首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbonate‐sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface‐water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater‐fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air‐water temperature relationships for 40 GWFS in southeastern Minnesota. A 40‐stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface‐water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater‐fed systems, but will do so at a slower rate than surface‐water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.  相似文献   

2.
Headwater streams are the most numerous in terms of both number and length in the conterminous United States and play important roles as spawning and rearing grounds for numerous species of anadromous fish. Stream temperature is a controlling variable for many physical, chemical, and biological processes and plays a critical role in the overall health and integrity of a stream. We investigated the controls on stream temperature in salmon‐bearing headwater streams in two common hydrogeologic settings on the Kenai Peninsula, Alaska: (1) drainage‐ways, which are low‐gradient streams that flow through broad valleys; and (2) discharge‐slopes, which are high gradient streams that flow through narrow valleys. We hypothesize local geomorphology strongly influences surface‐water and groundwater interactions, which control streamflow at the network scale and stream temperatures at the reach scale. The results of this study showed significant differences in stream temperatures between the two hydrogeologic settings. Observed stream temperatures were higher in drainage‐way sites than in discharge‐slope sites, and showed strong correlations as a continuous function with the calculated topographic metric flow‐weighted slope. Additionally, modeling results indicated the potential for groundwater discharge to moderate stream temperature is not equal between the two hydrogeologic settings, with groundwater having a greater moderating effect on stream temperature at the drainage‐way sites.  相似文献   

3.
One central issue affecting the health of native fish species in the Pacific Northwest is water temperature. In situ observation methods monitor point temperatures, while thermal infrared (TIR) remote sensing captures spatial variations. Satellite‐based TIR sensors have the ability to view large regions in an instant. Four Pacific Northwest river reaches were selected to test the ability of both satellite‐based and moderate resolution aircraft‐based TIR remote sensing products to measure river temperatures. Images with resolutions of 5, 15, and 90 meters were compared with instream temperature observations to assess how along stream radiant temperatures are affected by resolution, reach width, and sensor platform. Where the stream reach can be resolved by the sensor, all sensors obtain water temperatures within ±2°C of instream observations. Along stream temperature variations of up to ±5°C were also observed. Trends were similar between two sets of TIR images taken several hours apart, indicating that the sensors are observing actual temperature patterns from the river surface. If sensor resolution is sufficient to obtain fully resolved water pixels in the river reach, accurate temperatures and spatial patterns can be observed. The current generation of satellite‐based TIR sensors is, however, only able to resolve about 6 percent of all Washington reaches listed as thermally impaired.  相似文献   

4.
ABSTRACT: Steamboat Creek basin is an important source of timber and provides crucial spawning and rearing habitat for anadromous steelhead trout (Oncorhynchus mykiss). Because stream temperatures are near the upper limit of tolerance for the survival of juvenile steelhead, the possible long-term effect of clear-cut logging on stream temperatures was assessed. Twenty-year (1969–1989) records of summer stream temperature and flow from four tributaries and two reaches of Steamboat Creek and Boulder Creek (a nearby unlogged watershed) were analyzed. Logging records for the Steamboat Creek basin and air temperature records also were used in the analysis. A time-series model of the components of stream temperature (seasonal cycle of solar radiation, air temperature, streamflow, an autoregressive term of order 1, and a linear trend variable) was fitted to the water-temperature data. The linear trend variable was significant in all the fitted models except Bend Creek (a tributary fed by cool ground-water discharge) and Boulder Creek. Because no trends in either climate (i.e., air temperature) or streamflow were found in the data, the trend variable was associated with the pre-1969 loss and subsequent regrowth of riparian vegetation and shading canopies.  相似文献   

