首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Five organic matters, three phosphate compounds, zerovalent iron grit (ZVIG, 2% by soil weight), two alkaline compounds, and two commercial formulations were incorporated, singly and some combined with ZVIG, into a highly Cu-contaminated topsoil (Soil P7, 2600 mg Cu kg−1) from a wood treatment facility. Formulations and two composts were also singly incorporated into a slightly Cu-contaminated topsoil (Soil P10, 118 mg Cu kg−1) from the facility surrounding. This aimed to reduce the labile pool of Cu and its accumulation in beans cultivated on potted soils in a climatic chamber. Lowest Cu concentration in soil solution occurred in P7 soils amended with activated carbon (5%) and ZVIG, singly and combined. Basic slag (3.9%) and compost of sewage sludge (5%) combined with ZVIG promoted shoot production and limited foliar Cu accumulation. For amended P10 soils, no changes occurred in soil solution and foliar Cu concentrations, but one compost increased shoot production.  相似文献   

2.
The pot-culture experiment and field studies were conducted to screen out and identify cadmium (Cd) excluders from 40 Chinese cabbage genotypes for food safety. The results of the pot-culture experiment indicated that the shoot Cd concentrations under three treatments (1.0, 2.5 and 5.0 mg Cd kg−1 Soil) varied significantly (p < 0.05), with average values of 0.70, 3.07 and 5.83 mg kg−1, respectively. The Cd concentrations in 12 cabbage genotypes were lower than 0.50 mg kg−1. The enrichment factors (EFs) and translocation factors (TFs) in 8 cabbage genotypes were lower than 1.0. The field studies further identified Lvxing 70 as a Cd-excluder genotype (CEG), which is suitable to be planted in low Cd-contaminated soils (Cd concentration should be lower than 1.25 mg kg−1) for food safety.  相似文献   

3.
Usman AR  Lee SS  Awad YM  Lim KJ  Yang JE  Ok YS 《Chemosphere》2012,87(8):872-878
In recent decades, heavy metal contamination in soil adjacent to chromated copper arsenate (CCA) treated wood has received increasing attention. This study was conducted to determine the pollution level (PL) based on the concentrations of Cr, Cu and As in soils and to evaluate the remediative capacity of native plant species grown in the CCA contaminated site, Gangwon Province, Korea. The pollution index (PI), integrated pollution index (IPI), bioaccumulation factors (BAFshoots and BAFroots) and translocation factor (TF) were determined to ensure soil contamination and phytoremediation availability. The 19 soil samples from 10 locations possibly contaminated with Cr, Cu and As were collected. The concentrations of Cr, Cu and As in the soil samples ranged from 50.56-94.13 mg kg−1, 27.78-120.83 mg kg−1, and 0.13-9.43 mg kg−1, respectively. Generally, the metal concentrations decreased as the distance between the CCA-treated wood structure and sampling point increased. For investigating phytoremediative capacity, the 19 native plant species were also collected in the same area with soil samples. Our results showed that only one plant species of Iris ensata, which presented the highest accumulations of Cr (1120 mg kg−1) in its shoot, was identified as a hyperaccumulator. Moreover, the relatively higher values of BAFshoot (3.23-22.10) were observed for Typha orientalis, Iris ensata and Scirpus radicans Schk, suggesting that these plant species might be applicable for selective metal extraction from the soils. For phytostabilization, the 15 plant species with BAFroot values > 1 and TF values < 1 were suitable; however, Typha orientalis was the best for Cr.  相似文献   

4.
The main purpose of this work was to identify the role of soil humic acids (HAs) in controlling the behavior of Cu(II) in vineyard soils by exploring the relationship between the chemical and binding properties of HA fractions and those of soil as a whole. The study was conducted on soils with a sandy loam texture, pH 4.3-5.0, a carbon content of 12.4-41.0 g kg−1 and Cu concentrations from 11 to 666 mg kg−1. The metal complexing capacity of HA extracts obtained from the soils ranged from 0.69 to 1.02 mol kg−1, and the stability constants for the metal ion-HA complexes formed, log K, from 5.07 to 5.36. Organic matter-quality related characteristics had little influence on Cu adsorption in acid soils, especially if compared with pH, the degree of Cu saturation and the amount of soil organic matter.  相似文献   

