首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Abstract: Long‐term flow records for watersheds with minimal human influence have shown trends in recent decades toward increasing streamflow at regional and national scales, especially for low flow quantiles like the annual minimum and annual median flows. Trends for high flow quantiles are less clear, despite recent research showing increased precipitation in the conterminous United States over the last century that has been brought about primarily by an increased frequency and intensity of events in the upper 10th percentile of the daily precipitation distribution – particularly in the Northeast. This study investigates trends in 28 long‐term annual flood series for New England watersheds with dominantly natural streamflow. The flood series are an average of 75 years in length and are continuous through 2006. Twenty‐five series show upward trends via the nonparametric Mann‐Kendall test, 40% (10) of which are statistically significant (p < 0.1). Moreover, an average standardized departures series for 23 of the study gages indicates that increasing flood magnitudes in New England occurred as a step change around 1970. The timing of this is broadly synchronous with a phase change in the low frequency variability of the North Atlantic Oscillation, a prominent upper atmospheric circulation pattern that is known to effect climate variability along the United States east coast. Identifiable hydroclimatic shifts should be considered when the affected flow records are used for flood frequency analyses. Special treatment of the flood series can improve the analyses and provide better estimates of flood magnitudes and frequencies under the prevailing hydroclimatic condition.  相似文献   

2.
We evaluated long‐term trends and predictors of groundwater levels by month from two well‐studied northern New England forested headwater glacial aquifers: Sleepers River, Vermont, 44 wells, 1992‐2013; and Hubbard Brook, New Hampshire, 15 wells, 1979‐2004. Based on Kendall Tau tests with Sen slope determination, a surprising number of well‐month combinations had negative trends (decreasing water levels) over the respective periods. Sleepers River had slightly more positive than negative trends overall, but among the significant trends (p < 0.1), negative trends dominated 67 to 40. At Hubbard Brook, negative trends outnumbered positive trends by a nearly 2:1 margin and all seven of the significant trends were negative. The negative trends occurred despite generally increasing trends in monthly and annual precipitation. This counterintuitive pattern may be a result of increased precipitation intensity causing higher runoff at the expense of recharge, such that evapotranspiration demand draws down groundwater storage. We evaluated predictors of month‐end water levels by multiple regression of 18 variables related to climate, streamflow, snowpack, and prior month water level. Monthly flow and prior month water level were the two strongest predictors for most months at both sites. The predictive power and ready availability of streamflow data can be exploited as a proxy to extend limited groundwater level records over longer time periods.  相似文献   

3.
Vogel, Richard M., Chad Yaindl, and Meghan Walter, 2011. Nonstationarity: Flood Magnification and Recurrence Reduction Factors in the United States. Journal of the American Water Resources Association (JAWRA) 47(3):464‐474. DOI: 10.1111/j.1752‐1688.2011.00541.x Abstract: It may no longer be reasonable to model streamflow as a stationary process, yet nearly all existing water resource planning methods assume that historical streamflows will remain unchanged in the future. In the few instances when trends in extreme events have been considered, most recent work has focused on the influence of climate change, alone. This study takes a different approach by exploring trends in floods in watersheds which are subject to a very broad range of anthropogenic influences, not limited to climate change. A simple statistical model is developed which can both mimic observed flood trends as well as the frequency of floods in a nonstationary world. This model is used to explore a range of flood planning issues in a nonstationary world. A decadal flood magnification factor is defined as the ratio of the T‐year flood in a decade to the T‐year flood today. Using historical flood data across the United States we obtain flood magnification factors in excess of 2‐5 for many regions of the United States, particularly those regions with higher population densities. Similarly, we compute recurrence reduction factors which indicate that what is now considered the 100‐year flood, may become much more common in many watersheds. Nonstationarity in floods can result from a variety of anthropogenic processes including changes in land use, climate, and water use, with likely interactions among those processes making it very difficult to attribute trends to a particular cause.  相似文献   