5.
The impact of urbanization on groundwater is not simple to understand, as it depends on a variety of factors such as climate, hydrogeology, water management practices, and infrastructure. In semiarid landscapes, the urbanization processes can involve high water consumptions and irrigation increases, which in turn may contribute to groundwater recharge. We assessed the hydrological impacts of urbanization and irrigation rates in an Andean peri‐urban catchment located in Chile, in a semiarid climate. For this purpose, we built and validated a coupled surface–groundwater model that allows the verification of a strong stream–aquifer interaction in areas with shallow groundwater, higher than some sewers and portions of the stream. Moreover, we also identified a significant local recharge associated with pipe leaks and inefficient urban irrigation. From the evaluation of different future scenarios, we found a sustainable water conservation scenario will decrease the current groundwater levels, while the median flow reduces from 408 to 389 L/s, and the low flow (Q95%) from 43 to 22L/s. Overall, our results show the relevance of integrating the modeling of surface and subsurface water resources at different spatial and temporal scales, when assessing the effect of urban development and the suitability of urban water practices.  相似文献   

6.
Groundwater upwelling is important to coldwater fisheries survival. This study used stable isotopes to identify upwelling zones within a watershed, then combined isotope analyses with reach‐scale monitoring to measure surface water–groundwater exchange over time. Research focused on Amity Creek, Minnesota, a basin that exemplifies conditions limiting coldwater species survival along Lake Superior's North Shore where shallow bedrock limits groundwater capacity, lowering baseflows and increasing temperatures. Groundwater‐fed reaches were identified through synoptic isotope sampling, with results highlighting the importance of isolated shallow surficial aquifers (glacially derived sands and gravels) for providing cold baseflow waters. In an alluvial reach, monitoring well results show groundwater was stored in two reservoirs: one that reacts quickly to changes in stream levels, and one that remained isotopically isolated under most flow conditions, but which helps sustain summer baseflows for weeks to months. A 500‐year flood demonstrated the capacity of high‐flow events to alter surface water–groundwater connectivity. The previously isolated reservoir was exchanged or mixed during the flood pulse, while incision lowered the water table for years. The results here provide insight for streams that lack substantial groundwater inputs yet maintain coldwater species at risk in a warming climate and an approach for managers seeking to protect cold baseflow sources.  相似文献   

7.
Morley, Terry R., Andrew S. Reeve, and Aram J.K. Calhoun, 2011. The Role of Headwater Wetlands in Altering Streamflow and Chemistry in a Maine, USA Catchment. Journal of the American Water Resources Association (JAWRA) 1‐13. DOI: 10.1111/j.1752‐1688.2011.00519.x Abstract: Headwater wetlands, including hillside seeps, may contribute to downstream systems disproportionately to their relatively small size. We quantified the hydrology and chemistry of headwater wetlands in a central Maine, USA, catchment from 2003 to 2005 to determine their role in maintaining headwater streamflow and in affecting stream chemistry. A few of these headwater wetlands, commonly referred to as “seeps,” were characterized by relatively high groundwater discharge. During summer base flow, seeps were the primary source of surface water to the stream, contributing between 40 and 80% of stream water. Comparisons of groundwater and surface water dominant ion chemistry revealed only slight differences at the bedrock interface; however, significant changes occurred at the shallow groundwater‐surface water interface where we found decreases in total and individual cation concentrations with decreasing depth. Seep outflows significantly increased total cation and calcium concentrations in streams. Outflows at two seeps produced relatively high nitrate concentrations (88 ± 15 and 93 ± 15 μg/l respectively), yet did not correspond to higher nitrate in stream water below seep outflows (2 ± 1 μg/l). We demonstrate that small wetlands (< 1,335 m2) can contribute to headwater stream processes by linking groundwater and surface‐water systems, increasing the duration and magnitude of stream discharge, and by affecting stream chemistry, particularly during periods of base flow.  相似文献   

