual construction of the site led to unexpected dynamics in terms of resistance and controversy. Project management had difficulties in adjusting its style accordingly, resulting in even more delay and resistance. Managing complex planning projects requires a style suitable to the characteristics of the project and the capability of adjusting it to changing circumstances. The paper concludes with some explanations why it is difficult to change management styles in complex planning and implementation processes and complexity-embracing approaches to deal with this.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号