首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 330 毫秒
1.
Influence of biotic and abiotic factors on dissipating metalaxyl in soil.   总被引:9,自引:0,他引:9  
P Sukul  M Spiteller 《Chemosphere》2001,45(6-7):941-947
Under laboratory condition, dissipation of metalaxyl in sterile and non-sterile soils, its sorption behaviour and fate in presence of light have been studied. The half-life value of metalaxyl was found in the range of 36-73 d in non-sterile soil. 5.3-14.7% dissipation was observed due to abiotic factors other than light. Metalaxyl was found photostable in soil showing half-life of 188- 502 h under simulated sunlight. In adsorption study, a non-linear relationship between concentration of metalaxyl and its adsorption into soils was observed. Estimated koc value increased as organic carbon content decreased. Adsorption and desorption kD values ranged between 53.5 and 151.1.  相似文献   

2.
Quinestrol has shown potential for use in the fertility control of the plateau pika population of the Qinghai–Tibet Plateau. However, the environmental safety and fate of this compound are still obscure. Our study investigated degradation of quinestrol in a local soil and aquatic system for the first time. The results indicate that the degradation of quinestrol follows first-order kinetics in both soil and water, with a dissipation half-life of approximately 16.0 days in local soil. Microbial activity heavily influenced the degradation of quinestrol, with 41.2 % removal in non-sterile soil comparing to 4.8 % removal in sterile soil after incubation of 10 days. The half-lives in neutral water (pH 7.4) were 0.75 h when exposed to UV light (λ?=?365 nm) whereas they became 2.63 h when exposed to visible light (λ?>?400 nm). Acidic conditions facilitated quinestrol degradation in water with shorter half-lives of 1.04 and 1.47 h in pH 4.0 and pH 5.0 solutions, respectively. Moreover, both the soil and water treatment systems efficiently eliminated the estrogenic activity of quinestrol. Results presented herein clarify the complete degradation of quinestrol in a relatively short time. The ecological and environmental safety of this compound needs further investigation.  相似文献   

3.
This paper investigated the degradation kinetics of norfloxacin in a soil, and its effects on soil respiration and nitrogen transformation under different conditions. Compared to the sterile control, the degradation rates of norfloxacin in the non-sterile soil were greatly enhanced, suggesting that microorganisms played a major role in the degradation. Accelerated degradation for norfloxacin in the soil was observed with decreasing concentrations (30 mg/kg to 5 mg/kg) with its half-life decreasing from 62 days to 31 days. Amending swine manure into the soil and increasing the soil moisture level enhanced the biological degradation of norfloxacin. No obvious inhibition of norfloxacin on soil respiration was observed in the soil, while only slight effect on nitrogen transformation was found. The results suggested that norfloxacin at the reported environmental concentrations (<100 mg/kg) would have little effect on microbial activity and functions in the soils.  相似文献   

4.
The objective of this research was to assess the degradation of fipronil [5-amino-1-(2,6-dichloro-alpha,alpha,alpha -trifluoro-p-tolyl)-4-trifluoromethylsulfinylpyrazole-3-carbonitrile] in soils from sugar cane fields in Northeastern Brazil. Degradation experiments were carried out under laboratory conditions (controlled temperature and in the dark), where sterile and non-sterile soils (Ustoxs) were incubated [under moisture content of 55% of the water holding capacity (WHC)] and analyzed for fipronil disappearance and metabolite formation. Microbial communities present in the soil degrade fipronil. However, biodegradation seems to be dependent on the bioavailability of the fipronil and the half-life according to the zero-order model. Fipronil degradation rate appeared to be biphasic. Degradation fipronil ranged from 83 days (initial concentration = 978 ng g(-1); short-term experiment) to 200 days (initial concentration = 689 ng g(-1); long-term experiment). This an initial slower rate followed by a faster rate after 90 days of incubation may lead to shorter half-life than that calculated with the zero-order model. The sulfone derivative (an oxidation product) was the predominant metabolite, but the sulfide (a reduction product) and amide (a hydrolysis product) derivatives were also formed under non-sterile conditions after 120 days of incubation. The metabolites underwent further biodegradation, particularly the sulfone derivative. Bioavailability appears to affect fipronil degradation in soils with an effective capacity to adsorb fipronil (such as Ustoxs), while redox potential was important for the formation of metabolites. Despite the fine texture, more aerobic sites were present, thus favoring the formation of the sulfone metabolite over that of the sulfide metabolite. Therefore, microaggregation of Ustoxs, with high clay content, played a very important role in determining the types of metabolites formed.  相似文献   