8.
Mayer, Timothy D. and Seth W. Naman, 2011. Streamflow Response to Climate as Influenced by Geology and Elevation. Journal of the American Water Resources Association (JAWRA) 47(4):724‐738. DOI: 10.1111/j.1752‐1688.2011.00537.x Abstract: This study examines the regional streamflow response in 25 predominately unregulated basins to warmer winter temperatures and snowpack reductions over the last half century in the Klamath Basin of California and Oregon. Geologic controls of streamflow in the region result in two general stream types: surface‐dominated and groundwater‐dominated basins. Surface‐dominated basins were further differentiated into rain basins and snowmelt basins on the basis of elevation and timing of winter runoff. Streamflow characteristics and response to climate vary with stream type, as discussed in the study. Warmer winter temperatures and snowpack reductions have caused significantly earlier runoff peaks in both snowmelt and groundwater basins in the region. In the groundwater basins, the streamflow response to changes in snowpack is smoothed and delayed and the effects are extended longer in the summer. Our results indicate that absolute decreases in July‐September base flows are significantly greater, by an order of magnitude, in groundwater basins compared to surface‐dominated basins. The declines are important because groundwater basins sustain Upper Klamath Lake inflows and mainstem river flows during the typically dry summers of the area. Upper Klamath Lake April‐September net inflows have decreased an estimated 16% or 84 thousand acre‐feet (103.6 Mm3) since 1961, with the summer months showing proportionately more decline. These changes will exacerbate water supply problems for agriculture and natural resources in the region.  相似文献   

9.
A coupled surface water-groundwater model of the Okavango Delta has been built based on the United States Geological Survey software MODFLOW 2000 including the SFR2 package for stream-flow routing. It will provide a new tool for evaluating water management and climate change scenarios. The delta's size and limited accessibility make direct, on the ground data acquisition difficult. Remote sensing methods are the most promising source of acquiring spatially distributed data for both model input parameters and calibration. Topography, aquifer thickness, channel positions, evapotranspiration and precipitation data are all based on remote sensing. Simulated flooding patterns are compared to patterns derived from visible to thermal NOAA-AVHRR data and microwave radar ENVISAT-ASAR data.  相似文献   

10.
Clilverd, Hannah M., Daniel M. White, Amy C. Tidwell, and Michael A. Rawlins, 2011. The Sensitivity of Northern Groundwater Recharge to Climate Change: A Case Study in Northwest Alaska. Journal of the American Water Resources Association (JAWRA) 47(6):1228–1240. DOI: 10.1111/j.1752‐1688.2011.00569.x Abstract: The potential impacts of climate change on northern groundwater supplies were examined at a fractured‐marble mountain aquifer near Nome, Alaska. Well water surface elevations (WSE) were monitored from 2004‐2009 and analyzed with local meteorological data. Future aquifer response was simulated with the Pan‐Arctic Water Balance Model (PWBM) using forcings (air temperature and precipitation) derived from fifth‐generation European Centre Hamburg Model (ECHAM5) global circulation model climate scenarios for extreme and modest increases in greenhouse gases. We observed changes in WSE due to the onset of spring snowmelt, low intensity and high intensity rainfall events, and aquifer head recession during the winter freeze period. Observed WSE and snow depth compared well with PWBM‐simulated groundwater recharge and snow storage. Using ECHAM5‐simulated increases in mean annual temperature of 4‐8°C by 2099, the PWBM predicted that by 2099 later freeze‐up and earlier snowmelt will decrease seasonal snow cover by one to two months. Annual evapotranspiration and precipitation are predicted to increase 27‐40% (55‐81 mm) and 33‐42% (81‐102 mm), respectively, with the proportion of snowfall in annual precipitation decreasing on average 9‐25% (p < 0.05). The amount of snowmelt is not predicted to change significantly by 2099; however, a decreasing trend is evident from 2060 in the extreme ECHAM5 greenhouse gas scenario. Increases in effective precipitation were predicted to be great enough to sustain sufficient groundwater recharge.  相似文献   

