首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Lake M?laren is the water supply and recreation area for more than 1 million people in central Sweden and subject to considerable environmental concern. To establish background data for assessments of contemporary levels of trophy and heavy metal pollution, sediment cores from the lake were analyzed. Diatom-inferred lake-water phosphorus concentrations suggest that pre-20th century nutrient levels in S?dra Bj?rkfj?rden, a basin in the eastern part of M?laren, were higher (c. 10-20 micrograms TP L-1) than previously assumed (c. 6 micrograms TP L-1). Stable lead isotope and lead concentration analyses from 3 basins (S. Bj?rkfj?rden, Gisselfj?rden and Ask?fj?rden) show that the lake was polluted in the 19th century and earlier from extensive metal production and processing in the catchment, particularly in the Bergslagen region. The lake has experienced a substantial improvement of the lead pollution situation in the 20th century following closure of the mining and metal industry. The lead pollution from the old mining industry was large compared to late-20th century pollution from car emissions, burning of fossil fuels and modern industries.  相似文献   

2.
A lake system in northern Saskatchewan receiving treated metal mine and mill effluent contains elevated levels of selenium (Se). An important step in the trophic transfer of Se is the bioaccumulation of Se by benthic invertebrates, especially primary consumers serving as a food source for higher trophic level organisms. Chironomids, ubiquitous components of many northern aquatic ecosystems, were sampled at lakes downstream of the milling operation and were found to contain Se concentrations ranging from 7 to 80 mg kg−1 dry weight. For comparison, laboratory-reared Chironomus dilutus were exposed to waterborne selenate, selenite, or seleno-DL-methionine under laboratory conditions at the average total Se concentrations found in lakes near the operation. Similarities in Se localization and speciation in laboratory and field chironomids were observed using synchrotron-based X-ray fluorescence (XRF) imaging and X-ray absorption spectroscopy (XAS). Selenium localized primarily in the head capsule, brain, salivary glands and gut lining, with organic Se species modeled as selenocystine and selenomethionine being the most abundant. Similarities between field chironomids and C. dilutus exposed in the laboratory to waterborne selenomethionine suggest that selenomethionine-like species are most readily accumulated, whether from diet or water.  相似文献   

3.
Ikem A  Adisa S 《Chemosphere》2011,82(2):259-267
Multivariate statistical methods (hierarchical clustering analysis: HCA, and principal component analysis: PCA) were used to study the influence of runoff and other diffuse pollution sources on lake water chemistry of Hough Park lake in Central Missouri. In addition, heavy metal concentrations in lake littoral sediment were evaluated for enrichment and probable ecological risk. The abundance of macronutrients in the lake water column followed the order: Ca > Mg > TIC > K > Na > S > NO3 - N > Fe > NH3 - N > TP. Heavy metal concentrations in the lake water column were below acute and chronic level ecological guidelines. TN:TP ratios (range: 4.1-6.8) revealed nitrogen limitation of algal and other photosynthetic plant growth. The HCA showed two major clusters of similarity between the sampling points suggesting different pollution levels for the clusters. PCA 1, 2 and 3 reflected the influence of natural biochemical processes, atmospheric deposition and runoff respectively on lake water chemistry. The abundance of heavy metals and the normalizing element (Li) in littoral sediment (<63 μm fraction) samples analyzed in decreasing order were: Mn > Zn > Cr > Ni > Li > Cu > Pb > Cd > Hg. The average concentration of Cr, Mn and Ni in littoral sediment fraction exceeded the respective lowest effects level (LEL) threshold limit. Metal bioavailability in sediment fraction was low since the most labile metal species contained between 0% and 11% of the total metal content. Using the risk assessment code (RAC) criteria, only Mn posed a medium risk to the lake system.  相似文献   

4.
The environmental pollution associated with mining and metallurgical activities reaches its greatest extent in several Andean cities and villages. Many locations in this area have accumulated through centuries a large amount of mining wastes, often disregarding the magnitude of this situation. However, in these naturally mineralized regions, there is little information available stating the exact role of mining and metallurgical industries in urban pollution. In this study, we demonstrated that the various metallic elements present in indoor dust (As, Cd, Cu, Pb, Sb, Sn, Zn) had a common origin and this contamination was increased by the proximity to the mines. Lead dust concentration was found at concerning levels for public health. In addition, wrong behaviors such as carrying mining workwear home contributed to this indoor dust pollution. Consequently, the constant exposure of the population could represent a potential health hazard for vulnerable groups, especially children.  相似文献   