5.
The objective of this research was to assess the degradation of fipronil [5-amino-1-(2,6-dichloro-α,α,α -trifluoro-p-tolyl)-4-trifluoromethylsulfinylpyrazole-3-carbonitrile] in soils from sugar cane fields in Northeastern Brazil. Degradation experiments were carried out under laboratory conditions (controlled temperature and in the dark), where sterile and non-sterile soils (Ustoxs) were incubated [under moisture content of 55% of the water holding capacity (WHC)] and analyzed for fipronil disappearance and metabolite formation. Microbial communities present in the soil degrade fipronil. However, biodegradation seems to be dependent on the bioavailability of the fipronil and the half-life according to the zero-order model. Fipronil degradation rate appeared to be biphasic. Degradation fipronil ranged from 83 days (initial concentration = 978 ng g? 1; short-term experiment) to 200 days (initial concentration = 689 ng g? 1; long-term experiment). This an initial slower rate followed by a faster rate after 90 days of incubation may lead to shorter half-life than that calculated with the zero-order model. The sulfone derivative (an oxidation product) was the predominant metabolite, but the sulfide (a reduction product) and amide (a hydrolysis product) derivatives were also formed under non-sterile conditions after 120 days of incubation. The metabolites underwent further biodegradation, particularly the sulfone derivative. Bioavailability appears to affect fipronil degradation in soils with an effective capacity to adsorb fipronil (such as Ustoxs), while redox potential was important for the formation of metabolites. Despite the fine texture, more aerobic sites were present, thus favoring the formation of the sulfone metabolite over that of the sulfide metabolite. Therefore, microaggregation of Ustoxs, with high clay content, played a very important role in determining the types of metabolites formed.  相似文献   

6.
Sun H  Xu J  Yang S  Liu G  Dai S 《Chemosphere》2004,54(4):569-574
Experiments were conducted to investigate the degradation of aldicarb, an oxime carbamate insecticide, in sterile, non-sterile and plant-grown soils, and the capability of different plant species to accumulate the pesticide. The degradation of aldicarb in soil followed first-order kinetics. Half lives (t1/2) of aldicarb in sterile and non-sterile soil were 12.0 and 2.7 days, respectively, which indicated that microorganisms played an important part in the degradation of aldicarb in soil. Aldicarb disappeared more quickly (p< or =0.05) in the soil with the presence of plants, and t1/2 of the pesticide were 1.6, 1.4 and 1.7 days in the soil grown with corn, mung bean and cowpea, respectively. Comparison of plant-promoted degradation and plant uptake showed that the enhanced removal of aldicarb in plant-grown soil was mainly due to plant-promoted degradation in the rhizosphere.  相似文献   

7.
Metolachlor [2-chloro-N-(2-methoxy-1-methylethyl)-2'-ethyl-6'- methyl acetanilide] dissipation under both field and laboratory conditions were studied during summer season in an Indian soil. Metolachlor was found to have moderate persistence with a half-life of 27 days in field. The herbicide got leached down to 15-30 cm soil layer and residues were found up to harvest day of the sunflower crop in both 0-15 cm and 15-30 cm soil layers. Metolachlor was found to be more persistent in laboratory studies conducted for 190 days. The rate of degradation was faster in soil under flooded partial anaerobic conditions as compared to aerobic soil with a half-life of 44.3 days. In aerobic soil, metolachlor was very stable with only 49% dissipation in 130 days. Residues remained in both the soils up to the end of the experimental period of 190 days.  相似文献   

8.
In this study, the dissipation of two antibiotics, sulfamethoxazole (SMX) and trimethoprim (TRM), in three soils under both aerobic and anaerobic conditions are evaluated. Under aerobic conditions, SMX dissipated rapidly through biodegradation but TRM was more persistent. Within the first 20 days in biologically active soils, >50% of the SMX was lost from the clay loam and loamy sand soils, and >80% loss was noted in the loam soil. Anaerobic dissipation of both compounds was more rapid than aerobic dissipation. The addition of manure to the soil only slightly increased the initial dissipation rate of the two compounds. Little effect was found on glucose mineralisation in soil following the addition of SMX and TRM, even as mixtures at high concentrations.  相似文献   

