首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
An automated system for continuous measurement of N2O fluxes on an hourly basis was employed to study N2O emissions in an intensively managed low carbon calcareous soil under sub-humid temperate monsoon conditions. N2O emissions occurred mainly within two weeks of application of NH4+-based fertilizer and total N2O emissions in wheat (average 0.35 or 0.21 kg N ha−1 season−1) and maize (average 1.47 or 0.49 kg N ha−1 season−1) under conventional and optimum N fertilization (300 and 50-122 kg N ha−1, respectively) were lower than previously reported from low frequency measurements. Results from closed static chamber showed that N2O was produced mainly from nitrification of NH4+-based fertilizer, with little denitrification occurring due to limited readily oxidizable carbon and low soil moisture despite consistently high soil nitrate-N concentrations. Significant reductions in N2O emissions can be achieved by optimizing fertilizer N rates, using nitrification inhibitors, or changing from NH4+- to NO3ˉ-based fertilizers.  相似文献   

2.
A field experiment was conducted in a rice–winter wheat rotation agroecosystem to quantify the direct emission of N2O for synthetic N fertilizer and crop residue application in the 2002–2003 annual cycle. There was an increase in N2O emission accompanying synthetic N fertilizer application. Fertilizer-induced emission factor for N2O (FIE) averaged 1.08% for the rice season, 1.49% for the winter wheat season and 1.26% for the whole annual rotation cycle. The annual background emission of N2O totaled 4.81 kg N2O–N ha−1, consisting of 1.24 kg N2O–N ha−1 for rice, 3.11 kg N2O–N ha−1 for wheat seasons. When crop residue and synthetic N fertilizer were both applied in the fields, crop residue-induced emission factor for N2O (RIE) was estimated as well. When crop residue was retained at the rate of 2.25 and 4.50 t ha−1 for each season, the RIE averaged 0.64% and 0.27% for the whole annual rotation cycle, respectively. Based on available multi-year data of N2O emissions over the whole rice–wheat rotation cycle at 3 sites in southeast China, the FIE averaged 1.02% for the rice season, 1.65% for the wheat season. On the whole annual cycle, the FIE for N2O ranged from 1.05% to 1.45%, with an average of 1.25%. Annual background emission of N2O averaged 4.25 kg ha−1, ranging from 3.62 to 4.87 kg ha−1. It is estimated that annual N2O emission in paddy rice-based agroecosystem amounts to 169 Gg N2O–N in China, accounting for 26–60% of the reported estimates of total emission from croplands in China.  相似文献   

3.
There is increasing concern that agricultural intensification in China has greatly increased N2O emissions due to rapidly increased fertilizer use. By linking a spatial database of precipitation, synthetic fertilizer N input, cropping rotation and area via GIS, a precipitation-rectified emission factor of N2O for upland croplands and water regime-specific emission factors for irrigated rice paddies were adopted to estimate annual synthetic fertilizer N-induced direct N2O emissions (FIE-N2O) from Chinese croplands during 1980-2000. Annual FIE-N2O was estimated to be 115.7 Gg N2O-N year−1 in the 1980s and 210.5 Gg N2O-N year−1 in the 1990s, with an annual increasing rate of 9.14 Gg N2O-N year−1 over the period 1980-2000. Upland croplands contributed most to the national total of FIE-N2O, accounting for 79% in 1980 and 92% in 2000. Approximately 65% of the FIE-N2O emitted in eastern and southern central China.  相似文献   

4.
Various water management regimes, such as continuous flooding (F), flooding-midseason drainage-reflooding (F-D-F), and flooding-midseason drainage-reflooding-moist intermittent irrigation, but without water logging (F-D-F-M), are currently practiced in paddy rice production in mainland China. These water regimes have incurred a sensitive change in direct N2O emission from rice paddy fields. We compiled and statistically analyzed field data on N2O emission from paddy fields during the rice growing season (71 measurements from 17 field studies) that were published in peer-reviewed Chinese and English journals. Seasonal total N2O was, on average, equivalent to 0.02% of the nitrogen applied in the continuous flooding rice paddies. Under the water regime of F-D-F or the F-D-F-M, seasonal N2O emissions increased with N fertilizer applied in rice paddies. An ordinary least square (OLS) linear regression model produced the emission factor (EF) of nitrogen for N2O averaged 0.42%, but background N2O emission was not pronounced under the water regime of F-D-F. Under the F-D-F-M water regime, N2O EF and background emission were estimated to be 0.73% and 0.79 kg N2O-N ha−1, respectively, during the paddy rice growing season. Based on results of the present study and national rice production data, subsequently, direct N2O emissions during the rice growing season amounted to 29.0 Gg N2O-N with the uncertainty of 30.1%, which accounted for 7–11% of the reported estimates of annual total emission from croplands in mainland China. The results of this study suggest that paddy rice relative to upland crop production could have contributed to mitigating N2O emissions from agriculture in mainland China.  相似文献   

