首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
Method for determination of methane potentials of solid organic waste   总被引:15,自引:0,他引:15  
A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 degrees C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH4/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH4/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200-500 ml CH4/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested.  相似文献   

2.
Long-term anaerobic digestion of food waste stabilized by trace elements   总被引:3,自引:0,他引:3  
The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH(4)/g VS(added)) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.  相似文献   

3.
A synthetic waste was used to study the effect of waste composition on anaerobic degradation of restaurant waste. It was made by blending melted pork lard, white cabbage, chicken breast, and potato flakes, to simulate lipids, cellulose, protein, and carbohydrates, respectively. Four blends of the four constituents with an excess of each component were assayed and compared with a fifth blend containing an equal amount of chemical oxygen demand (COD) of each of the four components. The methane production and the time course of soluble COD and volatile fatty acids were assessed in batch assays. A high reduction of volatile solids (between 94% and 99.6%) was obtained in all the assays. The methane yield was between 0.40 m(3) CH(4)/kg VS(initial) (excess of carbohydrates) and 0.49 m(3) CH(4)/kg VS(initial) (excess of lipids). The degradation of the lipid-rich assays differed from the others. Fifty percent of the biochemical methane potential was obtained after 3-6 days for all of the assays, except for the one with excess of lipids which achieved 50% methanation only after 14.7 days of incubation. In the assay with excess of lipids, a considerable fraction of COD remained in the liquid phase, suggesting an inhibition of the methanogenic process that was likely due to the accumulation of long chain fatty acids. The hydrolysis rate constants, assuming first order kinetics, over the first 6 days were between 0.12d(-1) (excess of lipids) and 0.32 d(-1) (excess of carbohydrates). The results indicate that anaerobic digestion facilities with large variations in lipid input could have significant changes in process performance that merit further examination.  相似文献   

4.
The effect of hygienization (70 °C, 60 min) and ultrasound (6000 ± 500 kJ/kg total solids (TS)) pre-treatments on hydrolysis and biological methane (CH(4)) potential (BMP) of dairy cattle slurry was studied. The BMP of the untreated slurry (control) was 210 ± 10 Nm(3) CH(4)/ton volatile solids (VS) added; after ultrasound pre-treatment it was 250 ± 10 Nm(3) CH(4)/ton VS(added) and after hygienization 280 ± 20 Nm(3) CH(4)/ton VS(added). The specific methanogenic activity (SMA) of the inoculum increased from 22 (untreated) to 26 (ultrasound treated) and up to 28 N ml CH(4)/g VS d, after hygienization. However, only hygienization achieved a positive net energy balance. Both pre-treatments increased the VS-based hydrolysis of slurry (10-96%), soluble nitrogen (N(sol)) content in digestates (20 ± 5%) and biodegradability of the slurry (8 ± 3%) as estimated via elevated VS removal.  相似文献   

5.
With increasing concerns over the limited capacity of landfills, conservation of resources, and reduction of CO(2) emissions, high-solids (dry) anaerobic digestion of organic solid waste (OSW) is attracting a great deal of attention these days. In the present work, two dry anaerobic co-digestion systems fed with different mixtures of OSW were continuously operated under mesophilic conditions. Dewatered sludge cake was used as a main seeding source. In reactor (I), which was fed with food waste (FW) and paper waste (PW), hydraulic retention time (HRT) and solid content were controlled to find the maximum treatability. At a fixed solid content of 30% total solids (TS), stable performance was maintained up to an HRT decrease to 40 d. However, the stable performance was not sustained at 30 d HRT, and hence, HRT was increased to 40 d again. In further operation, instead of decreasing HRT, solid content was increased to 40% TS, which was found to be a better option to increase the treatability. The biogas production rate (BPR), CH(4) production yield (MPY) and VS reduction achieved in this condition were 5.0m(3)/m(3)/d, 0.25 m(3) CH(4)/g COD(added), and 80%, respectively. Reactor (II) was fed with FW and livestock waste (LW), and LW content was increased during the operation. Until a 40% LW content increase, reactor (II) exhibited a stable performance. A BPR of 1.7 m(3)/m(3)/d, MPY of 0.26 m(3) CH(4)/g COD(added), and VS reduction of 72% was achieved at 40% LW content. However, when the LW content was increased to 60%, there was a significant performance drop, which was attributed to free ammonia inhibition. The performances in these two reactors were comparable to the ones achieved in the conventional wet digestion and thermophilic dry digestion processes.  相似文献   