5.
Bindler R  Korsman T  Renberg I  Högberg P 《Ambio》2002,31(6):460-465
Acid rain has caused extensive surface water acidification in Sweden since the mid-20th century. Sulfur emissions from fossil-fuel burning and metal production were the main sources of acid deposition. In the public consciousness, acid deposition is strongly associated with the industrial period, in particular the last 50 years. However, studies of lake-water pH development and atmospheric pollution, based on analyses of lake sediment deposits, have shown the importance of a long-term perspective. Here, we present a conceptual argument, using the sediment record, that large-scale atmospheric acid deposition has impacted the environment since at least Medieval times. Sulfur sources were the pre-industrial mining and metal industries that produced silver, lead and other metals from sulfide ores. This early excess sulfur deposition in southern Sweden did not cause surface water acidification; on the contrary, it contributed to alkalization, i.e. increased pH and productivity of the lakes. Suggested mechanisms are that the excess sulfur caused enhanced cation exchange in catchment soils, and that it altered iron-phosphorus cycling in the lakes, which released phosphorus and increased lake productivity.  相似文献   

6.
Four sediment cores collected in the Seine River basin and dated between 1916 and 2003 were analyzed for lead concentrations and isotopic composition. In all four cores, the measured Pb concentration (up to 460 mg kg−1) lies significantly above the natural background (27-40 mg kg−1), although a significant decrease (down to 75 mg kg−1) was observed during the second half of the 20th century which can be explained by the reduction of lead emissions. The 206Pb/207Pb ratio measured in these samples indicates that the main source of Pb used in the Paris conurbation is characterized by a “Rio Tinto” signature (defined as 206Pb/207Pb = 1.1634 ± 0.0001). A high contribution, up to 25%, from the leaded gasoline (characterized by 206Pb/207Pb = 1.08 ± 0.02) is revealed in the Seine River downstream Paris, indicating that lead from the leaded gasoline is preferentially released to the river.The dominating Pb signature in the Paris conurbation that is currently sampled through incinerators fumes (206Pb/207Pb = 1.1550 ± 0.0005) and waste water treatment plant (206Pb/207Pb = 1.154 ± 0.002), represents a mixture of highly recycled lead from the Rio Tinto mine and lead from leaded gasoline (imprinted by the low 206Pb/207Pb of the Broken Hill mine). This signature is called “urban” rather than “industrial”, because it is clearly distinct from the Pb that is found in areas contaminated by heavy industry, i.e. the heavy industries located on the Oise River which used lead from European ores characterized by high 206Pb/207Pb ratios (∼1.18-1.19) and possibly a minor amount of North American lead (206Pb/207Pb ratios > 1.20). The “urban” signature is also found in a rural area upstream of Paris in the 1970’s. At the Seine River mouth in 2003, Pb with an urban signature represents 70% of the total Pb sediment content, with the 30% remaining corresponding to natural Pb.  相似文献   

7.
The development of the mercury (Hg) amalgamation process in the mid-sixteenth century triggered the onset of large-scale Hg mining in both the Old and New Worlds. However, ancient Hg emissions associated with amalgamation and earlier mining efforts remain poorly constrained. Using a geochemical time-series generated from lake sediments near Cerro Rico de Potosí, once the world’s largest silver deposit, we demonstrate that pre-Colonial smelting of Andean silver ores generated substantial Hg emissions as early as the twelfth century. Peak sediment Hg concentrations and fluxes are associated with smelting and exceed background values by approximately 20-fold and 22-fold, respectively. The sediment inventory of this early Hg pollution more than doubles that associated with extensive amalgamation following Spanish control of the mine (1574–1900 AD). Global measurements of [Hg] from economic ores sampled world-wide indicate that the phenomenon of Hg enrichment in non-ferrous ores is widespread. The results presented here imply that indigenous smelting constitutes a previously unrecognized source of early Hg pollution, given naturally elevated [Hg] in economic silver deposits.  相似文献   