5.
Polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) were monitored over 56 days in calcareous contaminated-soil amended with either or both biochar and Eisenia fetida. Biochar reduced total (449 to 306 mg kg−1) and bioavailable (cyclodextrin extractable) (276 to 182 mg kg−1) PAHs, PAH concentrations in E. fetida (up to 45%) but also earthworm weight. Earthworms increased PAH bioavailability by >40%. Combined treatment results were similar to the biochar-only treatment. Earthworms increased water soluble Co (3.4 to 29.2 mg kg−1), Cu (60.0 to 120.1 mg kg−1) and Ni (31.7 to 83.0 mg kg−1) but not As, Cd, Pb or Zn; biochar reduced water soluble Cu (60 to 37 mg kg−1). Combined treatment results were similar to the biochar-only treatment but gave a greater reduction in As and Cd mobility. Biochar has contaminated land remediation potential, but its long-term impact on contaminants and soil biota needs to be assessed.  相似文献   

6.
Guan TX  He HB  Zhang XD  Bai Z 《Chemosphere》2011,82(2):215-222
Fertilization of crops with livestock manure (LM) is a common waste disposal option, but repeated application of LM containing high concentrations of heavy metals such as Cu could lead to crop toxicity and environmental risk. To examine the Cu availability and uptake by wheat in a Mollisol affected by Cu-enriched LM, pot experiments were conducted. LM (376 mg kg−1 Cu originally) was spiked with different concentrations of Cu (0, 100, 200, 400, 600 and 800 mg kg−1 soil, added as CuSO4) to simulate soil Cu contamination by LM application. The results indicated that Cu was predominately distributed in organic bound fraction, while the most drastic increase was found in reducible fraction. Acid-extractable fraction played a more important role than other fractions in controlling the mobility and bioavailability of Cu. DTPA-extractable Cu may overestimate the Cu bioavailability since DTPA solution could extract soluble and part of stable forms. The application of LM at 1% level significantly decline the Cu mobility, but that at 3% level exhibited the opposite effect.Although the quantities of Cu in wheat was very low compared with the accumulation in soil, Cu concentrations in roots increased evidently from 12 to 533 mg kg−1 and that in aerial parts were in a narrow range from 12.1 to 32.7 mg kg−1, indicating the more sensitivity of roots to the Cu toxicity. The Cu concentrations in grains after 3% manure application did not approach the threshold for Cu toxicity (<20 mg kg−1) even at higher Cu addition rates.  相似文献   

7.
Okorie A  Entwistle J  Dean JR 《Chemosphere》2012,86(5):460-467
The pseudo-total and oral bioaccessible concentration of six potentially toxic elements (PTEs) in urban street dust was investigated. Typical pseudo-total concentrations across the sampling sites ranged from 4.4 to 8.6 mg kg−1 for As, 0.2-3.6 mg kg−1 for Cd, 25-217 mg kg−1 for Cu, 14-46 mg kg−1 for Ni, 70-4261 mg kg−1 for Pb, and, 111-652 mg kg−1 for Zn. This data compared favourably with other urban street dust samples collected and analysed in a variety of cities globally; the exception was the high level of Pb determined in a specific sample in this study. The oral bioaccessibility of PTEs in street dust is also assessed using in vitro gastrointestinal extraction (Unified Bioaccessibility Method, UBM). Based on a worst case scenario the oral bioaccessibility data estimated that Cd and Zn had the highest % bioaccessible fractions (median >45%) while the other PTEs i.e. As, Cu, Ni and Pb had lower % bioaccessible fractions (median <35%). The pseudo-total and bioaccessible concentrations of PTEs in the samples has been compared to estimated tolerable daily intake values based on unintentional soil/dust consumption. Cadmium, Cu and Ni are well within the oral tolerable daily intake rates. With respect to As and Pb, only the latter exceeds the TDIoral if we model ingestion rate based on atmospheric ‘dustiness’ rather than the US EPA (2008) unintentional soil/dust consumption rate of 100 mg d−1. We consider it unlikely that even a child with pica tendencies would ingest as much as 100 mg soil/dust during a daily visit to the city centre, and in particular to the sites with elevated Pb concentrations observed in this study.  相似文献   