5.
The wetlands play an important role in global carbon and nitrogen storage, and they are also natural sources of greenhouse gases such as methane (CH4) and nitrous oxide (N2O). Land-use change is an important factor affecting the exchange of greenhouse gases between wetlands and the atmosphere. However, few studies have investigated the effect of land-use change on CH4 and N2O emissions from freshwater marsh in China. Therefore, a field study was carried out over a year to investigate the seasonal changes of the emissions of CH4 and N2O at three sites (Deyeuxia angustifolia marsh, dryland and rice field) in the Sanjiang Plain of Northeast China. Marsh was the source of CH4 showing a distinct temporal variation. Maximum fluxes occurred in June and the highest value was 20.69 ± 2.57 mg CH4 m?2 h?1. The seasonal change of N2O fluxes from marsh was not obvious, consisted of a series of emission pulses. The marsh acted as a N2O sink during winter, while became a N2O source in the growing season. The results showed that gas exchange between soil/snow and the atmosphere in the winter season contributed greatly to the annual budgets. The winter season CH4 flux was about 3.24% of the annual flux and the winter uptake of N2O accounted for 13.70% of the growing-season emission. Conversion marsh to dryland resulted in a shift from a strong CH4 source to a weak sink (from 199.12 ± 39.04 to ?1.37 ± 0.68 kg CH4 ha?1 yr?1), while increased N2O emissions somewhat (from 4.07 ± 1.72 to 4.90 ± 1.52 kg N2O ha?1 yr?1). Conversion marsh to rice field significantly decreased CH4 emission from 199.12 ± 39.04 to 94.82 ± 9.86 kg CH4 ha?1 yr?1 and N2O emission from 4.07 ± 1.72 to 2.09 ± 0.79 kg N2O ha?1 yr?1.  相似文献   

6.
This study presents the field investigations into the effects of cover soils and leachate subsurface irrigation on N2O emissions from municipal solid waste landfills. Landfill Site A and Site B, covered with carefully chosen infertile soils, were selected to monitor their diurnal and seasonal variations of N2O emissions. The annual average N2O flux was 469 ± 796 μg N2O-N m−2 h−1 in Site B with leachate subsurface irrigation, three times that of Site A without leachate irrigation. When an additional soil containing lower contents of carbon and nitrogen was introduced to cover part of Site B, its N2O fluxes decreased by 1-2 orders of magnitude compared with the left area of Site B. This suggested that carefully selected cover soils could substantially reduce N2O emissions even under leachate subsurface irrigation. Statistical analysis proved that the availabilities of soil moisture and mineralized nitrogen were the key parameters controlling landfill N2O emissions.  相似文献   

7.
We assessed nitrous oxide (N2O) emissions at shoulder and foot-slope positions along three sloping sites (1.6–2.1%) to identify the factors controlling the spatial variations in emissions. The three sites received same amounts of total nitrogen (N) input at 170 kg N ha−1. Results showed that landscape positions had a significant, but not consistent effect on N2O fluxes with larger emission in the foot-slope at only one of the three sites. The effect of soil inorganic N (NH4+ + NO3) contents on N2O fluxes (r2 = 0.55, p < 0.001) was influenced by water-filled pore space (WFPS). Soil N2O fluxes were related to inorganic N at WFPS > 60% (r2 = 0.81, p < 0.001), and NH4+ contents at WFPS < 60% (r2 = 0.40, p < 0.01), respectively. Differences in WFPS between shoulder and foot-slope correlated linearly with differences in N2O fluxes (r2 = 0.45, p < 0.001). We conclude that spatial variations in N2O emission were regulated by the influence of hydrological processes on soil aeration intensity.  相似文献   