8.
Choi M  Furlong ET  Moon HB  Yu J  Choi HG 《Chemosphere》2011,85(8):1406-1413
Nonylphenolic compounds (NPs), coprostanol (COP), and cholestanol, major contaminants in industrial and domestic wastewaters, were analyzed in creek water, wastewater treatment plant (WWTP) effluent, and sediment samples from artificial Lake Shihwa and its vicinity, one of the most industrialized regions in Korea. We also determined mass discharge of NPs and COP, a fecal sterol, into the lake, to understand the linkage between discharge and sediment contamination. Total NP (the sum of nonylphenol, and nonylphenol mono- and di-ethoxylates) were 0.32-875 μg L−1 in creeks, 0.61-87.0 μg L−1 in WWTP effluents, and 29.3-230 μg g−1 TOC in sediments. Concentrations of COP were 0.09-19.0 μg L−1 in creeks, 0.11-44.0 μg L−1 in WWTP effluents, and 2.51-438 μg g−1 TOC in sediments. The spatial distributions of NPs in creeks and sediments from the inshore region were different from those of COP, suggesting that Lake Shihwa contamination patterns from industrial effluents differ from those from domestic effluents. The mass discharge from the combined outfall of the WWTPs, located in the offshore region, was 2.27 kg d−1 for NPs and 1.00 kg d−1 for COP, accounting for 91% and 95% of the total discharge into Lake Shihwa, respectively. The highest concentrations of NPs and COP in sediments were found in samples at sites near the submarine outfall of the WWTPs, indicating that the submarine outfall is an important point source of wastewater pollution in Lake Shihwa.  相似文献   

9.
Motor vehicles emit a cocktail of pollutants; however, little is known about the effects of these pollutants on bryophytes located in roadside habitats. Six bryophyte species were transplanted to either a woodland or a moorland site adjacent to a motorway, and were monitored over seven months from autumn through to spring. All species showed an increase in one or more of the following near the motorway: growth, membrane leakage, chlorophyll concentration, and nitrogen concentration. The strongest effects were observed in the first 50-100 m from the motorway: this was consistent with the nitrogen dioxide pollution profile, which decreased to background levels at a distance of 100-125 m. It is hypothesised that motor vehicle pollution was responsible for the effects observed, and that nitrogen oxides had a key influence. The observed effects may lead to changes in vegetation composition with significant implications for nature conservation and management of roadside sites.  相似文献   

10.
Despite many years of research about mercury pollution, data concerning high-latitude regions of Europe are limited, particularly studies of long-term temporal trends. It is not clear whether the mercury load at high latitudes follows the recent decreasing trends in European mercury emissions or whether the load is still high because of continuing global emissions. In this study we use sediments from 12 lakes, located above the Arctic Circle in the Swedish mountains, to assess the past and recent mercury pollution situation, especially for the last 200 y. The mercury load increased clearly in sediment deposited from the late 19th or early 20th century to a peak between 1960 and 1990. This peak represents an enrichment of 1.4 to 4.2 times over background concentrations. This enrichment is comparable with enrichments in sediments from lower latitudes as well as other Arctic regions. Since the 1990s mercury concentration has declined in 8 of the 12 lakes, i.e., similar to emission trends in Europe.  相似文献   

11.
Mercury pollution is caused by artisanal and small-scale gold mining (ASGM) operations along the Cikaniki River (West Java, Indonesia). The atmosphere is one of the primary media through which mercury can disperse. In this study, atmospheric mercury levels are estimated using the native epiphytic fern Asplenium nidus complex (A. nidus) as a biomonitor; these estimates shed light on the atmospheric dispersion of mercury released during mining.Samples were collected from 8 sites along the Cikaniki Basin during September-November, 2008 and September-November, 2009.The A. nidus fronds that were attached to tree trunks 1-3 m above the ground were collected and measured for total mercury concentration using cold vapor atomic absorption spectrometry (CVAAS) after acid-digestion. The atmospheric mercury was collected using porous gold collectors, and the concentrations were determined using double-amalgam CVAAS.The highest atmospheric mercury concentration, 1.8 × 103 ± 1.6 × 103 ng m−3, was observed at the mining hot spot, and the lowest concentration of mercury, 5.6 ± 2.0 ng m−3, was observed at the remote site from the Cikaniki River in 2009. The mercury concentrations in A. nidus were higher at the mining village (5.4 × 103 ± 1.6 × 103 ng g−1) than at the remote site (70 ± 30 ng g−1). The distribution of mercury in A. nidus was similar to that in the atmosphere; a significant correlation was observed between the mercury concentrations in the air and in A. nidus (r = 0.895, P < 0.001, n = 14). The mercury levels in the atmosphere can be estimated from the mercury concentration in A. nidus using a regression equation: log (HgA.nidu/ng g−1) = 0.740 log (HgAir/ng m−3) − 1.324.  相似文献   