9.
In this study, the dissipation of two antibiotics, sulfamethoxazole (SMX) and trimethoprim (TRM), in three soils under both aerobic and anaerobic conditions are evaluated. Under aerobic conditions, SMX dissipated rapidly through biodegradation but TRM was more persistent. Within the first 20 days in biologically active soils, >50% of the SMX was lost from the clay loam and loamy sand soils, and >80% loss was noted in the loam soil. Anaerobic dissipation of both compounds was more rapid than aerobic dissipation. The addition of manure to the soil only slightly increased the initial dissipation rate of the two compounds. Little effect was found on glucose mineralisation in soil following the addition of SMX and TRM, even as mixtures at high concentrations.  相似文献   

10.
A mixture of four tetracyclines; oxytetracycline (OTC), chlortetracycline (CTC), tetracycline (TC), and doxycycline (DC) was applied in fifteen 12000l outdoor microcosms at four treatment levels plus controls each with three replicates (n = 3). The dissipation times of parent compounds were monitored and half-lives (DT50) of 1-4 days, depending on treatment level were recorded. This is in accordance with half-lives from previous findings in bench-top experiments. Parent compound DT50, were determined using HPLC-UV. Furthermore, the samples were analyzed for ten different tetracycline products using LC/MS/MS. Two products were found for chlortetracycline; 4-epi-anh-chlortetracyline and the iso-chlortetracycline. Iso-forms were only found for CTC and only at the highest treatment (300 microg l(-1)). The half-lives, trajectories, and relative amounts of the products were analogous for all four tetracyclines. DT50 for products were less than 1.2 days. Formation of 4-epi-anh-tetracyclines, occurred at neutral to weak alkaline conditions.  相似文献   

11.
Abstract

Metolachlor [2‐chloro‐N‐(2‐methoxy‐1‐methylethyl)‐2'‐ethyl‐6'‐methyl acetanilide] dissipation under both field and laboratory conditions were studied during summer season in an Indian soil. Metolachlor was found to have moderate persistence with a half‐life of 27 days in field. The herbicide got leached down to 15–30 cm soil layer and residues were found up to harvest day of the sunflower crop in both 0–15 cm and 15–30 cm soil layers. Metolachlor was found to be more persistent in laboratory studies conducted for 190 days. The rate of degradation was faster in soil under flooded partial anaerobic conditions as compared to aerobic soil with a half‐life of 44.3 days. In aerobic soil, metolachlor was very stable with only 49% dissipation in 130 days. Residues remained in both the soils up to the end of the experimental period of 190 days.  相似文献   

12.
ABSTRACT

Fungicide pyraclostrobin has been widely employed to control plant diseases by inhibiting the mitochondrial respiration of pathogenic fungi. Due to its broad spectrum, the extensive use of pyraclorstrobin was reported to cause emerging resistance on crops. Here, we evaluated the control effect of 250 g L?1 of pyrachlostrobin suspension concentrate (SC) against freckle disease (caused by Phyllosticta spp) on banana. Meanwhile, the dissipation and residue dynamics of pyraclostrobin in banana and soil under field conditions were determined by high performance liquid chromatography (HPLC) with DAD detection in different locations. The analytical method was validated using spiked samples at three levels, which indicated the recoveries ranged from 92.0% to 99.0% with relative standard deviations (RSDs) below 5%, providing a sensitive, precise and reliable method to monitor pyraclostrobin in banana fruit and soil. The dissipation of pyraclostrobine followed the first-order kinetics and its half-lives were 5.25 to 9.90 days. In addition, the terminal residues of pyraclostrobin in banana, banana sarcocarp and soil were below the maximum residue limit (MRL) (0.02 mg kg?1) after a pre-harvest interval (PHI) of 42 days, which suggesting that the use of pyraclostrobin at recommended dosages was safe to banana and the environment. In summary, we demonstrated the integrated evaluation on the disease control capacity of pyraclostrobin and its environmental behavior on banana, aiming to provide solid and basic data for the safe use of fungicide pyraclostrobin.  相似文献   