11.
We examined nitrogen transport and wetland primary production along hydrologic flow paths that link nitrogen‐fixing alder (Alnus spp.) stands to downslope wetlands and streams in the Kenai Lowlands, Alaska. We expected that nitrate concentrations in surface water and groundwater would be higher on flow paths below alder. We further expected that nitrate concentrations would be higher in surface water and groundwater at the base of short flow paths with alder and that streamside wetlands at the base of alder‐near flow paths would be less nitrogen limited than wetlands at the base of long flow paths with alder. Our results showed that groundwater nitrate‐N concentrations were significantly higher at alder‐near sites than at no‐alder sites, but did not differ significantly between alder‐far sites and no‐alder sites or between alder‐far sites and alder‐near sites. A survey of 15N stable isotope signatures in soils and foliage in alder‐near and no‐alder flow paths indicated the alder‐derived nitrogen evident in soils below alder is quickly integrated downslope. Additionally, there was a significant difference in the relative increase in plant biomass after nitrogen fertilization, with the greatest increase occurring in the no‐alder sites. This study demonstrates that streamside wetlands and streams are connected to the surrounding landscapes through hydrologic flow paths, and flow paths with alder stands are potential “hot spots” for nitrogen subsidies at the hillslope scale.  相似文献   

12.
Understanding variation in stream thermal regimes becomes increasingly important as the climate changes and aquatic biota approach their thermal limits. We used data from paired air and water temperature loggers to develop region-scale and stream-specific models of average daily water temperature and to explore thermal sensitivities, the slopes of air–water temperature regressions, of mostly forested streams across Maryland, USA. The region-scale stream temperature model explained nearly 90 % of the variation (root mean square error = 0.957 °C), with the mostly flat coastal plain streams having significantly higher thermal sensitivities than the steeper highlands streams with piedmont streams intermediate. Model R 2 for stream-specific models was positively related to a stream’s thermal sensitivity. Both the regional and the stream-specific air–water temperature regression models benefited from including mean daily discharge from regional gaging stations, but the degree of improvement declined as a stream’s thermal sensitivity increased. Although catchment size had no relationship to thermal sensitivity, steeper streams or those with greater amounts of forest in their upstream watershed were less thermally sensitive. The subset of streams with three or more summers of temperature data exhibited a wide range of annual variation in thermal sensitivity at a site, with the variation not attributable to discharge, precipitation patterns, or physical attributes of streams or their watersheds. Our findings are a useful starting point to better understand patterns in stream thermal regimes. However, a more spatially and temporally comprehensive monitoring network should increase understanding of stream temperature variation and its controls as climatic patterns change.  相似文献   

13.
Abstract: Groundwater transport often complicates understanding of surface‐water contamination. We estimated the regional flux of nitrate and selected herbicides from groundwater to nontidal headwater streams of the Atlantic Coastal Plain (New Jersey through North Carolina) based on late‐winter or spring base‐flow samples from 174 streams. Sampled streams were selected randomly, and flux estimates are based on resulting population estimates rather than on empirical models, which have been used previously for similar estimates. Base‐flow flux in the estimated 8,834 headwater streams of the study area are an estimated 21,200 kg/day of nitrate (as N) and 5.83, 0.565, and 20.7 kg/day of alachlor, atrazine, and metolachlor (and selected degradates), respectively. Base‐flow flux of alachlor and metolachlor is <3% of the total base‐flow flux of those compounds plus degradates. Base‐flow flux of nitrate and herbicides as a percentage of applications is typically highest in well‐drained areas and lowest in areas with abundant poor drainage and anoxic conditions. In Coastal Plain watersheds of Albemarle and Pamlico Sounds, <2% of applied nitrogen reaches headwater streams as base flow. On the Delmarva Peninsula part of the Chesapeake Bay watershed, however, more than 10% of such applications are transported through groundwater to streams, and base‐flow nitrate flux represents 70% of total nitrogen flux in headwater streams.  相似文献   

14.
Research increasingly highlights cause and effect relationships between urbanization and stream conditions are complex and highly variable across physical and biological regions. Research also demonstrates stormwater runoff is a key causal agent in altering stream conditions in urban settings. More specifically, thermal pollution and high salt levels are two consequences of urbanization and subsequent runoff. This study describes a demonstration model populated with data from a high gradient headwaters stream. The model was designed to explain surface water‐groundwater dynamics related to salinity and thermal pollution. Modeled scenarios show long‐term additive impacts from salt application and suggest reducing flow rates, as stormwater management practices are typically designed to do, have the potential to greatly reduce salt concentrations and simultaneously reduce thermal pollution. This demonstration model offers planners and managers reason to be confident that stormwater management efforts can have positive impacts.  相似文献   