6.
Anaerobic co-digestion of coffee waste and sewage sludge   总被引:1,自引:0,他引:1  
The feasibility of the anaerobic co-digestion of coffee solid waste and sewage sludge was assessed. Five different solid wastes with different chemical properties were studied in mesophilic batch assays, providing basic data on the methane production, reduction of total and volatile solids and hydrolysis rate constant. Most of the wastes had a methane yield of 0.24-0.28 m3 CH4(STP)/kg VS(initial) and 76-89% of the theoretical methane yield was achieved. Reduction of 50-73% in total solids and 75-80% in volatile solids were obtained and the hydrolysis rate constants were in the range of 0.035-0.063 d(-1). One of the solid wastes, composed of 100% barley, achieved a methane yield of 0.02 m3 CH4(STP)/kg VS(initial), reductions of 31% in total solids, 40% in volatile solids and achieved only 11% of the theoretical methane yield. However, this waste presented the highest hydrolysis rate constant. Considering all the wastes, an inverse linear correlation was obtained between methane yield and the hydrolysis rate constant, suggesting that hydrolysis was not the limiting factor in the anaerobic biodegradability of this type of waste.  相似文献   

7.
Methane yield in source-sorted organic fraction of municipal solid waste   总被引:1,自引:0,他引:1  
Treating the source-separated organic fraction of municipal solid waste (SS-OFMSW) by anaerobic digestion is considered by many municipalities in Europe as an environmentally friendly means of treating organic waste and simultaneously producing methane gas. Methane yield can be used as a parameter for evaluation of the many different systems that exist for sorting and pre-treating waste. Methane yield from the thermophilic pilot scale digestion of 17 types of domestically SS-OFMSW originating from seven full-scale sorting systems was found. The samples were collected during 1 year using worked-out procedures tested statistically to ensure representative samples. Each waste type was identified by its origin and by pre-sorting, collection and pre-treatment methods. In addition to the pilot scale digestion, all samples were examined by chemical analyses and methane potential measurements. A VS-degradation rate of around 80% and a methane yield of 300-400Nm(3) CH(4)/ton VS(in) were achieved with a retention time of 15 days, corresponding to approximately 70% of the methane potential. The different waste samples gave minor variation in chemical composition and thus also in methane yield and methane potential. This indicates that sorting and collection systems in the present study do not significantly affect the amount of methane produced per VS treated.  相似文献   

8.
Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH(4)/kg VS(feed) for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36°C, for an OLR of 1.2g VS/Lday. Increasing the OLR to 1.5g VS/Lday led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55°C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.  相似文献   

9.
This paper examines the applicability of food waste leachate (FWL) in bioreactor landfills or anaerobic digesters to produce methane as a sustainable solution to the persisting leachate management problem in Korea. Taking into account the climatic conditions in Korea and FWL characteristics, the effect of key parameters, viz., temperature, alkalinity and salinity on methane yield was investigated. The monthly average moisture content and the ratio of volatile solids to total solids of the FWL were found to be 84% and 91%, respectively. The biochemical methane potential experiment under standard digestion conditions showed the methane yield of FWL to be 358 and 478 ml/g VS after 10 and 28 days of digestion, respectively, with an average methane content of 70%. Elemental analysis showed the chemical composition of FWL to be C(13.02)H(23.01)O(5.93)N(1). The highest methane yield of 403 ml/g VS was obtained at 35 degrees C due to the adaptation of seed microorganisms to mesophilic atmosphere, while methane yields at 25, 45 and 55 degrees C were 370, 351 and 275 ml/g VS, respectively, at the end of 20 days. Addition of alkalinity had a favorable effect on the methane yield. Dilution of FWL with salinity of 2g/l NaCl resulted in 561 ml CH(4)/g VS at the end of 30 days. Considering its high biodegradability (82.6%) and methane production potential, anaerobic digestion of FWL in bioreactor landfills or anaerobic digesters with a preferred control of alkalinity and salinity can be considered as a sustainable solution to the present emergent problem.  相似文献   

