首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Carbon-14 is a particularly interesting radionuclide from the perspective of dose estimation. Many nuclear facilities, including power reactors, release 14C into the environment, and much of this is as 14CO2. This mixes readily with stable CO2, and hence enters the food chain as fundamental biomolecules. This isotopic mixing is often used as the basis for dose assessment models. The present model was developed for the situation of 14C releases to surface waters, where there are distinct changes in the water 14C activity concentrations throughout the year. Complete isotopic mixing (equilibrium) cannot be assumed. The model computes the specific activity (activity of 14C per mass of total C) in water, phytoplankton, fish, crops, meat, milk and air, following a typical irrigation-based food-chain scenario. For most of the biotic compartments, the specific activity is a function of the specific activity in the previous time step, the specific activity of the substrate media, and the C turnover rate in the tissue. The turnover rate is taken to include biochemical turnover, growth dilution and mortality, recognizing that it is turnover of C in the population, not a tissue or an individual, that is relevant. Attention is paid to the incorporation of 14C into the surface water biota and the loss of any remaining 14CO2 from the surface water-air interface under its own activity concentration gradient. For certain pathways, variants in the conceptual model are presented, in order to fully discuss the possibilities. As an example, a new model of the soil-to-plant specific activity relationship is proposed, where the degassing of both 14C and stable C from the soil is considered. Selection of parameter values to represent the turnover rates as modeled is important, and is dealt with in a companion paper.  相似文献   

2.
The results of (14)C measurements in the annual tree rings from the Ignalina Nuclear Power Plant (INPP) surroundings, Lithuania, for the period of its operation from 1984 to 2002 are presented. The terrestrial samples, mainly moss and related soil, are studied in places as well. The tree rings have shown slightly enhanced (14)C activity due to operation of the nuclear power plant. The maximal calculated normalized (14)C release of 11TBqGW(e)(-1)year(-1) and the maximal effective dose of 2.0x10(-3)mSvyear(-1) resulting from the (14)C were estimated for 1999. For other years of INPP operation these values are lower. The excess of (14)C specific activity measured in the moss and soil samples from moss-covered sites near the nuclear power plant (up to 0.5km) showed highly elevated (14)C contents (up to 813pMC), probably indicating releases of particulate material.  相似文献   

3.
Carbon-14 is a particularly interesting radionuclide from the perspective of dose estimation because it mixes readily with stable CO2, and hence enters the food-chain as fundamental biomolecules. A model was developed for the situation of 14C releases to surface waters, where there are distinct changes in the water 14C activity concentrations throughout the year. The model computes the specific activity in water, phytoplankton, fish, crops, meat, milk and air, following a typical irrigation-based food-chain scenario. This paper describes the derivation of the required 14C-specific parameter values. Many of the key parameters are not commonly measured, at least not in the context of dose assessment. Thus, inference from other sources of data was required, and this is the scientific contribution described in this paper. The best estimates and appropriate measures of statistical dispersion are provided. This required consideration of both the temporal and spatial averaging domains to ensure they were correct for parameters as defined in the model. The model coupled with these parameter values represents several new developments for modelling 14C transfers.  相似文献   

4.
Extensive studies of the radiocarbon (14C) distribution and transfer in the marine environment of the North-Cotentin peninsula and along the English Channel have been carried out. The main aims of these studies have been to estimate the spatial and temporal variation of the 14C concentration in seawater and to calculate 14C concentration factors for some biological species. Such information will be helpful in order to calculate precisely radiation doses to humans. First results obtained in the vicinity of the COGEMA La Hague nuclear plant (Goury) indicate a 14C labelling of the dissolved inorganic carbon (DIC) in seawater (8.0-26.2 Bq.m(-3)) and a tight relationship between the 14C in the liquid releases from the plant and the 14C concentrations in DIC. The particulate organic carbon (POC) is also labelled. The concentration factor calculations for the brown algae (Fucus serratus) sampled from Goury, and also along the English Channel, give 14C values around 3000 Bq.kg(-1) fresh weight / Bq.L(-1).  相似文献   