8.
Agricultural soils may account for 10% of anthropogenic emissions of NO, a precursor of tropospheric ozone with potential impacts on air quality and global warming. However, the estimation of this biogenic source strength and its relationships to crop management is still challenging because of the spatial and temporal variability of the NO fluxes.Here, we present a combination of new laboratory- and field-scale methods to characterise NO emissions and single out the effects of environmental drivers.First, NO fluxes were continuously monitored over the growing season of a maize-cropped field located near Paris (France), using 6 automatic chambers. Mineral fertilizer nitrogen was applied from May to October 2005. An additional field experiment was carried out in October to test the effects of N fertilizer form on the NO emissions. The automatic chambers were designed to measure simultaneously the NO and N2O gases. Laboratory measurements were carried out in parallel using soil cores sampled at same site to test the response of NO fluxes to varying soil N–NH4 and water contents, and temperatures. The effects of soil core thickness were also analysed.The highest NO fluxes occurred during the first 5 weeks following fertilizer application. The cumulative loss of NO–N over the growing season was estimated at 1.5 kg N ha?1, i.e. 1.1% of the N fertilizer dose (140 kg N ha?1). All rainfall events induced NO peak fluxes, whose magnitude decreased over time in relation to the decline of soil inorganic N. In October, NO emissions were enhanced with ammonium forms of fertilizer N. Conversely, the application of nitrate-based fertilizers did not significantly increase NO emissions compared to an unfertilized control. The results of the subsequent laboratory experiments were in accordance with the field observations in magnitude and time variations. NO emissions were maximum with a water soil content of 15% (w w?1), and with a NH4–N content of 180 mg NH4–N kg soil?1. The response of NO fluxes to soil temperature was fitted with two exponential functions, involving a Q10 of 2.0 below 20 °C and a Q10 of 1.4 above. Field and laboratory experiments indicated that most of the NO fluxes originated from the top 10 cm of soil. The characterisation of this layer in terms of mean temperature, NH4 and water contents is thus paramount to explaining the variations of NO fluxes.  相似文献   

9.
Greenhouse gas emissions from hydroelectric dams have recently given rise to controversies about whether hydropower still provides clean energy. China has a large number of dams used for energy supply and irrigation, but few studies have been carried out on aquatic nitrous oxide (N2O) variation and its emissions in Chinese river-reservoir systems. In this study, N2O spatiotemporal variations were investigated monthly in two reservoirs along the Wujiang River, Southwest China, and the emission fluxes of N2O were estimated. N2O production in the reservoirs tended to be dominated by nitrification, according to the correlation between N2O and other parameters. N2O saturation in the surface water of the Wujiangdu reservoir ranged from 214% to 662%, with an average fluctuation of 388%, while in the Hongjiadu reservoir, it ranged from 201% to 484%, with an average fluctuation of 312%. The dissolved N2O in both reservoirs was over-saturated with respect to atmospheric equilibrium levels, suggesting that the reservoirs were net sources of N2O emissions to the atmosphere. The averaged N2O emission flux in the Wujiangdu reservoir was 0.64 μmol m?2 h?1, while it was 0.45 μmol m?2 h?1 in the Hongjiadu reservoir, indicating that these two reservoirs had moderate N2O emission fluxes as compared to other lakes in the world. Downstream water of the dams had quite high levels of N2O saturation, and the estimated annual N2O emissions from hydropower generation were 3.60 × 105 and 2.15 × 105 mol N2O for the Wujiangdu and the Hongjiadu reservoir, respectively. These fluxes were similar to the total N2O emissions from the reservoir surfaces, suggesting that water released from reservoirs would be another important way for N2O to diffuse into the atmosphere. It can be concluded that dam construction significantly changes the water environment, especially in terms of nutrient status and physicochemical conditions, which have obvious influences on the N2O spatiotemporal variations and emissions.  相似文献   

