首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stratospheric ozone depletion, UV-B radiation and crop disease   总被引:9,自引:0,他引:9  
Ultraviolet-B radiation (UV-B: 290-315 nm) is expected to increase as the result of stratospheric ozone depletion. Within the environmental range, UV-B effects on host plants appear to be largely a function of photomorphogenic responses, while effects on fungal pathogens may include both photomorphogenesis and damage. The effects of increased UV-B on plant-pathogen interactions has been studied in only a few pathosystems, and have used a wide range of techniques, making generalisations difficult. Increased UV-B after inoculation tends to reduce disease, perhaps due to direct damage to the pathogen, although responses vary markedly between and within pathogen species. Using Septoria tritici infection of wheat as a model system, it is suggested that even in a species that is inherently sensitive to UV-B, the effects of ozone depletion in the field are likely to be small compared with the effects of variation in UV-B due to season and varying cloud. Increased UV-B before inoculation causes a range of effects in different systems, but an increase in subsequent disease is a common response, perhaps due to changes in host surface properties or chemical composition. Although it seems unlikely that most crop diseases will be greatly affected by stratospheric ozone depletion within the limits currently expected, the lack of a detailed understanding of the mechanisms by which UV-B influences plant-pathogen interactions in most pathosystems is a significant limit to such predictions.  相似文献   

2.
Although terrestrial vegetation has been exposed to UV-B radiation and ozone over the course of evolutionary history, it is essential to view the effects on vegetation of changing levels of these factors in the context of other features of climate change, such as increasing CO(2) levels and changes in temperature and precipitation patterns. Much of our understanding of the impacts of increased UV-B and ozone levels has come from studies of the effects of each individual factor. While such information may be relevant to a wider understanding of the roles that these factors may play in climate change, experience has shown that the interactions of environmental stresses on vegetation are rarely predictable. A further limitation on the applicability of such information results from the methodologies used for exposing plants to either factor. Much of our information comes from growth chamber, greenhouse or field studies using experimental protocols that made little or no provision for the stochastic nature of the changes in UV-B and ozone levels at the earth's surface, and hence excluded the roles of repair mechanisms. As a result, our knowledge of dose-response relationships under true field conditions is both limited and fragmentary, given the wide range of sensitivities among species and cultivars. Adverse effects of increased levels of either factor on vegetation are qualitatively well established, but the quantitative relationships are far from clear. In both cases, sensitivity varies with stage of plant development. At the population and community levels, differential responses of species to either factor has been shown to result in changes in competitiveness and community structure. At the mechanistic level, ozone generally inhibits photosynthetic gas exchange under both controlled and field conditions, and although UV-B is also inhibitory in some species under controlled conditions, others appear to be indifferent, particularly in the field. Both factors affect metabolism; a common response is increased secondary metabolism leading to the accumulation of phenolic compounds that, in the case of UV-B, offer the leaf cell some protection from radiation. Virtually no information is available about the effects of simultaneous or sequential exposures. Since both increased surface UV-B and ozone exposures have spatial and temporal components, it is important to evaluate the different scenarios that may occur, bearing in mind that elevated daytime ozone levels will attenuate the UV-B reaching the surface to some extent. The experimentation needed to acquire unequivocal effects data that are relevant to field situations must therefore be carried out using technologies and protocols that focus on quantification of the interactions of UV-B and ozone themselves and their interactions with other environmental factors.  相似文献   

3.
Effects of the ultraviolet-B radiation (UV-B) on conifers: a review   总被引:3,自引:0,他引:3  
The current knowledge on conifer responses to enhanced ultraviolet-B (UV-B) radiation is mainly based on greenhouse or growth chamber experiments of one growing season in duration. However, the biomass losses observed in greenhouses do not occur in field-grown trees in their natural habitats. Moreover, the majority of the 20 conifer species studied have been 1-year-old seedlings, and no studies have been undertaken on mature trees. Fully grown needles, with their glaucous waxy surfaces and thick epidermal cells with both soluble and wall-bound UV-B screening metabolites, are well protected against UV-B radiation. However, it is not known whether these are sufficient protectants in young emerging needles or during the early spring period of high UV-B levels reflected from snow. In order to understand all the mechanisms that result in the protection of conifer needles against UV-B radiation, future research should focus on the epidermal layer, separating the waxes, cuticle and epidermal and hypodermal cells. Parallel studies should consist of wall-bound and soluble secondary metabolite analysis, antioxidant measurements and microscopic observations.  相似文献   