12.
Yao X  Zhang Y  Zhu G  Qin B  Feng L  Cai L  Gao G 《Chemosphere》2011,82(2):145-155
Taihu Basin is the most developed area in China, which economic development has resulted in pollutants being produced and discharged into rivers and the lake. Lake Taihu is located in the center of the basin, which is characterized by a complex network of rivers and channels. To assess the sources and fate of dissolved organic matter (DOM) in surface waters, we determined the components and abundance of chromophoric dissolved organic matter (CDOM) within Lake Taihu and 66 of its tributaries, and 22 sites along transects from two main rivers. In Lake Taihu, there was a relative less spatial variation in CDOM absorption aCDOM(355) with a mean of 2.46 ± 0.69 m−1compared to the mean of 3.36 ± 1.77 m−1 in the rivers. Two autochthonous tryptophan-like components (C1 and C5), two humic-like components (C2 and C3), and one autochthonous tyrosine-like component (C4) were identified using the parallel factor analysis (PARAFAC) model. The C2 and C3 had a direct relationship with aCDOM(355), dissolved organic carbon (DOC), and chemical oxygen demand (COD). The separation of lake samples from river samples, on both axes of the Principal Component Analysis (PCA), showed the difference in DOM fluorophores between these various environments. Components C1 and C5 concurrently showed positive factor 1 loadings, while C4 was close to the negative factor 1 axis. Components C2 and C3 showed positive second factor loadings. The major contribution of autochthonous tryptophan-like components to lake samples is due to the autochthonous production of CDOM in the lake ecosystems. The results also showed that the differences in geology and associated land use control CDOM dynamics, such as the high levels of CDOM with terrestrial characteristics in the northwestern upstream rivers and low levels of CDOM with increased microbial characteristics in the southwestern upstream rivers. Most of river samples from the downstream regions in the eastern and southeastern plains had a similar relative abundance of humic-like fluorescence, with less of the tryptophan-like and more of the tyrosine-like contributions than did samples from upstream regions.  相似文献   

13.
Lead (Pb), like many other pollutants, is carried into the Arctic by long-range atmospheric transport from industrial centers at lower latitudes. Unlike other pollutants, Pb can be used to assess emission source regions through the use of stable Pb isotope analyses. Using sediment cores from 17 lakes (three profiles and 14 top/bottom sample pairs) in the Søndre Strømfjord (Kangerlussuaq) region, West Greenland (67°N), this study assesses the extent and origin of Pb pollution along a 150 km transect between the Inland Ice and Davis Strait. Like ice core analyses from the interior of Greenland, the isotope analyses suggest pre-industrial contamination, although significant concentration changes in the lake sediments do not occur until the 18th/19th centuries, with the maximum concentrations occurring about 1970. Compared to the background, the Pb concentrations in recent sediments have increased about 2.5-fold, with slightly higher enrichments towards the coast, where annual precipitation is highest. For all of the lakes, there is a major decline in the 206Pb/207Pb ratio in the recent sediments (mean 1.218±0.030) as compared to deeper sediments (mean 1.365±0.084). Using a Pb isotope mixing model, we calculated an excess Pb isotope ratio, i.e. the isotope ratio necessary to produce the observed declines in recent sediments. While studies of atmospheric aerosols in the high Arctic (206Pb/207Pb ratio ∼1.16) have indicated that Russian emissions (206Pb/207Pb ratio ∼1.15–1.16) are a dominant source of arctic pollution, the excess Pb ratios of the lake sediments in the Søndre Strømfjord region (206Pb/207Pb ratio ∼1.14–1.15), in the low Arctic, suggest that W Europe (206Pb/207Pb ratio ∼1.14) is also a major emission source for this region.  相似文献   