10.
Changes to agricultural management, particularly of the nitrogen (N) input to farms, have great potential for mitigating emissions of N containing gases, especially the greenhouse gas nitrous oxide (N2O). Manipulating diets fed to livestock is a potential method for controlling N excretion and emissions of greenhouse gases (GHG's) to the atmosphere. We selected three slurries derived from sheep that had been fed, either ensiled ryegrass (Lolium hybridicum), lucerne (Medicago sativa) or kale (Brassica oleracea) and applied them to a grassland soil from the UK in a laboratory experiment using a special He/O2 atmosphere incubation facility. The resulting fluxes of N2O, CH4 and N2 were measured, with the largest total N fluxes generated by the ryegrass slurry treatment (14.23 ryegrass, 10.84 lucerne, 13.88 kale and 4.40 kg N ha−1 from the control). Methane was emitted only from the ryegrass slurry treatment. The isotopomer signatures for N2O in the control and lucerne slurry treatments indicated that denitrification was the main process responsible for N2O emissions.  相似文献   

11.
Municipal solid waste landfills are the significant anthropogenic sources of N2O due to the cooxidation of ammonia by methane-oxidizing bacteria in cover soils. Such bacteria could be developed through CH4 fumigation, as evidenced by both laboratory incubation and field measurement. During a 10-day incubation with leachate addition, the average N2O fluxes in the soil samples, collected from the three selected landfill covers, were multiplied by 1.75 (p < 0.01), 3.56 (p < 0.01), and 2.12 (p < 0.01) from the soil samples preincubated with 5% CH4 for three months when compared with the control, respectively. Among the three selected landfill sites, N2O fluxes in two landfill sites were significantly correlated with the variations of the CH4 emissions without landfill gas recovery (p < 0.001). N2O fluxes were also elevated by the increase of the CH4 emissions with landfill gas recovery in another landfill site (p > 0.05). The annual average N2O flux was 176 ± 566 μg N2O–N m?2 h?1 (p < 0.01) from sandy soil–covered landfill site, which was 72% (p < 0.05) and 173% (p < 0.01) lower than the other two clay soil covered landfill sites, respectively. The magnitude order of N2O emissions in three landfill sites was also coincident by the results of laboratory incubation, suggesting the sandy soil cover could mitigate landfill N2O emissions.  相似文献   

12.
Simulation models are one of the approaches used to investigate greenhouse gas emissions and potential effects of global warming on terrestrial ecosystems. DayCent which is the daily time-step version of the CENTURY biogeochemical model, and DNDC (the DeNitrification–DeComposition model) were tested against observed nitrous oxide flux data from a field experiment on cut and extensively grazed pasture located at the Teagasc Oak Park Research Centre, Co. Carlow, Ireland. The soil was classified as a free draining sandy clay loam soil with a pH of 7.3 and a mean organic carbon and nitrogen content at 0–20 cm of 38 and 4.4 g kg?1 dry soil, respectively. The aims of this study were to validate DayCent and DNDC models for estimating N2O emissions from fertilized humid pasture, and to investigate the impacts of future climate change on N2O fluxes and biomass production. Measurements of N2O flux were carried out from November 2003 to November 2004 using static chambers. Three climate scenarios, a baseline of measured climatic data from the weather station at Carlow, and high and low temperature sensitivity scenarios predicted by the Community Climate Change Consortium For Ireland (C4I) based on the Hadley Centre Global Climate Model (HadCM3) and the Intergovernment Panel on Climate Change (IPCC) A1B emission scenario were investigated. DayCent predicted cumulative N2O flux and biomass production under fertilized grass with relative deviations of +38% and (?23%) from the measured, respectively. However, DayCent performs poorly under the control plots, with flux relative deviation of (?57%) from the measured. Comparison between simulated and measured flux suggests that both DayCent model’s response to N fertilizer and simulated background flux need to be adjusted. DNDC overestimated the measured flux with relative deviations of +132 and +258% due to overestimation of the effects of SOC. DayCent, though requiring some calibration for Irish conditions, simulated N2O fluxes more consistently than did DNDC. We used DayCent to estimate future fluxes of N2O from this field. No significant differences were found between cumulative N2O flux under climate change and baseline conditions. However, above-ground grass biomass was significantly increased from the baseline of 33 t ha?1 to 45 (+34%) and 50 (+48%) t dry matter ha?1 for the low and high temperature sensitivity scenario respectively. The increase in above-ground grass biomass was mainly due to the overall effects of high precipitation, temperature and CO2 concentration. Our results indicate that because of high N demand by the vigorously growing grass, cumulative N2O flux is not projected to increase significantly under climate change, unless more N is applied. This was observed for both the high and low temperature sensitivity scenarios.  相似文献   