13.
Sequencing batch reactors were acclimated under aerobic and alternating anoxic/aerobic conditions. Greater nitrification rates in the alternating reactor were investigated by comparing environmental conditions. In the alternating reactor, pH, alkalinity, oxygen, and nitrite were higher at the onset of aerobic nitrification. Kinetic studies and batch tests, with biomass developed under aerobic and alternating conditions, revealed that these factors were insufficient to explain the divergent nitrification rates. Nitrifying genera vary in nitrification kinetics and sensitivity to environmental conditions. Nitrosospira and Nitrospira spp. could dominate in aerobic reactors, as they are adapted to low nitrite and oxygen conditions. Nitrosomonas and Nitrobacter spp. are better competitors with abundant substrates and have higher nitrite tolerance, so they could excel under alternating conditions. This theoretical explanation is consistent with the kinetics and environmental conditions in these reactors and argues for using alternating treatment, because the harsh conditions select for populations with inherently faster nitrification rates.  相似文献   

14.
The dissipation of hexazinone (Velpar) in two tropical soil types in Kenya was studied under field and semi-controlled conditions for a period of 84 days. The dissipation was found to be very rapid and this could be attributed to adverse weather conditions including high initial rainfall as well as to low soil-organic-matter content, volatilization, surface run-off and biodegradation. The DT50 values of dissipation obtained by first order kinetics were 20 days and 21.3 days in clay and loam soil types, respectively. The influence of bargasse compost (1000 μg/g dry soil) was also studied and was found to enhance dissipation to some extent, giving DT50 values of 18 days and 18.3 days in clay and loam soil types, respectively.  相似文献   

15.
We investigated dissipation and sorption of atrazine, terbuthylazine, bromacil, diazinon, hexazinone and procymidone in two contrasting New Zealand soils (0–10 cm and 40–50 cm) under controlled laboratory conditions. The six pesticides showed marked differences in their degradation rates in both top- and subsoils, and the estimated DT50 values for the compounds were: 19–120 (atrazine), 10–36 (terbuthylazine), 12–46 (bromacil), 7–25 (diazinon), 8–92 (hexazinone) and 13–60 days for procymidone. Diazinon had the lowest range for DT50 values, while bromacil and hexazinone gave the highest DT50 values under any given condition on any soil type. Batch derived effective distribution coefficient (K d eff) values for the pesticides varied markedly with bromacil and hexazinone exhibiting low sorption affinity for the soils at either depth, while diazinon gave high sorption values. Comparison of pesticide degradation in sterile and non-sterile soils suggests that microbial degradation was the major dissipation pathway for all six compounds, although little influence of abiotic degradation was noticeable for diazinon and procymidone.  相似文献   

16.
Persistence of triasulfuron [3-(6-methoxy-4methyl-1,3,5-triazin-2-yl)-1-{2-(2-chloroethoxy)-phenylsulfonyl}-urea] in soil was studied under wheat crop and laboratory conditions. Field experiment was conducted in the farms of Agronomy Division, Indian Agricultural Research Institute (IARI), New Delhi. Randomized block design (RBD) was followed with four replicates and two rates of treatments along with control and weedy check. Triasulfuron was applied as post-emergent application to wheat crop at two rates of application viz., 15 g and 20 g a.i. ha-1. Soil samples at 0 (3 h), 1, 3, 5, 7, 10, 15, 20, and 30-day intervals after application were drawn, extracted, cleaned up, and analyzed for herbicide residues by high performance liquid chromatography (HPLC) using C18 column and methanol: water (8:2) as mobile phase at 242 nm wave length. Effect of microbial activity and soil pH was studied under laboratory conditions. Dissipation of triasulfuron followed a first-order-rate kinetics. Residues dissipated from field soil with half-life of 5.8 and 5.9 days at two rates of application. The study indicated biphasic degradation with faster rate initially (t1/2 = 3.7 days), followed by a slower dissipation rate at the end (t1/2 = 9.4 days). Similar trend was observed with non-sterile soil in laboratory with a longer half-life. Acidic pH and microbial activity contributed toward the degradation of triasulfuron in soil.  相似文献   

17.
We examined the mineralization of pentachlorophenol (PCP) in sterile and non-sterile soil with or without added bacteria (Mycobacterium chlorophenolicum PCP-1). The soil used had no history of PCP contamination. Microcosms (30 g dry weight of soil) were incubated with labelled PCP (6.76% 13C, a non-radioactive stable isotope, 22 mg kg-1 dry weight) for 60 days. M. chlorophenolicum PCP-1 (7.8 x 10(6) cells g-1 dry weight) was added to some samples. 50% of the PCP was mineralized in non-sterile soil with or without the exogenous bacteria. Only 5% of the PCP was mineralized in sterile soil with or without bacteria. These data suggest that the PCP was not accessible to M. chlorophenolicum and that the indigenous soil microflora can mineralize PCP.  相似文献   