15.
Sources and sinks of carbon associated with forests depend strongly on the management regime and spatial patterns in potential productivity. Satellite remote sensing can provide spatially explicit information on land cover, stand-age class, and harvesting. Carbon-cycle process models coupled to regional climate databases can provide information on potential rates of production and related rates of decomposition. The integration of remote sensing and modeling thus produces spatially explicit information on carbon storage and flux. This integrated approach was employed to compare carbon flux for the period 1992–1997 over two 165-km2 areas in western Oregon. The Coast Range study area was predominately private land managed for timber production, whereas the West Cascades study area was predominantly public land that was less productive but experienced little harvesting in the 1990s. In the Coast Range area, 17% of the land base was harvested between 1991 and 2000. Much of the area was in relatively young, productive-age classes that simulations indicate are a carbon sink. Mean annual harvest removals from the Coast Range were greater than mean annual net ecosystem production. On the West Cascades study area, a relatively small proportion (< 1%) of the land was harvested and the area as a whole was accumulating carbon. The spatially and temporally explicit nature of this approach permits identification of mechanisms underlying land base carbon flux. Published online  相似文献   

16.
Zorn, Troy G., Paul W. Seelbach, and Edward S. Rutherford, 2012. A Regional‐Scale Habitat Suitability Model to Assess the Effects of Flow Reduction on Fish Assemblages in Michigan Streams. Journal of the American Water Resources Association (JAWRA) 48(5): 871‐895. DOI: 10.1111/j.1752‐1688.2012.00656.x Abstract: In response to concerns over increased use and potential diversion of Michigan’s freshwater resources, and the resulting state legislative mandate, an advisory council created an integrated assessment model to determine the potential for water withdrawals to cause an adverse resource impact to fish assemblages in Michigan’s streams. As part of this effort, we developed a model to predict how fish assemblages characteristic of different stream types would change in response to decreased stream base flows. We describe model development and use in this case study. The model uses habitat suitability information (i.e., catchment size, base‐flow yield, and July mean water temperature) for over 40 fish species to predict assemblage structure in an individual river segment under a range of base‐flow reductions. By synthesizing model runs for individual fish species at representative segments for each of Michigan’s 11 ecological stream types, we developed curves describing how typical fish assemblages in each type respond to flow reduction. Each stream type‐specific, fish response curve was used to identify streamflow reduction levels resulting in adverse resource impacts to characteristic fish populations, the regulatory standard. Used together with a statewide map of stream types, our model provided a spatially comprehensive framework for evaluating impacts of flow withdrawals on biotic communities across a diverse regional landscape.  相似文献   

17.
This study presents new data‐driven, annual estimates of the division of precipitation into the recharge, quick‐flow runoff, and evapotranspiration (ET) water budget components for 2000‐2013 for the contiguous United States (CONUS). The algorithms used to produce these maps ensure water budget consistency over this broad spatial scale, with contributions from precipitation influx attributed to each component at 800 m resolution. The quick‐flow runoff estimates for the contribution to the rapidly varying portion of the hydrograph are produced using data from 1,434 gaged watersheds, and depend on precipitation, soil saturated hydraulic conductivity, and surficial geology type. Evapotranspiration estimates are produced from a regression using water balance data from 679 gaged watersheds and depend on land cover, temperature, and precipitation. The quick‐flow and ET estimates are combined to calculate recharge as the remainder of precipitation. The ET and recharge estimates are checked against independent field data, and the results show good agreement. Comparisons of recharge estimates with groundwater extraction data show that in 15% of the country, groundwater is being extracted at rates higher than the local recharge. These maps of the internally consistent water budget components of recharge, quick‐flow runoff, and ET, being derived from and tested against data, are expected to provide reliable first‐order estimates of these quantities across the CONUS, even where field measurements are sparse.  相似文献   