13.
An annual mean concentration of 40 μg m−3 has been proposed as a limit value within the European Union Air Quality Directives and as a provisional objective within the UK National Air Quality Strategy for 2010 and 2005, respectively. Emissions reduction measures resulting from current national and international policies are likely to deliver significant reductions in emissions of oxides of nitrogen from road traffic in the near future. It is likely that there will still be exceedances of this target value in 2005 and in 2009 if national measures are considered in isolation, particularly at the roadside. It is envisaged that this `policy gap’ will be addressed by implementing local air quality management to reduce concentrations in locations that are at risk of exceeding the objective. Maps of estimated annual mean NO2 concentrations in both urban background and roadside locations are a valuable resource for the development of UK air quality policy and for the identification of locations at which local air quality management measures may be required. Maps of annual mean NO2 concentrations at both background and roadside locations for 1998 have been calculated using modelling methods, which make use of four mathematically straightforward, empirically derived linear relationships. Maps of projected concentrations in 2005 and 2009 have also been calculated using an illustrative emissions scenario. For this emissions scenario, annual mean urban background NO2 concentrations in 2005 are likely to be below 40 μg m−3, in all areas except for inner London, where current national and international policies are expected to lead to concentrations in the range 40–41 μg m−3. Reductions in NOx emissions between 2005 and 2009 are expected to reduce background concentrations to the extent that our modelling results indicate that 40 μg m−3 is unlikely to be exceeded in background locations by 2009. Roadside NO2 concentrations in urban areas in 2005 and 2009 are expected to be significantly higher than in background locations. 21% of urban major road links are expected to have roadside NO2 greater than or equal to 40 μg m−3 in 2005 for our illustrative emissions scenario. The continuing downward trend in traffic emissions is likely to further reduce the number of links exceeding this value by 2009, with about 6% of urban major road links predicted to have concentrations higher than 40 μg m−3. The majority of these links are in the London area. The remaining links are generally confined to the most heavily trafficked roads in other big cities.  相似文献   

14.
The soil in a drained fjord area, reclaimed for arable farming, produced N2O mainly at 75–105 cm depth, just above the ground water level. Surface emissions of N2O were measured from discrete small areas by closed and open-flow chamber methods, using gas chromatographic analysis and over larger areas by integrative methods: flux gradient (analysis by FTIR), conditional sampling (analysis by TDLAS), and eddy covariance (analysis by TDLAS). The mean emission of N2O as determined by chamber procedures during a 9-day campaign was 162–202 μg N2ONm−2h−1 from a wheat stubble and 328–467 μg N2ONm−2 h−1 from a carrot field. The integrative approaches gave N2O emissions of 149–495 μg N2ONm−2 h−1, i.e. a range similar to those determined with the chamber methods. Wind direction affected the comparison of chamber and integrative methods because of patchiness of the N2O emission over the area. When a uniform area with a single type of vegetation had a dominant effect on the N2O gradient at the sampling mast, the temporal variation in N2O emission determined by the flux gradient/FTIR method and chamber methods was very similar, with differences of only 18% or less in mean N2O emission, well below the variation encountered with the chamber methods themselves. A detailed comparison of FTIR gradient and chamber data taking into account the precise emission footprint showed good agreement. It is concluded that there was no bias between the different approaches used to measure the N2O emission and that the precision of the measurements was determined by the spatial variability of the N2O emission at the site and the variability inherent in the individual techniques. These results confirm that measurements of N2O emissions from different ecosystems obtained by the different methods can be meaningfully compared.  相似文献   