18.
The response of a mixed microbial culture to cyclic aerobic and anoxic (denitrifying) conditions was studied in a chemostat with a 48-hour hydraulic residence time receiving a feed containing benzoate and pyruvate. When the cyclic conditions were 3-hour aerobic and 9-hour anoxic, the bacteria-degraded benzoate aerobically via the catechol 2,3-dioxygenase (C23DO) pathway. The quantity of C23DO remained constant throughout the anoxic period but decreased during the initial portion of the aerobic period before returning to the level present in the anoxic period. Anoxic biodegradation of benzoate was via benzoyl-CoA reductase, which remained constant regardless of the redox condition. The aerobic benzoate uptake capability (AeBUC) of the culture increased during the aerobic period but decreased during the anoxic period. The anoxic benzoate uptake capability (AnBUC) exhibited the opposite response. When the cycle was 6-hour aerobic and 6-hour anoxic, aerobic biodegradation of benzoate proceeded via the protocatechuate 4,5-dioxygenase (P45DO) pathway. The P45DO activity decreased early in the aerobic period, but then increased to the level present during the anoxic period. The level of benzoyl-CoA reductase was constant throughout the cycle. Furthermore, AeBUC and AnBUC responded in much the same way as in the 3/9-hour chemostat. During a 9-hour aerobic and 3-hour anoxic cycle, the culture synthesized both P45DO and C23DO, with the former having significantly higher activity. Unlike the other two cycles, AeBUC changed little during the aerobic period, although AnBUC decreased. The culture was well-adapted to the cyclic conditions as evidenced by the lack of accumulation of either substrate during any cycle tested. This suggests that cyclic aerobic-anoxic processes can be used in industrial wastewater-treatment facilities receiving significant quantities of simple aromatic compounds like benzoate. However, the results showed that the kinetics of benzoate degradation were different under aerobic and anoxic conditions, a situation that must be considered when modeling cyclic bioreactors receiving aromatic compounds.  相似文献   

19.
Abstract

We investigated the anaerobic degradation of tetracycline antibiotics (tetracycline [TC], oxytetracycline [OTC] and chlortetracycline [CTC]) in swine, cattle, and poultry manures. The manures were anaerobically digested inside polyvinyl chloride batch reactors for 64?days at room temperature. The degradation rate constants and half-lives of the parent tetracyclines were determined following first-order kinetics. For CTC the fastest degradation rate was observed in swine manure (k?=?0.016?±?0.001 d?1; half-life = 42.8?days), while the slowest degradation rate was observed in poultry litter (k?=?0.0043?±?0.001 d?1; half-life = 161?days). The half-lives of OTC ranged between 88.9 (cattle manure) and 99.0?days (poultry litter), while TC persisted the longest of the tetracycline antibiotics studied with half-lives ranging from 92.4?days (cattle manure) to 330?days (swine manure). In general, the tetracyclines were found to degrade faster in cattle manure, which had the lowest concentrations of organic matter and metals as compared to swine and poultry manures. Our results demonstrate that tetracycline antibiotics persist in the animal manure after anaerobic digestion, which can potentially lead to emergence and persistence of antibiotic resistant bacteria in the environment when anaerobic digestion byproducts are land applied for crop production.  相似文献   

20.
The persistence of fenamiphos (nematicide) in five soils collected from different geographical regions such as Australia, Ecuador and India under three temperature regimes (18, 25 and 37 degrees C) simulating typical environmental conditions was studied. The effect of soil properties (soil pH, temperature and microbial biomass) on the degradation of fenamiphos was determined. The rate of degradation increased with increase in temperature. Fenamiphos degradation was higher at 37 degrees C than at 25 and 18 degrees C (except under alkaline pH). The degradation pathway differed in different soils. Fenamiphos sulfoxide (FSO) was identified as the major degradation product in all the soils. Fenamiphos sulfone (FSO2), and the corresponding phenols: fenamiphos phenol (FP), fenamiphos sulfoxide phenol (FSOP) and fenamiphos sulfone phenol (FSO2P) were also detected. The degradation of fenamiphos was faster in the alkaline soils, followed by neutral and acidic soils. Under sterile conditions, the dissipation of the pesticide was slower than in the non-sterile soils suggesting microbial role in the pesticide degradation. The generation of new knowledge on fenamiphos degradation patterns under different environmental conditions is important to achieve better pesticide risk management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号