8.
Fluoride (F) contamination is a global environmental problem, as there is no cure of fluorosis available yet. Prosopis juliflora is a leguminous perennial, phreatophyte tree, widely distributed in arid and semi-arid regions of world. It extensively grows in F endemic areas of Rajasthan (India) and has been known as a “green” solution to decontaminate cadmium, chromium and copper contaminated soils. This study aims to check the tolerance potential of P. juliflora to accumulate fluoride. For this work, P. juliflora seedlings were grown for 75 d on soilrite under five different concentrations of F viz., control, 25, 50, 75 and 100 mg NaF kg−1. Organ-wise accumulation of F, bioaccumulation factor (BF), translocation factor (TF), growth ratio (GR) and F tolerance index (TI) were examined. Plant accumulated high amounts of F in roots. The organ-wise distribution showed an accumulation 4.41 mg kg−1dw, 12.97 mg kg−1dw and 16.75 mg kg−1dw F, in stem, leaves and roots respectively. The results indicated significant translocation of F from root into aerial parts. The bioaccumulation and translocation factor values (>1.0) showed high accumulation efficiency and tolerance of P. juliflora to F. It is concluded that P. juliflora is a suitable candidate for phytoremediation purpose and can be explored further for the decontamination of F polluted soils.  相似文献   

9.
Szopka K  Karczewska A  Kabała C 《Chemosphere》2011,83(11):1507-1512
The study was aimed to examine total concentrations and pools of Hg in surface layers of soils in the Karkonosze Mountains, dependent on soil properties and site locality. Soil samples were collected from a litter layer and the layers 0-10 cm and 10-20 cm, at 68 sites belonging to the net of a monitoring system, in two separate areas, and in three altitudinal zones: below 900 m, 900-1100 m, and over 1100 m. Air-borne pollution was the major source of mercury in soils. Hg has accumulated mainly in the litter (where its concentrations were the highest), and in the layer 0-10 cm. Hg concentrations in all samples were in the range 0.04-0.97 mg kg−1, with mean values 0.38, 0.28, and 0.14 mg kg−1 for litter and the layers 0-10 cm and 10-20 cm, respectively. The highest Hg concentrations in the litter layer were found in the intermediate altitudinal zone, whereas Hg concentrations in the layer 0-10 cm increased with increasing altitude. Soil quality standard for protected areas (0.50 mg kg−1) was exceeded in a few sites. The pools of Hg accumulated in soils were in the range: 0.8-84.8 mg m−2, with a mean value of 16.5 mg m−2, and they correlated strongly with the pools of stored organic matter.  相似文献   

10.
Qin HB  Zhu JM  Su H 《Chemosphere》2012,86(6):626-633
A high degree of association between Selenium (Se) and organic matter has been demonstrated in natural environments, but Se fractions and speciation in organic matter is unclear. In this study, a method for quantifying organic matter associated with Se (OM-Se) was developed to investigate Se fractions in organic matter in Se-rich soils and weathered stone coal from Enshi, China, where Se poisoning of humans and livestock has been documented. Initially, Se was extracted using water and a phosphate buffer. Subsequently, OM-Se was extracted using NaOH, and then speciated into Se associated with fulvic acids (FA-Se) and humic acids (HA-Se). Both FA-Se and HA-Se were further speciated into the weakly bound and strongly bound fractions using a customized hydride generation reactor. The results show that FA-Se (1.91-479 mg kg−1) is the predominant form of Se in all Se-rich soils and the weathered stone coal samples, accounting for more than 62% of OM-Se (3.07-484 mg kg−1). Weakly bound FA-Se (1.33-450 mg kg−1) was prevalent in the total FA-Se, while weakly bound HA-Se (0.62-26.2 mg kg−1) was variable in the total HA-Se (1.15-32.5 mg kg−1). These data indicate that OM-Se could play a significant source and sink role in the biogeochemical cycling of Se in the supergene environment. Weakly bound FA-Se seems to act as a potential source for bioavailable Se, whereas strongly bound HA-Se is a possible OM-Se sink which is not readily transformed into bioavailable Se.  相似文献   