15.
The relevance of indirect N2O emission is a controversial topic which is subject to much uncertainty. Only a small number of studies measure the indirect N2O emission at the interface from soil to stream. In addition, the majority of studies undertaken only cover a short-term period (<1 year). Therefore, limited information is available regarding the influence of seasonal or event effects, nor is there much information as to whether indirect N2O emissions are reflected by N2O in soil solutions. The present study aimed at clarifying these two questions along with the general relevance of dissolved nitrous oxide. A wetness gradient involving soil solutions of different soil types and surface waters within an N-saturated forest catchment (3.2 ha) was monitored over a period of 1 year. N2O concentrations in soil solutions (0.09–16.6 μg N l−1) were affected by events such as dry–wet cycles but did not reflect to the actual, indirect N2O emission at the soil-stream interface. It was assumed that N2O emission was due to N transformation processes. The N2O concentration at the spring was three times higher than the N2O concentrations in the soil solutions. Nevertheless, indirect N2O emission was still subordinate (<1%) to the direct emission of N2O. The weekly amount of indirect N2O emissions depended only on the stream flow rate (62% of the total annual amount). For this reason it was necessary to measure indirect N2O emission at short intervals and at the interface between soil and stream over a longer time period. Our results and the results of the reviewed studies show that the default IPCC emission factor (EF5-g=1.5%) overestimates the indirect N2O emission from ecosystems. The emission factor should therefore be lowered to about 0.1–0.3%. In addition, the results indicate that indirect N2O emission is an insignificant pathway in the N cycle of most ecosystems. However, final judgement will depend on long-term studies.  相似文献   

16.
Li K  Gong Y  Song W  He G  Hu Y  Tian C  Liu X 《Chemosphere》2012,88(1):140-143
To assess the effects of nitrogen (N) deposition on greenhouse gas (GHG) fluxes in alpine grassland of the Tianshan Mountains in central Asia, CH4, CO2 and N2O fluxes were measured from June 2010 to May 2011. Nitrogen deposition tended to significantly increase CH4 uptake, CO2 and N2O emissions at sites receiving N addition compared with those at site without N addition during the growing season, but no significant differences were found for all sites outside the growing season. Air temperature, soil temperature and water content were the important factors that influence CO2 and N2O emissions at year-round scale, indicating that increased temperature and precipitation in the future will exert greater impacts on CO2 and N2O emissions in the alpine grassland. In addition, plant coverage in July was also positively correlated with CO2 and N2O emissions under elevated N deposition rates. The present study will deepen our understanding of N deposition impacts on GHG balance in the alpine grassland ecosystem, and help us assess the global N effects, parameterize Earth System models and inform decision makers.  相似文献   

17.
In China, vegetable croplands are characterized by intensive fertilization and cultivation, which produce significant nitrogenous gases to the atmosphere. In this study, nitric oxides (NOX) and nitrous oxide (N2O) emissions from the croplands cultivated with three typical vegetables had been measured in Yangtze River Delta of China from September 2 to December 16, 2006. The NO fluxes varied in the ranges of 1.6–182.4, 1.4–2901 and 0.5–487 ng Nm?2 s?1 with averages of 33.8 ± 44.2, 360 ± 590 and 76 ± 112 (mean ± SD) ngNm?2 s?1 for cabbage, garlic, and radish fields (n = 88), respectively. N2O fluxes from the three vegetable fields were found to occur in pulses and significantly promoted by tillage with average values of 5.8, 8.8, and 4.3 ng Nm?2 h?1 for cabbage, garlic, and radish crops, respectively. Influence of vegetables canopy on the NO emission was investigated and quantified. It was found that on cloudy days the canopy can only shield NO emission from croplands soil while on sunny days it cannot only prevent NO emission but also assimilate NO through the open leaves stomas. Multiple linear regression analysis indicated that soil temperature was the most important factor in controlling NO emission, followed by fertilizer amount and gravimetric soil water content. About 1.2%, 11.56% and 2.56% of applied fertilizers N were emitted as NO–N and N2O–N from the cabbage, garlic and radish plots, respectively.  相似文献   