5.
For 10 years, (14)C measurements have been performed around French nuclear power plant sites, both in zones influenced and zones not influenced by gaseous releases. Examining the results from these measurements in the terrestrial environment shows that the discharges have a very slight impact on the radiocarbon level (with a relative increase in the specific activity of the order of 3 Bqkg(-1)C in the influenced areas). In correlation, there is a near-negligible increase in dose, on average less than 0.1 microSvyr(-1), with reference to a dose from background radiation, which is of the order of 10 microSvyr(-1). The deltaC13 values are very similar between the influenced zone and the non-influenced zone, with a mean of -27 per thousand. The mean DeltaC14 varies from 101 per thousand in the non-influenced zone to 123 per thousand in the influenced zone. Moreover, a general reduction in (14)C concentration was found, with a time constant of the order of 95 years. The current level of (14)C specific activity in terrestrial environment is estimated to be 242+/-6 Bqkg(-1)C.  相似文献   

6.
A dynamic compartment model was investigated to describe 14C accumulation in rice plants exposed to atmospheric 14C with temporally changing concentrations. In the model, rice plants were regarded to consist of three compartments: the ear and the mobile and immobile carbon pools of the shoot. Photosynthetically fixed carbon moves into the ear and the mobile carbon pool, and these two compartments release a part of this carbon into the atmosphere by respiration. Carbon accumulated in the mobile carbon pool is redistributed to the ear, while carbon transferred into the immobile carbon pool from the mobile one is accumulated there until harvest. The model was examined by cultivation experiments using the stable isotope, 13C, in which the ratios of carbon photosynthetically fixed at nine times during plant growth to the total carbon at the time of harvest were determined. The model estimates of the ratios were in relatively good agreement with the experimental observations, which implies that the newly developed compartment model is applicable to estimate properly the radiation dose to the neighboring population due to an accidental release of 14C from nuclear facilities.  相似文献   

7.
The Bulgarian Emergency Response System (BERS) is being developed in the Bulgarian National Institute of Meteorology and Hydrology since 1994. BERS is based on numerical weather forecast meteorological information and a numerical long-range dispersion model accounting for the transport, dispersion, chemical and radioactive transformations of pollutants. In the present paper, the further development of this system for a mixture of radioactive gaseous and aerosol pollutants is described. The basic module for the BERS, the numerical dispersion model EMAP, is upgraded with a “dose calculation block”. Two scenarios for hypothetical accidental atmospheric releases from two NPPs, one in Western, and the other in Eastern Europe, are numerically simulated. The effective doses from external irradiation, from air submersion and ground shinning, effective dose from inhalation and absorbed dose by thyroid gland formed by 37 different radionuclides, significant for the early stage of a nuclear accident, are calculated as dose fields for both case studies and discussed.  相似文献   

8.
The main objectives of the current EU project “Integrated Systems for Forecasting Urban Meteorology, Air Pollution and Population Exposure” (FUMAPEX) are the improvement of meteorological forecasts for urban areas, the connection of numerical weather prediction (NWP) models to urban air pollution and population dose models, the building of improved urban air quality information and forecasting systems, and their application in cities in various European climates. In addition to the forecast of the worst air-pollution episodes in large cities, the potential use of improved weather forecasts for nuclear emergency management in urban areas, in case of hazardous releases from nuclear accidents or terror acts, is considered. Such use of NWP data is tested for the Copenhagen metropolitan area and the Øresund region.The Danish Meteorological Institute (DMI) is running an experimental version of the HIRLAM NWP model over Zealand including the Copenhagen metropolitan area with a horizontal resolution of 1.4 km, thus approaching the city-scale. This involves 1-km resolution physiographic data with implications for the urban surface parameters, e.g. surface fluxes, roughness length and albedo. For the city of Copenhagen, the enhanced high-resolution NWP forecasting will be provided to demonstrate the improved dispersion forecasting capabilities of the Danish nuclear emergency preparedness decision–support system, the Accident Reporting and Guidance Operational System (ARGOS), used by the Danish Emergency Management Agency (DEMA).Recently, ARGOS has been extended with a capability of real-time calculation of regional-scale atmospheric dispersion of radioactive material from accidental releases. This is effectuated through on-line interfacing with the Danish Emergency Response Model of the Atmosphere (DERMA), which is run at DMI. For local-scale modelling of atmospheric dispersion, ARGOS utilises the Local-Scale Model Chain (LSMC), which makes use of high-resolution DMI-HIRLAM NWP model data provided to DEMA by DMI four times a day under operational surveillance and covering Denmark and surroundings. The integration of DERMA in ARGOS is effectuated through automated on-line digital communication and exchange of data. The calculations are carried out in parallel for each NWP model to which DMI has access, thereby providing a mini-ensemble of dispersion forecasts for the emergency management.  相似文献   