4.
Water‐level trends spanning 20, 30, 40, and 50 years were tested using month‐end groundwater levels in 26, 12, 10, and 3 wells in northern New England (Maine, New Hampshire, and Vermont), respectively. Groundwater levels for 77 wells were used in interannual correlations with meteorological and hydrologic variables related to groundwater. Trends in the contemporary groundwater record (20 and 30 years) indicate increases (rises) or no substantial change in groundwater levels in all months for most wells throughout northern New England. The highest percentage of increasing 20‐year trends was in February through March, May through August, and October through November. Forty‐year trend results were mixed, whereas 50‐year trends indicated increasing groundwater levels. Whereas most monthly groundwater levels correlate strongly with the previous month's level, monthly levels also correlate strongly with monthly streamflows in the same month; correlations of levels with monthly precipitation are less frequent and weaker than those with streamflow. Groundwater levels in May through August correlate strongly with annual (water year) streamflow. Correlations of groundwater levels with streamflow data and the relative richness of 50‐ to 100‐year historical streamflow data suggest useful proxies for quantifying historical groundwater levels in light of the relatively short and fragmented groundwater data records presently available.  相似文献   

5.
Dettinger, Michael, 2011. Climate Change, Atmospheric Rivers, and Floods in California – A Multimodel Analysis of Storm Frequency and Magnitude Changes. Journal of the American Water Resources Association (JAWRA) 47(3):514‐523. DOI: 10.1111/j.1752‐1688.2011.00546.x Abstract: Recent studies have documented the important role that “atmospheric rivers” (ARs) of concentrated near‐surface water vapor above the Pacific Ocean play in the storms and floods in California, Oregon, and Washington. By delivering large masses of warm, moist air (sometimes directly from the Tropics), ARs establish conditions for the kinds of high snowlines and copious orographic rainfall that have caused the largest historical storms. In many California rivers, essentially all major historical floods have been associated with AR storms. As an example of the kinds of storm changes that may influence future flood frequencies, the occurrence of such storms in historical observations and in a 7‐model ensemble of historical‐climate and projected future climate simulations is evaluated. Under an A2 greenhouse‐gas emissions scenario (with emissions accelerating throughout the 21st Century), average AR statistics do not change much in most climate models; however, extremes change notably. Years with many AR episodes increase, ARs with higher‐than‐historical water‐vapor transport rates increase, and AR storm‐temperatures increase. Furthermore, the peak season within which most ARs occur is commonly projected to lengthen, extending the flood‐hazard season. All of these tendencies could increase opportunities for both more frequent and more severe floods in California under projected climate changes.  相似文献   

6.
Abstract: While transboundary flood events have become more frequent on a global scale the past two decades, they appear to be overlooked in the international river basin (IRB) cooperation and management arena. The present study therefore combined geopolitical measures with biophysical and socioeconomic variables in an attempt to identify the IRBs with adequate institutional capacity for management of transboundary floods. It also classified basins that would possibly benefit from enlarging the institutional capacity related to transboundary floods. Of the 279 known IRBs, only 78 were represented by a transboundary rivers institution. A mere eight of the 153 identified institutions had transboundary flooding listed as an issue in their mandate. Overall, 43 basins, where transboundary floods were frequent during the period 1985‐2005, had no institutional capacity for IRBs. The average death and displacement tolls were found to be lower in the 37 basins with institutional capacity, even though these basins experienced twice as much transboundary floods with significant higher magnitudes than those in basins without institutional capacity. Overall, the results suggested that institutional capacity plays a role in the reduction of flood‐related casualties and affected individuals. River basins such as the Juba‐Shibeli, Han, Kura‐Araks, Ma, Maritsa, Po, Coco/Segovia, Grijalva, Artibonite, Changuinola, Coatan Achute, and Orinoco experienced more than one transboundary river flood, but have not yet set up any institutions for such events, or signed any appropriate treaties focused on floods. These basins were therefore recommended to consider focusing attention on this apparent lack of institutional capacity when it comes to managing transboundary flood events.  相似文献   

7.
Abstract: Official seasonal water supply outlooks for the western United States are typically produced once per month from January through June. The Natural Resources Conservation Service has developed a new outlook product that allows the automated production and delivery of this type of forecast year‐round and with a daily update frequency. Daily snow water equivalent and water year‐to‐date precipitation data from multiple SNOTEL stations are combined using a statistical forecasting technique (“Z‐Score Regression”) to predict seasonal streamflow volume. The skill of these forecasts vs. lead‐time is comparable to the official published outlooks. The new product matches the intra‐monthly trends in the official forecasts until the target period is partly in the past, when the official forecasts begin to use information about observed streamflows to date. Geographically, the patterns of skill also match the official outlooks, with highest skill in Idaho and southern Colorado and lowest skill in the Colorado Front Range, eastern New Mexico, and eastern Montana. The direct and frequent delivery of objective guidance to users is a significant new development in the operational hydrologic seasonal forecasting community.  相似文献   