4.
Reflection by waxy or resinous surface structures and hairs, repair reactions of biomolecules and induction of different sheltering components provide the means of plant protection from harmful solar UV-B radiation. Secondary products, especially flavonoids and phenolic acids as defense components are also important in plant tolerance to UV-B, fulfilling the dual role as screens that reduce UV-B penetration in plant tissues, and as antioxidants protecting from damage by reactive oxidant species. Plants are sensitive to UV-B radiation, and this sensitivity can be even more clone-specific than species-specific. The results available in the literature for deciduous trees and shrubs indicate that UV-B radiation may affect several directions in the interaction of woody species with biotic (herbivores) and abiotic (CO2 and nutrition) factors depending on the specific interaction in question. These multilevel interactions should have moderate ecological significance via the overall changed performance of woody species and shrubs.  相似文献   

5.
Research has shown that some plants respond to enhanced UV-B radiation by producing smaller and thicker leaves, by increasing the thickness of epidermis and concentration of UV-B absorbing compounds of their surface layers and activation of the antioxidant defence system. The response of high-altitude plants to UV-B radiation in controlled conditions is often less pronounced compared to low-altitude plants, which shows that the alpine timberline plants are adapted to UV-B. These plants may have a simultaneous co-tolerance for several stress factors: acclimation or adaptation to the harsh climate can also increase tolerance to UV-B radiation, and vice versa. On the other hand, alpine timberline plants of northern latitudes may be less protected against increasing UV-B radiation than plants from more southern latitudes and higher elevations due to harsh conditions and weaker preadaptation resulting from lower UV-B radiation exposure. It is evident that more long-term experimental field research is needed in order to study the interaction of climate, soil and UV-B irradiance on the timberline plants.  相似文献   

6.
Highland (altitude 1600 m above sea level) and lowland (altitude -2 m below sea level) populations of the perennial herb Silene vulgaris (Moench) Garcke, were tested on their response to elevated levels of UV-B radiation. Highland populations typically receive high natural UV-B fluxes, whereas lowland populations receive a lower natural UV-B dose. Adaptation to high UV-B levels of the highland population is to be expected. Experimental comparison of growth rates, gas exchange rates, transpiration and biochemical parameters using adult plants as well as seedlings did not show a difference in the response to elevated UV-B levels between the two populations. Individuals of both populations were relatively insensitive to elevated UV-B radiation. The response of alpine and lowland populations of Silene vulgaris is discussed in relation to the dispersal of this species after the last ice age.  相似文献   

7.
Highland (altitude 1600 m above sea level) and lowland (altitude −2 m below sea level) populations of the perennial herb Silene vulgaris (Moench) Garcke, were tested on their response to elevated levels of UV-B radiation. Highland populations typically receive high natural UV-B fluxes, whereas lowland populations receive a lower natural UV-B dose. Adaptation to high UV-B levels of the highland population is to be expected. Experimental comparison of growth rates, gas exchange rates, transpiration and biochemical parameters using adult plants as well as seedlings did not show a difference in the response to elevated UV-B levels between the two populations. Individuals of both populations were relatively insensitive to elevated UV-B radiation. The response of alpine and lowland populations of Silene vulgaris is discussed in relation to the dispersal of this species after the last ice age.  相似文献   

8.
The winter ephemeral Dimorphotheca pluvialis was grown in open-top chambers in ambient or elevated CO2 (350 or 650 micromol mol(-1)), combined with ambient (2.39 to 7.59 kJ m(-2) d(-1)) or increased (4.94 to 11.13 kJ m(-2) d(-1)) UV-B radiation. Net CO2 assimilation rate and leaf water use efficiency increased in elevated CO2, but increased UV-B did not affect gas exchange. Leaf biomass was greater under increased UV-B, but vegetative biomass was unaffected in elevated CO2. Initiation of reproduction was delayed, and proportional investment in reproductive biomass at harvest was reduced in elevated CO2. Increased UV-B stimulated reproduction, particularly in ambient CO2, but also in elevated CO2 at a later stage. Changes in reproductive phenology and prolonged development in elevated CO2 during the stressful late season could indirectly be detrimental to reproductive success of D. pluvialis, but stimulation of reproduction by enhanced UV-B may to some extent mitigate this.  相似文献   