10.
The optimization of anaerobic digestion aims to maximize organic waste stabilization after a short digestion period. This paper presents the optimization performance of the combined anaerobic digestion and sequential staging concept in a thermophilic, solid-state batch system as a treatment technology prior to landfill. The former involves enhanced pre-stage flushing with the addition of microaeration and inoculum in the methane phase. The latter involves leachate cross-recirculation between the mature and fresh waste reactors without conducting a pre-stage operation. The optimized process for combined anaerobic digestion showed that reducing the pre-stage operation with the maximum removal of organics from the waste bed is beneficial. Moreover, the sequential staging concept offers an improved process over the combined anaerobic digestion wherein the specific methane yield of 11.9 and 7.2 L CH4 kg(-1) volatile solids (VS) per day was achieved, respectively. After 28 days of operation, the sequential staging process showed an improved waste stabilization with 86 and 79% mass and volume reduction, respectively. A higher methane yield of 334 L CH4 kg(-1) VS with 86% VS reduction, which is equivalent to 84% process efficiency was obtained.  相似文献   

11.
The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion.  相似文献   

12.
Comparative evaluation of bioenergy production from food waste was carried out with both a temperature-phased and a conventional mesophilic two-phased process at different organic loading rates (OLRs). No methane was detected in the temperature-phased thermophilic-acidogenic fermenter at all the OLRs tested. However, a significant amount of methane content was detected in the conventional two-phased mesophilic-acidogenic fermenter, with increments depending on the organic loading rate [from 17% at 3 g VS L(-1) day(-1) to 25% at 8 g VS L(-1) day(-1) (VS, volatile solid)]. Acetate and butyrate were the main volatile fatty acids (VFAs) in the temperature-phased thermophilic-acidogenic fermenter; conversely propionate was a major VFA in the conventional two-phased mesophilic-acidogenic fermenter. Through the chemical oxygen demand (COD) balance of both temperature-phased and conventional mesophilic two-phased processes, the fraction of the feed-COD converted to the hydrogen-COD in the thermophilic-acidogenic fermenter within the former process was estimated from 7.9 to 9.3%, with a peak at ORL of 6 g VS L(-1) day(-1), whereas it was quantified from 0.3 to 0.9% in the mesophilic-acidogenic fermenter within the latter one. Moreover, the fraction of the feed-COD converted to the methane-COD in the mesophilic-acidogenic fermenter within the conventional two-phased process ranged from 5.4 to 7.9%. On the other hand, conversion of the feed-COD to the methane-COD in the mesophilic-methanogenic fermenter of both temperature-phased and conventional mesophilic two-phased processes ranged from 66.2 to 72.3% and from 63.5 to 70.5%, respectively, with decrements related to the increase of organic loading rate.  相似文献   

13.
Due to the prohibition of food waste landfilling in Korea from 2005 and the subsequent ban on the marine disposal of organic sludge, including leachate generated from food waste recycling facilities from 2012, it is urgent to develop an innovative and sustainable disposal strategy that is eco-friendly, yet economically beneficial. In this study, methane production from food waste leachate (FWL) in landfill sites with landfill gas recovery facilities was evaluated in simulated landfill reactors (lysimeters) for a period of 90 d with four different inoculum–substrate ratios (ISRs) on volatile solid (VS) basis. Simultaneous biochemical methane potential batch experiments were also conducted at the same ISRs for 30 d to compare CH4 yield obtained from lysimeter studies. Under the experimental conditions, a maximum CH4 yield of 0.272 and 0.294 L/g VS was obtained in the batch and lysimeter studies, respectively, at ISR of 1:1. The biodegradability of FWL in batch and lysimeter experiments at ISR of 1:1 was 64% and 69%, respectively. The calculated data using the modified Gompertz equation for the cumulative CH4 production showed good agreement with the experimental result obtained from lysimeter study. Based on the results obtained from this study, field-scale pilot test is required to re-evaluate the existing sanitary landfills with efficient leachate collection and gas recovery facilities as engineered bioreactors to treat non-hazardous liquid organic wastes for energy recovery with optimum utilization of facilities.  相似文献   