11.
Liu CP  Luo CL  Xu XH  Wu CA  Li FB  Zhang G 《Chemosphere》2012,86(11):1106-1111
The ability of calcium peroxide (CaO2) to immobilize As of contaminated soil was studied using pot and field experiments. In pot experiment, CaO2 applied at 2.5 and 5 g kg−1 significantly increased celery shoot weight and decreased shoot As accumulation, which was ascribed to the formation of stable crystalline Fe and Al oxides bound As and the reduction of labile As fractions in the soil. The labile As fractions were pH dependent and it followed a “V” shaped profile with the change of pH. In field experiment, the dose of CaO2 application at 750 kg ha−1 was optimal and at which the celery was found to produce the highest biomass (63.4 Mg ha−1) and lowest As concentration (0.43 mg kg−1). CaO2 probably has a promising potential as soil amendment to treat As contaminated soils.  相似文献   

12.
An iron-rich water treatment residue (WTR) consisting mainly of ferrihydrite was used for immobilization of arsenic and chromium in a soil contaminated by wood preservatives. A leaching batch experiment was conducted using two soils, a highly contaminated soil (1033 mg kg−1 As and 371 mg kg−1 Cr) and slightly contaminated soil (225 mg kg−1 As and 27 mg kg−1 Cr). Compared to an untreated reference soil, amendment with 5% WTR reduced leaching in the highly contaminated soil by 91% for Cr and 98% for As. No aging effect was observed after 103 d. In a small field experiment, soil was mixed with 2.5% WTR in situ. Pore water was extracted during 3 years from the amended soil and a control site. Pore water arsenic concentrations in the amended soil were more than two orders of magnitude lower than in the control for the upper samplers. An increased release of arsenic was observed during winter in both fields, mostly in the deepest samplers. This is likely due to the formation of a pseudo-gley because of precipitation surplus. Stabilization of arsenic and chromium contaminated soil using WTR is a promising method but the transformation of ferrihydrite in soil proves a concern in case of waterlogged soils. Still the amendment minimized the leaching of arsenic, even in cases of seasonal releases.  相似文献   

13.
Guo H  Yao J  Cai M  Qian Y  Guo Y  Richnow HH  Blake RE  Doni S  Ceccanti B 《Chemosphere》2012,87(11):1273-1280
The influence of petroleum contamination on soil microbial activities was investigated in 13 soil samples from sites around an injection water well (Iw-1, 2, 3, 4) (total petroleum hydrocarbons (TPH): 7.5-78 mg kg−1), an oil production well (Op-1, 2, 3, 4, 5) (TPH: 149-1110 mg kg−1), and an oil spill accident well (Os-1, 2, 3, 4) (TPH: 4500-34 600 mg kg−1). The growth rate constant (μ) of glucose stimulated organisms, determined by microcalorimetry, was higher in Iw soil samples than in Op and Os samples. Total cultivable bacteria and fungi and urease activity also decreased with increasing concentration of TPH. Total heat produced demonstrated that TPH at concentrations less than about 1 g kg−1 soil stimulated anaerobic respiration. A positive correlation between TPH and soil organic matter (OM) and stimulation of fungi-bacteria-urease at low TPH doses suggested that TPH is bound to soil OM and slowly metabolized in Iw soils during OM consumption. These methods can be used to evaluate the potential of polluted soils to carry out self-bioremediation by metabolizing TPH.  相似文献   