8.
Abstract: Repeated severe droughts over the last decade in the South Atlantic have raised concern that streamflow may be systematically decreasing, possibly due to climate variability. We examined the monthly and annual trends of streamflow, precipitation, and temperature in the South Atlantic for the time periods: 1934‐2005, 1934‐1969, and 1970‐2005. Streamflow and climate (temperature and precipitation) trends transitioned ca. 1970. From 1934 to 1969, streamflow and precipitation increased in southern regions and decreased in northern regions; temperature decreased throughout the South Atlantic. From 1970 to 2005, streamflow decreased, precipitation decreased, and temperature increased throughout the South Atlantic. It is unclear whether these will be continuing trends or simply part of a long‐term climatic oscillation. Whether these streamflow trends have been driven by climatic or anthropogenic changes, water resources management faces challenging prospects to adapt to decadal‐scale persistently wet and dry hydrologic conditions.  相似文献   

9.
In mountain braided rivers, extreme flow variability, floods and high flow pulses are fundamental elements of natural flow regimes and drivers of floodplain processes, understanding of which is essential for management and restoration. This study evaluated flow dynamics and invasive vegetation characteristics and changes in the Ahuriri River, a free-flowing braided, gravel-bed river in the Southern Alps of New Zealand’s South Island. Sixty-seven flow metrics based on indicators of hydrologic alteration and environmental flow components (extreme low flows, low flows, high flow pulses, small floods and large floods) were analyzed using a 48-year flow record. Changes in the areal cover of floodplain and invasive vegetation classes and patch characteristics over 20 years (1991–2011) were quantified using five sets of aerial photographs, and the correlation between flow metrics and cover changes were evaluated. The river exhibits considerable hydrologic variability characteristic of mountain braided rivers, with large variation in floods and other flow regime metrics. The flow regime, including flood and high flow pulses, has variable effects on floodplain invasive vegetation, and creates dynamic patch mosaics that demonstrate the concepts of a shifting mosaic steady state and biogeomorphic succession. As much as 25 % of the vegetation cover was removed by the largest flood on record (570 m3/s, ~50-year return period), with preferential removal of lupin and less removal of willow. However, most of the vegetation regenerated and spread relatively quickly after floods. Some flow metrics analyzed were highly correlated with vegetation cover, and key metrics included the peak magnitude of the largest flood, flood frequency, and time since the last flood in the interval between photos. These metrics provided a simple multiple regression model of invasive vegetation cover in the aerial photos evaluated. Our analysis of relationships among flow regimes and invasive vegetation cover has implications for braided rivers impacted by hydroelectric power production, where increases in invasive vegetation cover are typically greater than in unimpacted rivers.  相似文献   

10.
Hunsaker, Carolyn T., Thomas W. Whitaker, and Roger C. Bales, 2012. Snowmelt Runoff and Water Yield Along Elevation and Temperature Gradients in California’s Southern Sierra Nevada. Journal of the American Water Resources Association (JAWRA) 48(4): 667‐678. DOI: 10.1111/j.1752‐1688.2012.00641.x Abstract: Differences in hydrologic response across the rain‐snow transition in the southern Sierra Nevada were studied in eight headwater catchments – the Kings River Experimental Watersheds – using continuous precipitation, snowpack, and streamflow measurements. The annual runoff ratio (discharge divided by precipitation) increased about 0.1 per 300 m of mean catchment elevation over the range 1,800‐2,400 m. Higher‐elevation catchments have lower vegetation density, shallow soils with rapid permeability, and a shorter growing season when compared with those at lower elevations. Average annual temperatures ranged from 6.8°C at 2,400 m to 8.6 at 1,950 m elevation, with annual precipitation being 75‐95% snow at the highest elevations vs. 20‐50% at the lowest. Peak discharge lagged peak snow accumulation on the order of 60 days at the higher elevations and 20 to 30 days at the lower elevations. Snowmelt dominated the daily streamflow cycle over a period of about 30 days in higher elevation catchments, followed by a 15‐day transition to evapotranspiration dominating the daily streamflow cycle. Discharge from lower elevation catchments was rainfall dominated in spring, with the transition to evapotranspiration dominance being less distinct. Climate warming that results in a longer growing season and a shift from snow to rain would result in earlier runoff and a lower runoff ratio.  相似文献   