14.
Co-digestion of food waste with dairy manure is increasingly utilized to increase energy production and make anaerobic digestion more affordable; however, there is a lack of information on appropriate co-digestion substrates. In this study, biochemical methane potential (BMP) tests were conducted to determine the suitability of four food waste substrates (meatball, chicken, cranberry and ice cream processing wastes) for co-digestion with flushed dairy manure at a ratio of 3.2% food waste and 96.8% manure (by volume), which equated to 14.7% (ice-cream) to 80.7% (chicken) of the VS being attributed to the food waste. All treatments led to increases in methane production, ranging from a 67.0% increase (ice cream waste) to a 2940% increase (chicken processing waste) compared to digesting manure alone, demonstrating the large potential methane production of food waste additions compared to relatively low methane production potential of the flushed dairy manure, even if the overall quantity of food waste added was minimal.  相似文献   

15.
Effect of alkaline pretreatment on anaerobic digestion of solid wastes   总被引:2,自引:0,他引:2  
The introduction of the anaerobic digestion for the treatment of the organic fraction of municipal solid waste (OFMSW) is currently of special interest. The main difficulty in the treatment of this waste fraction is its biotransformation, due to the complexity of organic material. Therefore, the first step must be its physical, chemical and biological pretreatment for breaking complex molecules into simple monomers, to increase solubilization of organic material and improve the efficiency of the anaerobic treatment in the second step. This paper describes chemical pretreatment based on lime addition (Ca(OH)2), in order to enhance chemical oxygen demand (COD) solubilization, followed by anaerobic digestion of the OFMSW. Laboratory-scale experiments were carried out in completely mixed reactors, 1 L capacity. Optimal conditions for COD solubilization in the first step of pretreatment were 62.0 mEq Ca(OH)2/L for 6.0 h. Under these conditions, 11.5% of the COD was solubilized. The anaerobic digestion efficiency of the OFMSW, with and without pretreatment, was evaluated. The highest methane yield under anaerobic digestion of the pretreated waste was 0.15 m3CH4/kg volatile solids (VS), 172.0% of the control. Under that condition the soluble COD and VS removal were 93.0% and 94.0%, respectively. The results have shown that chemical pretreatment with lime, followed by anaerobic digestion, provides the best results for stabilizing the OFMSW.  相似文献   

16.
A pilot-scale study was completed to determine the feasibility of high-solids anaerobic digestion (HSAD) of a mixture of food and landscape wastes at a university in central Pennsylvania (USA). HSAD was stable at low loadings (2 g COD/L-day), but developed inhibitory ammonia concentrations at high loadings (15 g COD/L-day). At low loadings, methane yields were 232 L CH4/kg COD fed and 229 L CH4/kg VS fed, and at high loadings yields were 211 L CH4/kg COD fed and 272 L CH4/kg VS fed. Based on characterization and biodegradability studies, food waste appears to be a good candidate for HSAD at low organic loading rates; however, the development of ammonia inhibition at high loading rates suggests that the C:N ratio is too low for use as a single substrate. The relatively low biodegradability of landscape waste as reported herein made it an unsuitable substrate to increase the C:N ratio. Codigestion of food waste with a substrate high in bioavailable carbon is recommended to increase the C:N ratio sufficiently to allow HSAD at loading rates of 15 g COD/L-day.  相似文献   

17.
This study was to find out potential of methane yield on food waste and food waste leachate as biomass in Korea. The seven biogasification facilities were selected for comparison of theoretical methane yield and actual methane yield. The theoretical methane yield was calculated based on organic constituents (carbohydrate, protein, fat) and based on element analysis. The actual methane yield was investigated based on volatile solids and CODcr. Theoretical methane yields by organic constituents were 0.52 Sm3CH4/kg VS and 0.35 Sm3CH4/kg CODcr and these by element analysis were 0.53 Sm3CH4/kg VS and 0.36 Sm3CH4/kg CODcr. Actual methane yields were 0.36 Sm3CH4/kg VSin and 0.26 Sm3CH4/kg CODcrin. Considering the average removal efficiency of organic materials of seven FWL biogasification facilities, actual methane yields were 0.48 Sm3CH4/kg VSrem and 0.33 Sm3CH4/kg CODcrrem. Methane yield by organic constituents is very similar to that by element analysis and actual methane yields of volatile solids and CODcr were similar to theoretical value. The actual methane yield in this study showed approximated boundary values with previous other references which conducted in lab-scale or biochemical methane potential (BMP) tests. In conclusion, Korean food waste and food waste leachate have sufficient potential of methane yield in the ongoing biogasification facilities.  相似文献   