14.
Fresh and pasteurized milk samples from Kampala markets were analyzed for organochlorine pesticides using a gas chromatograph equipped with an electron capture detector. Five organochlorine pesticides, namely; aldrin, dieldrin, endosulfan, lindane, DDT and its metabolites were detected in the milk samples and confirmed with a gas chromatograph equipped with a mass spectrometer [GC-MS]. The mean values are expressed in mg kg−1 milk fat (mf) basis. The mean concentration in the fresh milk (= 54) were: 0.026 ± 0.003 mg kg−1 mf; 0.002 ± 0.0003 mg kg−1, below the detection limit; 0.007 ± 0.003 mg kg−1, 0.009 ± 0.002 mg kg−1 milk fat for lindane, endosulfan dieldrin and aldrin, respectively. The mean concentrations of p,p′-DDE; p,p′-DDT and o,p′-DDT were 0.009 ± 0.002 mg kg−1; 0.033 ± 0.007 mg kg−1 and 0.008 ± 0.001 mg kg−1 mf, respectively in the fresh milk samples.In the pasteurized milk samples (= 47), the mean concentrations recorded were: 0.008 ± 0.003 mg kg−1, 0.025 ± 0.004 mg kg−1, and 0.007 ± 0.001 mg kg−1, respectively for p,p′-DDE; p,p′-DDT and o,p′-DDT.Alpha and beta-endosulfan recorded the concentration below the detection limit and the mean of 0.022 ± 0.001 mg kg−1 mf, 0.005 ± 0.002 mg kg−1 mf, and 0.006 ± 0.0002 mg kg−1 mf, respectively for lindane, dieldrin and aldrin. Although, most of the residues detected were above the residue limits set by the FAO/WHO (2008), bioaccumulation of these residues is likely to pose health risks to the consumers of milk in Uganda.  相似文献   

15.
Metal uptake and its effect on foliar metallothionein 2b (MT2b) mRNA levels were studied in hybrid aspen (Populus tremula × tremuloides) in field conditions. The trees were planted on a site contaminated with several metals, including cadmium (mean 5.1 mg kg−1), chromium (80 mg kg−1), copper (180 mg kg−1), nickel (81 mg kg−1), vanadium (240 mg kg−1) and zinc (520 mg kg−1). Of the ten trace elements analyzed, only Cd and Zn accumulated in the leaves with maximal foliar concentrations of 35 and 2400 mg kg−1 (dry weight), respectively. There was a strong correlation between Cd and Zn concentrations and bioaccumulation factors (concentration in plant/soil) in the leaves, branches and roots, suggesting similar transport mechanisms for these two metals. The levels of MT2b correlated with Cd and Zn concentrations in the leaves, demonstrating that increased MT2b expression is one of the responses of hybrid aspen to chronic metal exposure.  相似文献   

16.
Li W  Ma Y  Li L  Qin DM  Wu YJ 《Chemosphere》2011,82(6):829-833
The residual levels and dissipation rate of trichlorfon, and its degradation product, dichlorvos, in cabbage crops and the soil in which these were grown, were determined by gas chromatography at two geographically distant experimental sites, one in Kunming and one in Beijing, China. Trichlorfon was applied at two dosages (900 g ai ha−1 and 1350 g ai ha−1). Maximum final residues of trichlorfon in soil and cabbage were 1.23 mg kg−1 and 1.81 mg kg−1 respectively at Kunming, and 0.35 mg kg−1 and 0.70 mg kg−1 respectively at Beijing. However, the final residues of dichlorvos in both cabbage and soil was only 0.04 mg kg−1 at Kunming, and only 0.03 mg kg−1, or “not detectable”, at Beijing. The mean half-life of trichlorfon in cabbage was 1.80 d with a dissipation rate of 90% over 5 d, while that in soil was 3.05 d with a dissipation rate of 90% over 14 d at one experimental site. The dissipation rates of trichlorfon and its degradation product dichlorvos at the two experimental sites were different, suggesting that degradation of these pesticides was affected by local soil characteristics and climate. When applied at both the recommended dosage and at 1.5 times this, no detectable residues of either trichlorfon or dichlorvos were found in soil or cabbage at harvest. Although trichlorfon can easily degrade into dichlorvos, which is highly toxic to humans and other animals, the observed low residual levels of dichlorvos suggest that trichlorfon is safe when applied at the recommended dosage.  相似文献   