9.
Carbon-14 ((14)C) is one of the most important radionuclides from the perspective of dose estimation due to the nuclear fuel cycle. Ten years of monitoring data on (14)C in airborne emissions, in atmospheric CO(2) and in rice grain collected around the Tokai reprocessing plant (TRP) showed an insignificant radiological effect of the TRP-derived (14)C on the public, but suggested a minor contribution of the TRP-derived (14)C to atmospheric (14)C concentrations, and an influence on (14)C concentrations in rice grain at harvest. This paper also summarizes a modelling exercise (the so-called rice scenario of the IAEA's EMRAS program) in which (14)C concentrations in air and rice predicted with various models using information on (14)C discharge rates, meteorological conditions and so on were compared with observed concentrations. The modelling results showed that simple Gaussian plume models with different assumptions predict monthly averaged (14)C concentrations in air well, even for near-field receptors, and also that specific activity and dynamic models were equally good for the prediction of inter-annual changes in (14)C concentrations in rice grain. The scenario, however, offered little opportunity for comparing the predictive capabilities of these two types of models because the scenario involved a near-chronic release to the atmosphere. A scenario based on an episodic release and short-term, time-dependent observations is needed to establish the overall confidence in the predictions of environmental (14)C models.  相似文献   

10.
Tritium (3H or T) is one of the major radionuclides released by nuclear power plants (NPP) into rivers. However, tritiated water (HTO) flux from water to air is seldom considered when assessing health effects of such releases. The aim of this paper is to present the result of a research program, called LORA, conducted on the Loire River (France). To improve our understanding of HTO flux from surface water to air, three field campaigns were organised during the NPP’s radioactive releases to measure simultaneously the activity concentrations in air on the riverbank, using an innovative system, and in river water. The measurements showed that during radioactive releases, water vapour was enriched in 3H. These results were used to calibrate exchange velocities. The average of these estimated exchange velocities was more than one order of magnitude higher than those calculated in the literature from indoor experiments. The variability of these values was also larger, showing that outdoor studies cover a wide range of conditions influencing HTO flux. No correlation was observed between exchanges velocities and meteorological conditions. However, there was a significant difference between day and night with a higher value observed during the day. Two approaches used to calculate HTO evaporation from water (i.e. the approach based on water evaporation and the approach considering that HTO follows its own concentration gradient) were included in a hydrodynamic model, which was used to evaluate HTO air activity along the Loire River. In conclusion, only the approach considering that HTO follows its own gradient led to a good agreement between measurements and predictions. A one-year simulation was done to estimate the contribution of this process to the dose. Its contribution can be considered as negligible in this case compared to the other pathways such as ingestion of water or foodstuffs.  相似文献   