18.
Anaerobic treatability and methane generation potential of cheese whey were determined in batch reactors. Furthermore, the effect of nutrient and trace metal supplementation on the batch anaerobic treatment, and the high-rate anaerobic treatability of cheese whey in upflow anaerobic sludge blanket (UASB) reactors were investigated. To this purpose biochemical methane potential experiments were conducted and single- and two-stage UASB reactors with granular cultures were operated. In UASB experiments significance of process staging, operational parameters such as hydraulic retention time (HRT), influent chemical oxygen demand (COD) concentration and loading rate were also investigated. The results revealed that nutrient and trace metal supplementation is vital for the anaerobic treatment of cheese whey; the anaerobic methane generation for the cheese whey studied was found to be 424 ml CH4/g COD (23.4 1 CH4/l cheese whey); undiluted cheese whey could be treated anaerobically at relatively short HRT values (2.06-4.95 days) without any significant stability problems; HRT values as low as 2-3 days can be used for the anaerobic treatment of cheese whey, with a COD removal efficiency of 95-97% at influent COD concentration of 42 700 +/- 141-55 100 +/- 283 mg/l.  相似文献   

19.
The goal of this study is to evaluate the impact of the inoculum to substrate ratio (I/S) on the anaerobic degradation potential of municipal solid waste (MSW). Reconstituted MSW samples were thus incubated under batch anaerobic conditions and inoculated with an increasing amount of inoculum originating from a mesophilic sludge digester. I/S tested values were 0 (no inoculum added), 0.015, 0.03, 0.06, 0.12, 0.25, 1, 2 and 4 (gVMinoculum/gVMwaste). The results indicate that the apparent maximal rate of dissolved organic carbon accumulation is reached at I/S = 0.12. Under this level, the hydrolysis process is limited by the concentration of biomass and can thus be described as first order kinetics phenomena with respect to biomass for I/S ratios below 0.12. The maximum methane production rate and the minimal latency are reached at a ratio of 2. In addition to that, both methane signature and ARISA show a shift in the methanogenic populations from hydrogenotrophic to acetoclastic.  相似文献   

20.
The aim of this study was to characterise the internal structure and composition of landfilled waste at two Finnish landfills to provide information for active and post-landfill operations. The two sites, Ämmässuo and Kujala, have been in operation for 17 and 48 years, respectively. Waste was sampled (total 68 samples) and analysed for total solids (TS), volatile solids (VS), total Kjeldahl nitrogen (TKN), biological methane potential (BMP) and leaching of organic material (determined as chemical oxygen demand, COD) and ammonium nitrogen (NH4–N). The results showed high vertical and horizontal variability, which indicated that both the waste composition and state of degradation varied greatly in both landfills. Ämmässuo was characterised by 2- to 4-fold higher BMP, NH4–N and COD leaching than Kujala. Moreover, the ratio of VS to TS was higher at Ämmässuo, while TS content was lower. The highest mean BMPs (68 and 44 m3/t TS), TKN content (4.6 and 5.2 kg/t dry weight) and VS/TS ratio (65% and 59%) were observed in the middle and top layers; and the lowest mean BMP (21 and 8 m3/t TS), TKN content (2.4 kg/t dry weight, in both landfills) and VS/TS ratio (55% and 16% in Ämmässuo and Kujala, respectively) in the bottom layers. In conclusion, waste sampling is a feasible way of characterising the landfill body, despite the high variation observed and the fact that the minimum number and size of samples cannot easily be generalized to other landfills due to different methods of waste management and different landfilling histories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号