11.
Abstract: The potential of remotely sensed time series of biophysical states of landscape to characterize soil moisture condition antecedent to radar estimates of precipitation is assessed in a statistical prediction model of streamflow in a 1,420 km2 watershed in south‐central Texas, Moderate Resolution Imaging Spectroradiometer (MODIS) time series biophysical products offer significant opportunities to characterize and quantify hydrologic state variables such as land surface temperature (LST) and vegetation state and status. Together with Next Generation Weather Radar (NEXRAD) precipitation estimates for the period 2002 through 2005, 16 raw and deseasoned time series of LST (day and night), vegetation indices, infrared reflectances, and water stress indices were linearly regressed against observed watershed streamflow on an eight‐day aggregated time period. Time offsets of 0 (synchronous with streamflow event), 8, and 16 days (leading streamflow event) were assessed for each of the 16 parameters to evaluate antecedent effects. The model results indicated a reasonable correlation (r2 = 0.67) when precipitation, daytime LST advanced 16 days, and a deseasoned moisture stress index were regressed against log‐transformed streamflow. The estimation model was applied to a validation period from January 2006 through March 2007, a period of 12 months of regional drought and base‐flow conditions followed by three months of above normal rainfall and a flood event. The model resulted in a Nash‐Sutcliffe estimation efficiency (E) of 0.45 for flow series (in log‐space) for the full 15‐month period, ?0.03 for the 2006 drought condition period, and 0.87 for the 2007 wet condition period. The overall model had a relative volume error of ?32%. The contribution of parameter uncertainties to model discrepancy was evaluated.  相似文献   

12.
Ahn, Jae Hyun and Hyun Il Choi, 2013. A New Flood Index for Use in Evaluation of Local Flood Severity: A Case Study of Small Ungauged Catchments in Korea. Journal of the American Water Resources Association (JAWRA) 49(1): 1‐14. DOI: 10.1111/jawr.12025 Abstract: The aim of this article is to develop a new index measuring the severity of floods in small ungauged catchments for initial local flood information by the regression analysis between the new flooding index and rainfall patterns. Although a rapid local flood caused by heavy storm in a short period of time is now one of common natural disasters worldwide, such a sudden and violent hydrologic event is difficult to forecast. As local flooding rises rapidly with little or no advance warning, the key to local flood forecasting is to quickly identify when and where local flooding above a threshold is likely to occur. The new flooding index to characterize local floods is measured by the three normalized relative severity factors for the flood magnitude ratio, the rising curve gradient, and the flooding duration time, quantifying characteristics of flood runoff hydrographs. The new flooding index implemented for the two selected small ungauged catchments in the Korean Peninsula shows a very high correlation with logarithm of the 2‐h maximum rainfall depth. This study proposes 30 mm of rainfall in a 2‐h period as a basin‐specific guidance of precaution for the incipient local flooding in the two study catchments. It is expected that the best‐fit regression equation between the new flooding index and a certain rainfall rate can provide preliminary observations, the flood threshold, and severity information, for use in a local flood alert system in small ungauged catchments. Editor's note: This paper is part of a featured series on Korean Hydrology. The series addresses the need for a new paradigm of river and watershed management for Korea due to climate and land use changes.  相似文献   

13.
National Water Model (NWM) simulates the hydrologic cycle and produces streamflow forecasts for 2.7 million reaches in the National Hydrography Dataset for continental United States (U.S.). NWM uses Muskingum–Cunge channel routing, which is based on the continuity equation. However, the momentum equation also needs to be considered to obtain more accurate estimates of streamflow and stage in rivers, especially for applications such as flood‐inundation mapping. Here, we used a steady‐state backwater version of Simulation Program for River NeTworks (SPRNT) model. We evaluated SPRNT’s and NWM’s abilities to predict inundated area for the record flood of Hurricane Matthew in October 2016. The Neuse River experienced record‐breaking floods and was well‐documented by U.S. Geological Survey. Streamflow simulations from NWM retrospective analysis were used as input for the SPRNT simulation. Retrospective NWM discharge predictions were converted to stage. The stages (from both SPRNT and NWM) were utilized to produce flood‐inundation maps using the Height Above Nearest Drainage method which uses the local relative heights to find out the local draining potentials and provide spatial representation of inundated area. The inundated‐area accuracies for NWM and SPRNT (based on comparison to a remotely sensed dataset) were 65.1% and 67.6%, respectively. These results show using steady‐state SPRNT results in a modest improvement of inundation‐forecast accuracy compared to NWM.  相似文献   