9.
The effect of ozone (6 h, various concentrations from 0 to 350 ppb) on barley (Hordeum vulgare L., cv. Bomi) and tomato (Lycopersicon esculentum L., cv. Yellow Cherry) leaves was investigated in parallel by thermoluminescence (TL) and fluorescence (FL) methods. Several significant changes were found in TL glow curves measured after excitation by one single turnover flash at +2 degree C in the temperature range from 2 to 170 degree C immediately after ozone exposure. Contrary to TL, ozone induced only negligible changes in FL parameters F0, FM and Fv/FM. Measurements done 24 h after ozone exposure showed partial recovery of ozone-induced changes. The extent of recovery was not the same in different parts of TL curves. Fluorescence parameters were not significantly changed. The results demonstrate that TL parameters are more sensitive to ozone than conventially used FL parameters F0, FM and Fv/FM. Moreover, TL measurements seem to give information not only about the PSII electron transport, but also about the extent of oxidative damage and membrane lipid peroxidation. It is concluded, that TL can be a highly informative tool for monitoring the impact of ozone on plants.  相似文献   

10.
The projected doubling of current levels of atmospheric carbon dioxide concentration ([CO(2)]) during the next century along with increases in other radiatively active gases have led to predictions of increases in global air temperature and shifts in precipitation patterns. Additionally, stratospheric ozone depletion may result in increased ultraviolet-B (UV-B) radiation incident at the Earth's surface in some areas. Since these changes in the Earth's atmosphere may have profound effects on vegetation, the objectives of this paper are to summarize some of the recent research on plant responses to [CO(2)], temperature and UV-B radiation. Elevated [CO(2)] increases photosynthesis and usually results in increased biomass, and seed yield. The magnitude of these increases and the specific photosynthetic response depends on the plant species, and are strongly influenced by other environmental factors including temperature, light level, and the availability of water and nutrients. While elevated [CO(2)] reduces transpiration and increases photosynthetic water-use efficiency, increasing air temperature can result in greater water use, accelerated plant developmental rate, and shortened growth duration. Experiments on UV-B radiation exposure have demonstrated a wide range of photobiological responses among plants with decreases in photosynthesis and plant growth among more sensitive species. Although a few studies have addressed the interactive effects of [CO(2)] and temperature on plants, information on the effects of UV-B radiation at elevated [CO(2)] is scarce. Since [CO(2)], temperature and UV-B radiation may increase concurrently, more research is needed to determine plant responses to the interactive effects of these environmental variables.  相似文献   

11.
Approximately 35 species representing 14 tree genera have been evaluated for responses to UV-B radiation in North America. The best representation has been in the conifers where some 20 species representing three genera have been studied. Overall, about 1/3 of these have demonstrated some deleterious response to UV-B. However, most negative impacts have been observed under controlled environment conditions where sensitivity may be enhanced. Therefore, it seems unlikely that expected levels of ozone depletion will result in direct losses in productivity. However, the role that ambient or enhanced levels of UV-B may play in forest ecosystem processes is more difficult to access. One possible indirect response of forests to changes in UV-B radiation levels could be via alterations in plant secondary metabolites. Increases in phenolics and flavonoids that enhance epidermal UV-screening effectiveness may also influence leaf development, water relations or ecosystem processes such as plant-herbivore interactions or decomposition.  相似文献   