11.
In order to quantify tritium impact on the environmental, we studied vegetation continuously exposed to a tritiated atmosphere. We chose lichens as bio-indicators, trees for determination of past tritium releases of the Valduc Centre, and lettuce as edible vegetables for dose calculation regarding neighbourhood. The Pasquill and Doury models from the literature were tested to estimate tritium concentration in the air around vegetable for distance from the release point less than 500m. The results in tree rings show that organically bound tritium (OBT) concentration was strongly correlated with tritium releases. Using the GASCON model, the modelled variation of OBT concentration with distance was correlated with the measurements. Although lichens are recognized as bio-indicators, our experiments show that they were not convenient for environmental surveys because their age is not definitive. Thus, tritium integration time cannot be precisely determined. Furthermore, their biological metabolism is not well known and tritium concentration appears to be largely dependent on species. An average conversion rate of HTO to OBT was determined for lettuce of about 0.20-0.24%h(-1). Nevertheless, even if it is equivalent to values already published in the literature for other vegetation, we have shown that this conversion rate, established by weekly samples, varies by a factor of 10 during the different stages of lettuce development, and that its variation is linked to the biomass derivative.  相似文献   

12.
To realize the dynamical behavior of 14C among exchangeable carbon reservoirs in terrestrial environment, a method for in situ determination of 14CO2 flux at soil-atmosphere interface and a high flow rate CO2 sampler were developed. This method allowed us to collect integrated quantity of CO2 for determining 14C activity over an extended time period under environmental conditions with minimal site disturbance. The 14CO2 flux from ground surface was estimated to be 1.59 x 10(-5) Bq m (-2) S (-1) in a forest floor with the method. The specific activities of 14C in environmental materials such as some biological and air samples were also determined in the vicinity of the place, where the flux measurement was made, to discuss the behavior of 14C in the forest ecosystem. The results indicated that fresh pine needles had a similar 14C specific activity to the atmospheric CO2 at the same height due to its fairly rapid equilibrium, 14C specific activity in the atmospheric CO2 has a concentration gradient near the ground surface and, at least in this site, CO2 with high 14C specific activity was generated by decomposition of soil organic matter which may be accumulated in soil as a result of former nuclear weapons tests.  相似文献   

13.
A dynamic model for assessing the transfer of tritium in a food chain was applied to the Loire River, where 14 nuclear power plants situated on five different sites operate. The model considers several potential exposure pathways in the aquatic and terrestrial ecosystems: transfer of tritium through the aquatic food chain (especially fish); use of river water for agricultural purposes (irrigation) and transfer of radionuclides through the terrestrial food chain (vegetables, meat, milk); subsequent internal exposure of humans due to ingestion of contaminated foodstuffs. For biological environmental compartments, the transfer of tritium to organic matter (i.e. OBT) was simulated. For each of the parameters introduced in this model, a probability density function, allowing further uncertainty and sensitivity analyses, was proposed. Uncertainty/sensitivity analyses were performed to determine a confidence interval for the mean annual dose to critical groups and to identify the parameters responsible for the uncertainty and subsequent research priorities.  相似文献   

14.
Carbon-14 was added to the epilimnion of a small Canadian Shield lake to investigate primary production and carbon dynamics. The nature of the spike and subsequent monitoring allowed the investigation of both short-term and longer-term processes relevant to evaluating impacts of accidental and routine releases and of solid waste disposal. Data from this experiment were used in the BIOMOVS II program as a validation test for modelling the fate of the 14C added to the lake. Four models were used: (1) a simple probabilistic mass balance model of a lake; (2) a relatively complex deterministic model; (3) a complex deterministic model; and (4) a more complex probabilistic model. Endpoints were 14C concentrations in water, sediment and lake whitefish over a thirteen year period. Each model produced reasonable predictions when compared to the range of the observed data and when uncertainty in model predictions is taken into consideration. The simple lake model did not account for internal recycling of 14C and, in this respect, its predictions were not as realistic as those of the more complex models for concentrations in water. However, the simple model predictions for the 14C inventory remaining in lake sediment were closest to the observed values. Overall, the more complex probabilistic model was the most accurate in simulating 14C concentrations in water and in whitefish but it overestimated 14C retention in the lake sediments, as did the other complex models. Choice of parameter values for transfer rate to sediment and gaseous evasion are important in influencing model predictions. Although predicted concentrations of 14C in fish of dynamic models were more accurate than those using equilibrium bioconcentration factors typically used in assessments, large variability in observed 14C concentrations in whitefish emphasizes the need for a better understanding of the important processes that influence these contaminant concentrations.  相似文献   