17.
The rates of radial oxygen loss (ROL), root porosity, concentrations of arsenic (As), iron (Fe) and manganese (Mn) in shoot and root tissues and on root surfaces, As tolerances, and their relationships in different wetland plants were investigated based on a hydroponic experiment (control, 0.8, 1.6 mg As L−1) and a soil pot trail (control, 60 mg As kg−1). The results revealed that wetland plants showed great differences in root porosity (9-64%), rates of ROL (55-1750 mmo1 O2 kg−1 root d.w. d−1), As uptake (e.g., 8.8-151 mg kg−1 in shoots in 0.8 mg As L−1 treatment), translocation factor (2.1-47% in 0.8 mg As L−1) and tolerance (29-106% in 0.8 mg As L−1). Wetland plants with higher rates of ROL and root porosity tended to form more Fe/Mn plaque, possess higher As tolerance, higher concentrations of As on root surfaces and a lower As translocation factor so decreasing As toxicity.  相似文献   

18.
Chelant-aided enhancement of lead mobilization in residential soils   总被引:3,自引:0,他引:3  
Chelation of metals is an important factor in enhancing solubility and hence, availability to plants to promote phytoremediation. We compared the effects of two chelants, namely, ethylenediaminetetraacetic acid (EDTA) and ethylenediaminedisuccinic acid (EDDS) in enhancing mobilized lead (Pb) in Pb-based paint contaminated residential soils collected from San Antonio, Texas and Baltimore, Maryland. Batch incubation studies were performed to investigate the effectiveness of the two chelants in enhancing mobilized Pb, at various concentrations and treatment durations. Over a period of 1 month, the mobilized Pb pool in the San Antonio study soils increased from 52 mg kg−1 to 287 and 114 mg kg−1 in the presence of 15 mM kg−1 EDTA and EDDS, respectively. Stepwise linear regression analysis demonstrated that pH and organic matter content significantly affected the mobilized Pb fraction. The regression models explained a large percentage, from 83 to 99%, of the total variation in mobilized Pb concentrations.  相似文献   

19.
Food utilization and growth of the 5th and 6th instar Spodoptera litura Fabricius larvae, and its effect on reproduction potential was evaluated by feeding larvae diets with different doses of Ni for 3 generations. Dose-dependent relationships between Ni levels and food consumption and growth were variable with different larval developmental period and Ni exposure duration. RCR, AD and RGR of the 6th instar larvae were much more affected by Ni exposure than those of 5th instar larvae, and the effects were strongest in the 3rd generation. It was found that RCR was significantly stimulated after 1 and 20 mg kg−1 Ni exposure, while AD was significantly inhibited after 1, 5, 10 and 40 mg kg−1 Ni exposure. However, lower levels of Ni (?5 mg kg−1) significantly increased and higher levels of Ni (?10 mg kg−1) significantly decreased RGR. In 3 successive generations, 10 mg kg−1 Ni significantly increased the ECI and ECD of the 5th instar larvae, and 5 mg kg−1 Ni significantly increased the ECD of the 6th instar larvae. However, ECD were all significantly inhibited with 20 mg kg−1 Ni exposure. Results also revealed that durations of larvae were shortened at low levels of Ni, but extended at high levels of Ni. Fecundity was inhibited by the highest Ni doses in each generation, while improved by low Ni doses in the 3rd generation. Hatching rates in all treatments were significantly decreased in a Ni dose-dependent manner. Study indicated that effects of Ni on these parameters were predominant with the increasing Ni exposure period.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号