14.
Maki T  Hirota W  Motojima H  Hasegawa H  Rahman MA 《Chemosphere》2011,83(11):1486-1492
Aquatic arsenic cycles mainly depend on microbial activities that change the arsenic chemical forms and influence human health and organism activities. The microbial aggregates degrading organic matter are significantly related to the turnover between inorganic arsenic and organoarsenic compounds. We investigated the effects of microbial aggregates on organoarsenic mineralization in Lake Kahokugata using lake water samples spiked with dimethylarsinic acid (DMA). The lake water samples converted 1 μmol L−1 of DMA to inorganic arsenic for 28 d only under anaerobic and dark conditions in the presence of microbial activities. During the DMA mineralization process, organic aggregates >5.0 μm with bacterial colonization increased the densities. When the organic aggregates >5.0 μm were eliminated from the lake water samples using filters, the degradation activities were reduced. DMA in the lake water would be mineralized by the microbial aggregates under anaerobic and dark conditions. Moreover, DMA amendment enhanced the degradation activities in the lake water samples, which mineralized 50 μmol L−1 of DMA. The DMA-amended aggregates >5.0 μm completely degraded 1 μmol L−1 of DMA with a shorter incubation time of 7 d. The supplement of KNO3 and NaHCO3 to lake water samples also shortened the DMA-degradation period. Presumably, the bacterial aggregates involved in the chemical heterotrophic process would contribute to the DMA-biodegradation process in Lake Kahokugata, which is induced by the DMA amendment.  相似文献   

15.
One of the most obvious adverse effects of (chronic) pollution of the world's oceans and seas with mineral oil is the mortality of seabirds. Systematic surveys of beachcast corpses of birds ('beached bird surveys') have been used in many parts of the world to document the effect of oil pollution, but particularly so in Western Europe and in parts of North America. In this paper, the history, current schemes, methods and possible (future) use of beached bird surveys are described and discussed, because the value of beached bird surveys has been hotly disputed. Oil pollution is known since the late 19th century, while the first beached bird surveys were conducted in the 1920s. Due to the amount of man-power needed for these surveys, most beached bird survey programs thrived only through the work of a large number of volunteers. However, most programs have resulted in substantial amounts of high quality data, often covering many consecutive years. One of the main shortcomings of many beached bird survey programs was the emphasis on stranded bird numbers rather than on relative measures, such as oil rates (percentage of corpses oiled of all corpses found). Sources of pollution, particularly so in chronically polluted regions such as the North Sea, the Baltic, the Mediterranean and the waters around Newfoundland, are insufficiently known, but could be studied through a sampling program connected to beached bird surveys. Suggestions for standardization of methods are presented, which could lead to a global and highly sensitive monitoring instrument of marine oil pollution.  相似文献   

16.
Wang Y  Wang P  Fu J  Jiang G 《Chemosphere》2012,86(3):217-222
The effluents and sludge from municipal sewage treatment plants (MSTPs) are considered as potential sources of many contaminants to the ambient environments. In the present work, the air-water exchange of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) was studied using passive air samplers at an urban lake, which receives the effluents from a MSTP in Beijing, China. The concentrations of PCBs and PBDEs in atmosphere were in the range 15.5-108 ng sample−1 and 2.37-27.8 ng sample−1, respectively, during the sampling period (August, 2007-July, 2008). The predominant PCBs and PBDEs were lowly halogenated congeners. The calculation for the exchange fluxes of PCBs and PBDEs using fugacity model showed that, the net exchange fluxes in different seasons were closely related to the halogen number of different congeners. Except for CBs-28 and 52, the net exchange fluxes was mainly directed from air to water for most of predominant congeners, which implied that the lower chlorinated CBs were dominated by volatilization process rather than the dry/wet depositions and diffusion between air-water interface, additionally, for heavy congeners, the dry/wet deposition process was an important source of PCBs and PBDEs in this lake.  相似文献   

17.
Information on changes in precipitation chemistry in the rapidly expanding Cape Metropolitan Area (CMA) of South Africa is scarce. To obtain a long-term record of N deposition we investigated changes in moss foliar N, C:N ratios and nitrogen isotope values that might reflect precipitation chemistry. Tissue from 9 species was obtained from herbarium specimens collected between 1875 and 2000 while field samples were collected in 2001/2002. There is a strong trend of increasing foliar N content in all mosses collected over the past century (1.32-1.69 %N). Differences exist between ectohydric mosses which have higher foliar N than the mixohydric group. C:N ratios declined while foliar δ15N values showed no distinct pattern. From relationships between moss tissue N and N deposition rates we estimated an increase of 6-13 kg N ha−1 a−1 since 1950. Enhanced N deposition rates of this magnitude could lead to biodiversity losses in native ecosystems.  相似文献   