15.
Cosmogenic (10)Be, known for use in dating studies, unexpectedly is also produced in nuclear explosions with an atom yield almost comparable to (e.g.) (137)Cs. There are major production routes via (13)C(n, alpha)(10)Be, from carbon dioxide in the air and the organic explosives, possibly from other bomb components and to a minor extent from the direct fission reaction. Although the detailed bomb components are speculative, carbon was certainly present in the explosives and an order of magnitude calculation is possible. The (n, alpha) cross-section was determined by irradiating graphite in a nuclear reactor, and the resulting (10)Be estimated by Accelerator Mass Spectrometry (AMS) giving a cross-section of 34.5+/-0.7mb (6-9.3MeV), within error of previous work. (10)Be should have applications in forensic radioecology. Historical environmental samples from Hiroshima, and Semipalatinsk (Kazakhstan) showed two to threefold (10)Be excesses compared with the background cosmogenic levels. A sample from Lake Chagan (a Soviet nuclear cratering experiment) contained more (10)Be than previously reported soils. (10)Be may be useful for measuring the fast neutron dose near the Hiroshima bomb hypocenter at neutron energies double those previously available.  相似文献   

16.
Radiocarbon concentration in the atmosphere is significantly lower in areas where man-made emissions of carbon dioxide occur. This phenomenon is known as Suess effect, and is caused by the contamination of clean air with non-radioactive carbon from fossil fuel combustion. The effect is more strongly observed in industrial and densely populated urban areas. Measurements of carbon isotope concentrations in a study area can be compared to those from areas of clear air in order to estimate the amount of carbon dioxide emission from fossil fuel combustion by using a simple mathematical model. This can be calculated using the simple mathematical model. The result of the mathematical model followed in this study suggests that the use of annual rings of trees to obtain the secular variations of 14C concentration of atmospheric CO2 can be useful and efficient for environmental monitoring and modeling of the carbon distribution in local scale.  相似文献   

17.
Russian Journal of Ecology - Soil respiration modeling (i.e., simulation of carbon dioxide emissions from the soil surface) makes it possible to analyze and forecast changes in the carbon cycle in...  相似文献   

18.
Radiocarbon concentration in the atmosphere is significantly lower in areas where man-made emissions of carbon dioxide occur. This phenomenon is known as Suess effect, and is caused by the contamination of clean air with non-radioactive carbon from fossil fuel combustion. The effect is more strongly observed in industrial and densely populated urban areas. Measurements of carbon isotope concentrations in a study area can be compared to those from areas of clear air in order to estimate the amount of carbon dioxide emission from fossil fuel combustion by using a simple mathematical model. This can be calculated using the simple mathematical model. The result of the mathematical model followed in this study suggests that the use of annual rings of trees to obtain the secular variations of 14C concentration of atmospheric CO2 can be useful and efficient for environmental monitoring and modeling of the carbon distribution in local scale.  相似文献   

19.
20.
To clarify the behavior of 14C in terrestrial ecosystems, 14C abundance in soil respiration was evaluated in an urban forest with a new method involving a closed chamber technique and 14C measurement by accelerator mass spectrometry (AMS). Soil respiration had a higher Delta14C than the contemporary atmosphere. This indicates that a significant portion of soil respiration is derived from the decomposition of soil organic matter enriched in 14C by atmospheric nuclear weapons tests, with a notable time lag between atmospheric 14C addition and re-emission from soil. On the other hand, delta14C in soil respiration demonstrated that 14C abundance ratio itself in soil-respired CO2 is not always high compared with that in atmospheric CO2 because of the isotope fractionation during plant photosynthesis and microbial decomposition of soil organic matter. The Delta14C in soil respiration was slightly lower in August than in March, suggesting a relatively high contribution of plant root respiration and decomposition of newly accumulated and/or 14C-depleted soil organic matter to the total soil respiration in August.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号