14.
Using nonparametric Mann‐Kendall tests, we assessed long‐term (1953‐2012) trends in streamflow and precipitation in Northern California and Southern Oregon at 26 sites regulated by dams and 41 “unregulated” sites. Few (9%) sites had significant decreasing trends in annual precipitation, but September precipitation declined at 70% of sites. Site characteristics such as runoff type (groundwater, snow, or rain) and dam regulation influenced streamflow trends. Decreasing streamflow trends outnumbered increasing trends for most months except at regulated sites for May‐September. Summer (July‐September) streamflow declined at many sites, including 73% of unregulated sites in September. Applying a LOESS regression model of antecedent precipitation vs. average monthly streamflow, we evaluated the underlying streamflow trend caused by factors other than precipitation. Decreasing trends in precipitation‐adjusted streamflow substantially outnumbered increasing trends for most months. As with streamflow, groundwater‐dominated sites had a greater percent of declining trends in precipitation‐adjusted streamflow than other runoff types. The most pristine surface‐runoff‐dominated watersheds within the study area showed no decreases in precipitation‐adjusted streamflow during the summer months. These results suggest that streamflow decreases at other sites were likely due to more increased human withdrawals and vegetation changes than to climate factors other than precipitation quantity.  相似文献   

15.
Habitat-improvement structures on the Blackledge and Salmon rivers date back to the 1930s and 1950s. Forty of these structures were investigated to determine their long-term impact on channel morphology. These structures include designs that continue to be used in modern restoration efforts. During the intervening period since these structures were introduced, several major floods have affected the two channels. The floods include three flows in excess of the 50-year event, including the flood of record, which has an estimated recurrence interval of almost 300 years. Despite the extreme flooding, many structures were discovered in varying conditions of operation. Grade-control structures and low-flow deflectors generally create some low-flow habitat (P = 0.815) but do not produce the depth of water predicted by design manuals (P < 0.0001). Unintended erosion has developed in response to many of the channel modifications especially along the outside of meanders. In addition, the mode of failure of grade-control structures has created localized channel widening with associated bank erosion. Meanwhile, cover structures have produced a 30% reduction in streamside vegetation with over 75% less overhead cover than unaltered reaches. Based on these results, it is important for prospective designers to carefully consider the long-term impacts of instream structures when developing future channel-restoration projects.  相似文献   

16.
Abstract: Water quality and macroinvertebrate assemblage data from 1981 to 2005 were assessed to evaluate the water quality and biological responses of a western trout stream to the implementation of multiple best management practices (BMPs) on irrigated cropland. Data from Rock Creek near Twin Falls, Idaho, a long‐term monitoring site, were assembled from state and federal sources to provide the evaluation. Seasonal loads of the nonpoint source pollutants suspended sediment (SS), total phosphorus (TP), and nitrate‐nitrite (NN) were estimated using a regression model with time‐series streamflow data and constituent concentrations. Trends in the macroinvertebrate assemblages were evaluated using a number of biological metrics and nonmetric multidimensional scaling ordination. Regression analysis found significant annual decreases in TP and SS flow‐adjusted concentrations during the BMP implementation period from 1983 to 1990 of about 7 and 10%, respectively. These results are coincident with the implementation of multiple BMPs on about 75% of the irrigated cropland in the watershed. Macroinvertebrate assemblages during this time also responded with a change in taxa composition resulting in improved biotic index scores. Taxon specific TP and SS optima, empirically derived from a large national dataset, predicted a decrease in SS concentrations of about 37% (52 to 33 mg/l) and a decrease in TP concentrations of about 50% (0.20 to 0.10 mg/l) from 1981 to 1987. Decreasing trends in TP, SS, and NN pollutant loads were primarily the result of naturally low streamflow conditions during the BMP post‐implementation period from 1993 to 2005. Trends in macroinvertebrate responses during 1993 to 2005 were confounded by the introduction of the New Zealand mudsnail (Potamopyrgus  antipodarum), which approached densities of 100,000 per m2 in riffle habitat. The occurrence of this invasive species appears to have caused a major shift in composition and function of the macroinvertebrate assemblages.  相似文献   