18.
Simulations of stream temperatures showed a wide range of future thermal regimes under a warming climate — from 2.9°C warmer to 7.6°C cooler than current conditions — depending primarily on shade from riparian vegetation. We used the stream temperature model, Heat Source, to analyze a 37‐km study segment of the upper Middle Fork John Day River, located in northeast Oregon, USA. We developed alternative future scenarios based on downscaled projections from climate change models and the composition and structure of native riparian forests. We examined 36 scenarios combining future changes in air temperature (ΔTair = 0°C, +2°C, and +4°C), stream discharge (ΔQ = ?30%, 0%, and +30%), and riparian vegetation (post‐wildfire with 7% shade, current vegetation with 19% shade, a young‐open forest with 34% shade, and a mature riparian forest with 79% effective shade). Shade from riparian vegetation had the largest influence on stream temperatures, changing the seven‐day average daily maximum temperature (7DADM) from +1°C to ?7°C. In comparison, the 7DADM increased by 1.4°C with a 4°C increase in air temperature and by 0.7°C with a 30% change in discharge. Many streams throughout the interior western United States have been altered in ways that have substantially reduced shade. The effect of restoring shade could result in future stream temperatures that are colder than today, even under a warmer climate with substantially lower late‐summer streamflow.  相似文献   

19.
Fog and low cloud cover (FLCC) and late summer recharge increase stream baseflow and decrease stream temperature during arid Mediterranean climate summers, which benefits salmon especially under climate warming conditions. The potential to discharge cool water to streams during the late summer (hydrologic capacity; HC) furnished by FLCC and recharge were mapped for the 299 subwatersheds ranked Core, Phase 1, or Phase 2 under the National Marine Fisheries Service Recovery Plan that prioritized restoration and threat abatement action for endangered Central California Coast Coho Salmon evolutionarily significant unit. Two spatially continuous gridded datasets were merged to compare HC: average hrs/day FLCC, a new dataset derived from a decade of hourly National Weather Satellite data, and annual average mm recharge from the USGS Basin Characterization Model. Two use‐case scenarios provide examples of incorporating FLCC‐driven HC indices into long‐term recovery planning. The first, a thermal analysis under future climate, projected 65% of the watershed area for 8–19 coho population units as thermally inhospitable under two global climate models and identified several units with high resilience (high HC under the range of projected warming conditions). The second use case investigated HC by subwatershed rank and coho population, and identified three population units with high HC in areas ranked Phase 1 and 2 and low HC in Core. Recovery planning for cold‐water fish species would benefit by including FLCC in vulnerability analyses.  相似文献   

20.
Walton‐Day, Katherine, Robert L. Runkel, and Briant A. Kimball, 2012. Using Spatially Detailed Water‐Quality Data and Solute‐Transport Modeling to Support Total Maximum Daily Load Development. Journal of the American Water Resources Association (JAWRA) 48(5): 949‐969. DOI: 10.1111/j.1752‐1688.2012.00662.x Abstract: Spatially detailed mass‐loading studies and solute‐transport modeling using OTIS (One‐dimensional Transport with Inflow and Storage) demonstrate how natural attenuation and loading from distinct and diffuse sources control stream water quality and affect load reductions predicted in total maximum daily loads (TMDLs). Mass‐loading data collected during low‐flow from Cement Creek (a low‐pH, metal‐rich stream because of natural and mining sources, and subject to TMDL requirements) were used to calibrate OTIS and showed spatially variable effects of natural attenuation (instream reactions) and loading from diffuse (groundwater) and distinct sources. OTIS simulations of the possible effects of TMDL‐recommended remediation of mine sites showed less improvement to dissolved zinc load and concentration (14% decrease) than did the TMDL (53‐63% decrease). The TMDL (1) assumed conservative transport, (2) accounted for loads removed by remediation by subtracting them from total load at the stream mouth, and (3) did not include diffuse‐source loads. In OTIS, loads were reduced near their source; the resulting concentration was decreased by natural attenuation and increased by diffuse‐source loads during downstream transport. Thus, by not including natural attenuation and loading from diffuse sources, the TMDL overestimated remediation effects at low flow. Use of the techniques presented herein could improve TMDLs by incorporating these processes during TMDL development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号