18.
The Gironde fluvial estuarine system is impacted by historic metal pollution (e.g. Cd, Zn, Hg) and oysters (Crassostrea gigas) from the estuary mouth have shown extremely high Cd concentrations for decades. Based on recent work (Chiffoleau et al., 2005) revealing anomalously high Ag concentrations (up to 65 mg kg−1; dry weight) in Gironde oysters, we compared long-term (∼1955-2001) records of Ag and Cd concentrations in reservoir sediment with the respective concentrations in oysters collected between 1979 and 2010 to identify the origin and historical trend of the recently discovered Ag anomaly. Sediment cores from two reservoirs upstream and downstream from the main metal pollution source provided information on (i) geochemical background (upstream; Ag: ∼0.3 mg kg−1; Cd: ∼0.8 mg kg−1) and (ii) historical trends in Ag and Cd pollution. The results showed parallel concentration-depth profiles of Ag and Cd supporting a common source and transport. Decreasing concentrations since 1986 (Cd: from 300 to 11 mg kg−1; Ag: from 6.7 to 0.43 mg kg−1) reflected the termination of Zn ore treatment in the Decazeville basin followed by remediation actions. Accordingly, Cd concentrations in oysters decreased after 1988 (from 109 to 26 mg kg−1, dry weight (dw)), while Ag bioaccumulation increased from 38 up to 116 mg kg−1, dw after 1993. Based on the Cd/Ag ratio (Cd/Ag ∼ 2) in oysters sampled before the termination of zinc ore treatment (1981-1985) and assuming that nearly all Cd in oysters originated from the metal point source, we estimated the respective contribution of Ag from this source to Ag concentrations in oysters. The evolution over the past 30 years clearly suggested that the recent, unexplained Ag concentrations in oysters are due to increasing contributions (>70% after 1999) by other sources, such as photography, electronics and emerging Ag applications/materials.  相似文献   

19.
We compare a global model of mercury to sediment core records to constrain mercury emissions from the 19th century North American gold and silver mining. We use information on gold and silver production, the ratio of mercury lost to precious metal produced, and the fraction of mercury lost to the atmosphere to calculate an a priory mining inventory for the 1870s, when the historical gold rush was at its highest. The resulting global mining emissions are 1630 Mg yr?1, consistent with previously published studies. Using this a priori estimate, we find that our 1880 simulation over-predicts the mercury deposition enhancements archived in lake sediment records. Reducing the mining emissions to 820 Mg yr?1 improves agreement with observations, and leads to a 30% enhancement in global deposition in 1880 compared to the pre-industrial period. For North America, where 83% of the mining emissions are located, deposition increases by 60%. While our lower emissions of atmospheric mercury leads to a smaller impact of the North American gold rush on global mercury deposition than previously estimated, it also implies that a larger fraction of the mercury used in extracting precious metals could have been directly lost to local soils and watersheds.  相似文献   

20.
Contaminated food through dietary intake has become the main potential risk impacts on human health. This study investigated concentrations of rare earth elements (REEs) in soil, vegetables, human hair and blood, and assessed human health risk through vegetables consumption in the vicinity of a large-scale mining area located in Hetian Town of Changting County, Fujian Province, Southeast China. The results of the study included the following mean concentrations for total and bio-available REEs of 242.92 ± 68.98 (135.85–327.56) μg g−1 and 118.59 ± 38.49 (57.89–158.96) μg g−1 dry weight (dw) in agricultural soil, respectively, and total REEs of 3.58 ± 5.28 (0.07–64.42) μg g−1 dw in vegetable samples. Concentrations of total REEs in blood and hair collected from the local residents ranged from 424.76 to 1274.80 μg L−1 with an average of 689.74 ± 254.25 μg L−1 and from 0.06 to 1.59 μg g−1 with an average of 0.48 ± 0.59 μg g−1 of the study, respectively. In addition, a significant correlation was observed between REEs in blood and corresponding soil samples (R2 = 0.6556, p < 0.05), however there was no correlation between REEs in hair and corresponding soils (p > 0.05). Mean concentrations of REEs of 2.85 (0.59–10.24) μg L−1 in well water from the local households was 53-fold than that in the drinking water of Fuzhou city (0.054 μg L−1). The health risk assessment indicated that vegetable consumption would not result in exceeding the safe values of estimate daily intake (EDI) REEs (100−110 μg kg−1 d−1) for adults and children, but attention should be paid to monitoring human beings health in such rare earth mining areas due to long-term exposure to high dose REEs from food consumptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号