18.
Studies of forest nitrogen (N) budgets generally measure inputs from the atmosphere in wet and dry deposition and outputs via hydrologic export. Although denitrification has been shown to be important in many wetland ecosystems, emission of N oxides from forest soils is an important, and often overlooked, component of an ecosystem N budget. During 1 year (2002–03), emissions of nitric oxide (NO) and nitrous oxide (N2O) were measured from Sessile oak and Norway spruce forest soils in northeast Hungary. Accumulation in small static chambers followed by gas chromatography-mass spectrometry detection was used for the estimation of N2O emission flux. Because there are rapid chemical reactions of NO and ozone, small dynamic chambers were used for in situ NO flux measurements. Average soil emissions of NO were 1.2 and 2.1 μg N m−2 h−1, and for N2O were 15 and 20 μg N m−2 h−1, for spruce and oak soils, respectively. Due to the relatively high soil water content, and low C/N ratio in soil, denitrification processes dominate, resulting in an order of magnitude greater N2O emission rate compared to NO. The previously determined N balance between the atmosphere and the forest ecosystem was re-calculated using these soil emission figures. The total (dry+wet) atmospheric N-deposition to the soil was 1.42 and 1.59 g N m−2 yr−1 for spruce and oak, respectively, while the soil emissions are 0.14 and 0.20 g N m−2 yr−1. Thus, about 10–13% of N compounds deposited to the soil, mostly as and , were transformed in the soil and emitted back to the atmosphere, mostly as greenhouse gas (N2O).  相似文献   

19.
Das S  Ghosh A  Adhya TK 《Chemosphere》2011,84(1):54-62
Combination of divergent active principles to achieve broad-spectrum control is gaining popularity to manage the weed menace in intensive agriculture. However, such application could have non-target impacts on the soil processes affecting soil ecology and environmental interactions. A field experiment was conducted to investigate the impact of separate and combined applications of herbicides bensulfuron methyl and pretilachlor on the emission of N2O and CH4, and related soil and microbial parameters in a flooded alluvial field planted to rice cv Lalat. Single application of the herbicide bensulfuron methyl or pretilachlor resulted in a significant reduction of N2O and CH4 emissions while the combination of these two herbicides distinctly increased N2O and CH4 emissions. Cumulative N2O emissions (kg N2O-N) followed the order of bensulfuron methyl (0.35 kg ha−1) < pretilachlor (0.36 kg ha−1) < control (0.45 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% single dose (0.49 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% double dose (0.54 kg ha−1). Cumulative CH4 emissions (kg CH4), on the other hand, followed the order of bensulfuron methyl (47.89 kg ha−1) < pretilachlor (73.17 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% single dose (93.50 kg ha−1) < control (106.54 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% double dose (124.67 kg ha−1). The inhibitory effect of separate application of herbicides bensulfuron methyl 0.6% and pretilachlor 6.0% on N2O emission was linked to lower mineral N, lower denitrifying and nitrifying activity and low denitrifier and nitrifier populations. Inhibitory effect on CH4 emission, on the contrary, was linked to prevention in the drop of redox potential, lower readily mineralizable carbon (RMC) and microbial biomass carbon (MBC) contents as well as lower methanogenic and higher methanotrophic bacterial population. Admittedly, stimulatory effect of combined application of herbicides bensulfuron methyl 0.6% and pretilachlor 6.0% at double dose on N2O and CH4 emission was related to reversal of the identified indicators of inhibition. Results indicate that while individual application of herbicides bensulfuron methyl 0.6% or pretilachlor 6.0% can reduce N2O and CH4 emission from flooded soil planted to rice, their combined application at normal dose can keep the emission at a comparatively lower level with significantly higher grain yield as compared to the herbicides applied alone.  相似文献   

20.
Concentrated animal feeding operations around the globe generate large amounts of nitrous oxide (N2O) in the surrounding atmosphere. Liquid animal waste systems have received little attention with respect to N2O emissions. We hypothesized that the solution chemistry of animal waste aqueous suspensions would promote conditions that lead to N2O supersaturation at the liquid/air interface. The concentration of dissolved N2O in poultry litter (PL) aqueous suspensions at 25 °C was 0.36 μg N2O mL−1, at least an order of magnitude greater than that measured in water in equilibrium with ambient air, suggesting N2O supersaturation. There was a nonlinear increase in the N2O Henry constants of PL from 2810 atm/mole fraction at 35 °C to 17 300 atm/mole fraction at 41 °C. The extremely high N2O Henry constants were partially ascribed to N2O complexation with aromatic moieties. Complexed N2O structures were unstable at temperatures > 35 °C, supplying the headspace with additional free N2O concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号