17.
The source of the Richelieu River is Lake Champlain, located between the states of New York, Vermont, and Québec. In 2011, the lake and the Richelieu River reached historical flood levels, raising questions about the influence of climate change on the watershed. The objectives of this work are to model the hydrology of the watershed, construct a reservoir model for the lake and to analyze flooding trends using climate simulations. The basin was modeled using the HSAMI lumped conceptual model from Hydro‐Québec with a semi‐distributed approach in order to estimate the inflows into Lake Champlain. The discharge at the Richelieu River was computed by using a mass balance equation between the inputs and outputs of Lake Champlain. Future trends were estimated over the 2041‐2070 and 2071‐2100 periods using a large number of outputs from general circulation models and regional climate models downscaled with constant scaling and daily translation methods. While there is a certain amount of uncertainty as to future trends, there is a decreasing tendency in the magnitude of the mean spring flood. A flood frequency analysis showed most climate projections indicate the severity of most extreme spring floods may be reduced over the two future periods although results are subject to a much larger uncertainty than for the mean spring flood. On the other hand, results indicate summer‐fall extreme events such as caused by hurricane Irene in August 2011 may become more frequent in the future.  相似文献   

18.
ABSTRACT: This study evaluates the streamflow characteristics of the upper Allegheny River during the periods preceding (1936 to 1965) and following (1966 to 1997) completion of the Kinzua Dam in northwestern Pennsylvania. Inter‐period trends in seasonal patterns of discharge and peak flow at three downstream sites are compared to those at two upstream sites to determine the influence of this large dam on surface water hydrology. Climatic records indicate that significant changes in annual total and seasonal precipitation occurred over the twentieth century. Increased runoff during the late summer through early winter led to increased discharge both upstream and downstream during these months, while slightly less early‐year rainfall produced minor reductions in spring flood peaks since 1966. The Kinzua Dam significantly enhanced these trends downstream, creating large reductions in peak flow, while greatly augmenting low flow during the growing season. This reduction in streamflow variability, coupled with other dam‐induced changes, has important biodiversity implications. The downstream riparian zone contains numerous threatened/endangered species, many of which are sensitive to the type of habitat modifications produced by the dam. Flood dynamics under the current post‐dam conditions are likely to compound the difficulties of maintaining their long‐term viability.  相似文献   

19.
Haucke, Jessica and Katherine A. Clancy, 2011. Stationarity of Streamflow Records and Their Influence on Bankfull Regional Curves. Journal of the American Water Resources Association (JAWRA) 47(6):1338–1347. DOI: 10.1111/j.1752‐1688.2011.00590.x Abstract: Bankfull regional curves, which are curves that establish relationships among channel morphology, discharge, drainage area, are used extensively for stream restoration. These curves are developed upon the assumption that streamflows maintain stationarity over the entire record. We examined this assumption in the Driftless Area of southwestern Wisconsin where agricultural soil retention practices have changed, and precipitation has increased since the 1970s. We developed a bankfull regional curve for this area using field surveys of bankfull channel performed during 2008‐2009 and annual series of peak streamflows for 10 rivers with streamflow records ranging from the 1930s to 2009. We found bankfull flows to correlate to a 1.1 return period. To evaluate gage data statistics, we used the sign test to compare our channel morphology to historic 1.5 return period discharge (Q1.5) for five time periods: 1959‐1972, 1973‐1992, 1993‐2008, 1999‐2008, and the 1959‐2008 period of record. Analysis of the historic gage data indicated that there has been a more than 30% decline in Q1.5 since 1959. Our research suggests that land conservation practices may have a larger impact on gaging station stationarity than annual precipitation changes do. Additionally, historic peak flow data from gages, which have records that span land conservation changes, may need to be truncated to represent current flow regimes.  相似文献   

20.
Restored annual streamflow (Qr) and measured daily streamflow of the Chaohe watershed located in northern China and associated long‐term climate and land use/cover data were used to explore the effects of land use/cover change and climate variability on the streamflow during 1961‐2009. There were no significant changes in annual precipitation (P) and potential evapotranspiration, whereas Qr decreased significantly by 0.81 mm/yr (< 0.001) over the study period with a change point in 1999. We used 1961‐1998 as the baseline period (BP) and 1999‐2009 the change period (CP). The mean Qr during the CP decreased by 39.4 mm compared with that in the BP. From 1979 to 2009, the grassland area declined by 69.6%, and the forest and shrublands increased by 105.4 and 73.1%, respectively. The land use/cover change and climate variability contributed for 58.4 and 41.6% reduction in mean annual Qr, respectively. Compared with the BP, median and high flows in the CP decreased by 38.8 and up to 75.5%, respectively. The study concludes that large‐scale ecological restoration and watershed management in northern China has greatly decreased water yield and reduced high flows due to the improved land cover by afforestation leading to higher water loss through evapotranspiration. At a large watershed scale, land use/cover change could play as much of an important role as climate variability on water resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号