12.
There is a fast growing and an extremely serious international scientific, public and political concern regarding man's influence on the global climate. The decrease in stratospheric ozone (O3) and the consequent possible increase in ultraviolet-B (UV-B) is a critical issue. In addition, tropospheric concentrations of 'greenhouse gases' such as carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are increasing. These phenomena, coupled with man's use of chlorofluorocarbons (CFCs), chlorocarbons (CCs), and organo-bromines (OBs) are considered to result in the modification of the earth's O3 column and altered interactions between the stratosphere and the troposphere. A result of such interactions could be the global warming. As opposed to these processes, tropospheric O3 concentrations appear to be increasing in some parts of the world (e.g. North America). Such tropospheric increases in O3 and particulate matter may offset any predicted increases in UV-B at those locations. Presently most general circulation models (GCMs) used to predict climate change are one- or two-dimensional models. Application of satisfactory three-dimensional models is limited by the available computer power. Recent studies on radiative cloud forcing show that clouds may have an excess cooling effect to compensate for a doubling of global CO2 concentrations. There is a great deal of geographic patchiness or variability in climate. Use of global level average values fails to account for this variability. For example, in North America: 1. there may be a decrease in the stratospheric O3 column (1-3%); however, there appears to be an increase in tropospheric O3 concentrations (1-2%/year) to compensate up to 20-30% loss in the total O3 column; 2. there appears to be an increase in tropospheric CO2, N2O and CH4 at the rate of roughly 0.8%, 0.3% and 1-2%, respectively, per year; 3. there is a decrease in erythemal UV-B; and 4. there is a cooling of tropospheric air temperature due to radiative cloud forcing. The effects of UV-B, CO2 and O3 on plants have been studied under growth chamber, greenhouse and field conditions. Few studies, if any, have examined the joint effects of more than one variable on plant response. There are methodological problems associated with many of these experiments. Thus, while results obtained from these studies can assist in our understanding, they must be viewed with caution in the context of the real world and predictions into the future. Biomass responses of plants to enhanced UV-B can be negative (adverse effect); positive (stimulatory effect) or no effect (tolerant). Sensitivity rankings have been developed for both crop and tree species. However, such rankings for UV-B do not consider dose-response curves. There are inconsistencies between the results obtained under controlled conditions versus field observations. Some of these inconsistencies appear due to the differences in responses between cultivars and varieties of a given plant species; and differences in the experimental methodology and protocol used. Nevertheless, based on the available literature, listings of sensitive crop and native plant species to UV-B are provided. Historically, plant biologists have studied the effects of CO2 on plants for many decades. Experiments have been performed under growth chamber, greenhouse and field conditions. Evidence is presented for various plant species in the form of relative yield increases due to CO2 enrichment. Sensitivity rankings (biomass response) are agein provided for crops and native plant species. However, most publications on the numerical analysis of cause-effect relationships do not consider sensitivity analysis of the mode used. Ozone is considered to be the most phytotoxic regional scale air pollutant. In the pre-occupation of loss in the O3 column, any increases in tropospheric O3 concentrations may be undermined relative to vegetation effects. As with the other stress factors, the effects of O3 have been studied both under controlled and field conditions. Thboth under controlled and field conditions. The numerical explanation of cause-effect relationships of O3 is a much debated subject at the present time. Much of the controversy is directed toward the definition of the highly stochastic, O3 exposure dynamics in time and space. Nevertheless, sensitivity rankings (biomass response) are provided for crops and native vegetation. The joint effects of UV-B, CO2 and O3 are poorly understood. Based on the literature of plant response to individual stress factors and chemical and physical climatology of North America, we conclude that nine different crops may be sensitive to the joint effects: three grain and six vegetable crops (sorghum, oat, rice, pea, bean, potato, lettuce, cucumber and tomato). In North America, we consider Ponderosa and loblolly pines as vulnerable among tree species. This conclusion should be moderated by the fact that there are few, if any, data on hardwood species. In conclusion there is much concern for global climate change and its possible effects on vegetation. While this is necessary, such a concern and any predictions must be tempered by the lack of sufficient knowledge. Experiments must be designed on an integrated and realistic basis to answer the question more definitively. This would require very close co-operation and communication among scientists from multiple disciplines. Decision makers must realize this need.  相似文献   

13.
Experimental results from plants receiving elevated doses of UV-B radiation generally show that Mediterranean forest species are well protected against increases in UV-B radiation. Natural adaptations to water stress and excess light (elevated concentrations of UV-B screening compounds, leaf hairs, thick cuticle and epidermis), and UV-B responses (thickening of the cuticle, increase in carotenoids) may avoid or counter-balance UV-B radiation damage. This response confirms that Mediterranean forest vegetation is adapted to face oxidative stress factors, such as elevated tropospheric ozone concentrations, drought and high radiation, including UV-B. Nevertheless, in the long term, species-specific and season-specific differential responses in growth, physiology, phenology and reproductive behaviour may alter the interactions between species and lead to slow but important changes in ecosystem structure and function.  相似文献   

14.
Ozone-sensitive and -tolerant individuals of cutleaf coneflower (Rudbeckia laciniata L.) were compared for their gas exchange characteristics and total non-structural carbohydrates at Purchase Knob, a high elevation site in Great Smoky Mountains National Park, USA. Photosynthesis and stomatal conductance decreased with increased foliar stipple. Sensitive plants had lower photosynthetic rates for all leaves, except the very youngest and oldest when compared to tolerant plants. Stomatal conductance decreased with increasing leaf age, but no ozone-sensitivity differences were found. Lower leaves had less starch than upper ones, while leaves on sensitive plants had less than those on tolerant plants. These results show that ambient levels of ozone in Great Smoky Mountains National Park can adversely affect gas exchange, water use efficiency and leaf starch content in sensitive coneflower plants. Persistence of sensitive genotypes in the Park may be due to physiological recovery in low ozone years.  相似文献   

15.
Wang G  Deng S  Li C  Liu Y  Chen L  Hu C 《Chemosphere》2012,88(4):413-417
Radiation with UV-B increased the damage to DNA in Scytonema javanicum, a desert-dwelling soil microorganism, and the level of damage varied with the intensity of UV-B radiation and duration of exposure. Production of reactive oxygen species (ROS) also increased because of the radiation. Different exogenous chemicals (ascorbate acid, ASC; N-acetylcysteine, NAC; glyphosate, GPS; and 2-methyl-4-chlorophenoxyacetic acid, MCPA-Na) differed in their effect on the extent of DNA damage and ROS production: whereas NAC and ASC protected the DNA from damage and resulted in reduced ROS production, the herbicides (GPS and MCPA-Na) increased the extent of damage, lowered the rate of photosynthesis, and differed in their effect on ROS production. The chemicals probably have different mechanisms to exercise their effects: NAC and ASC probably function as antioxidant agents or as precursors of other antioxidant molecules that protect the DNA and photosynthetic apparatus directly from the ROS produced as a result of UV-B radiation, and GPS and MCPA-Na probably disrupt the normal metabolism in S. javanicum to induce the leaking of ROS into the photosynthetic electron transfer pathway following UV-B radiation, and thereby damage the DNA. Such mechanisms have serious implications for the use of environment-friendly herbicides, which, because they can destroy DNA, may prove harmful to soil microorganisms.  相似文献   

16.
Effects of ultraviolet-B (UV-B) radiation on amphibian embryos have been investigated in a number of studies, but the effects on larvae have received less attention. We investigated the effects of UV-B radiation on the behaviour and growth of larvae of three amphibians (Rana arvalis, Rana temporaria and Bufo bufo) in two different experiments. First, we tested whether larvae of the three species actively avoid UV-B exposure if given a choice. We found no evidence for active avoidance of UV-B or changes in activity in the presence of UV-B in any of the species. Second, we assessed the effects of natural (1.25 kJm(-2)) and enhanced (1.58 kJm(-2)) UV-B radiation on the survival and growth of the three species and found that the exposure to UV-B radiation did not have any effect on survival rates of any of the species. However, UV-B radiation had a positive effect on the growth of R. arvalis and R. temporaria, whereas the growth of B. bufo tadpoles was unaffected by the UV-B treatments. Our results suggest that a short-term exposure to UV-B radiation does not induce any UV-B avoidance behaviour in tadpoles of these three species. Furthermore, unlike some previous studies, the results suggest that the young tadpoles of these species are not negatively affected by UV-B radiation. In fact, our results demonstrate that a moderate amount of UV-B radiation enhance tadpole growth rates in two of the three species.  相似文献   

17.
We investigated the influence of soil properties on Ni toxicity to barley root and tomato shoot growth, using 16 European soils. The effective concentration of added Ni causing 50% inhibition (EC(50)) ranged from 52 to 1929mgkg(-1) and from 17 to 920mgkg(-1) for the barley and tomato test, respectively, representing 37- and 54-fold variation among soils. Soil cation exchange capacity was the best single predictor for the EC(50). The EC(50) based on either the Ni concentration or free Ni(2+) activity in soil solution varied less among soils (7-14 fold) than that based on the total added Ni, suggesting that solubility of Ni is a key factor influencing its toxicity to plants. The EC(50) for free Ni(2+) activity from the barley test decreased with increasing pH, indicating a protective effect of protons. The results can be used in the risk assessment of Ni in the terrestrial environment.  相似文献   

18.
Many species of amphibians have experienced population and range reductions. It has been hypothesized that sensitivity to UV-B may contribute to the population declines of some amphibian species. We performed field experiments to measure the effects of solar UV-B on the hatching success of three Finnish anuran species, the common frog (Rana temporaria), moor frog (Rana arvalis) and common toad (Bufo bufo). Further, the effects of natural UV-B radiation on survival of the tadpoles of the same three species of anurans were tested. A significant percentage of R. temporaria and B. bufo embryos survived when exposed to and protected from solar UV-B and hatching success was not affected by solar radiation. Elimination of solar UV-B significantly increased the hatching success of R. arvalis, but embryonic mortality was high in both treatments. The data indicates that under natural conditions, solar UV-B radiation influences embryo survival in R. arvalis, but has no effect on R. temporaria and B. bufo. Solar UV-B radiation had no effect on R. temporaria and R. arvalis tadpoles, but elimination of UV-B significantly increased survival of B. bufo tadpoles. It seems that ambient UV-radiation levels have no effect on R. temporaria but may affect R. arvalis and B. bufo at different developmental stages.  相似文献   

19.
Vineyard soils have been contaminated by Cu as a consequence of the long-term use of Cu salts as fungicides against mildew. This work aimed at identifying which soil parameters were the best related to Cu bioavailability, as assessed by measuring the concentrations of Cu in shoots and roots of tomato cropped (in lab conditions) over a range of 29 (24 calcareous and five acidic) Cu-contaminated topsoils from a vine-growing area (22-398 mg Cu kg(-1)). Copper concentrations in tomato shoots remained in the adequate range and were independent of soil properties and soil Cu content. Conversely, strong, positive correlations were found between root Cu concentration, total soil Cu, EDTA- or K-pyrophosphate-extractable Cu and organic C contents in the 24 calcareous soils, suggesting a prominent role of organic matter in the retention and bioavailability of Cu. Such relations were not observed when including the five acidic soils in the investigated population, suggesting a major pH effect. Root Cu concentration appeared as a much more sensitive indicator of soil Cu bioavailability than shoot Cu concentration. Simple extractions routinely used in soil testing procedures (total and EDTA-extractable Cu) were adequate indicators of Cu bioavailability for the investigated calcareous soils, but not when different soil types were considered (e.g. acidic versus calcareous soils).  相似文献   

20.
Adverse biological effects of ultraviolet-B (UV-B) radiation have been well documented for phytoplankton and zooplankton in both marine and freshwater ecosystems. However, investigations of interactions between UV-B and anthropogenic toxicants have focused primarily on the chemical interactions between UV-B and the toxicant. Here we investigate the potential for UV-B to increase the sensitivity of the rotifer Brachionus calyciflorus to either acute pentachlorophenol (PCP) or mercury toxicity, independent of UV-B effects on these toxicants. UV-B increased the toxicity of PCP and mercury to B. calyciflorus as much as five-fold, depending on duration of UV-B exposure and toxicant concentration. Reductions in the LC(50) of up to 60% were also seen for both toxicants. UV-B alone effectively eliminated B. calyciflorus reproduction and reduced ingestion by up to 90%. These results demonstrate the potential for UV-B to increase rotifer sensitivity to anthropogenic stressors independent of photochemical reactions with toxicants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号