首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biopurification systems treating pesticide contaminated water are very efficient, however they operate as a black box. Processes inside the system are not yet characterized. To optimize the performance, knowledge of degradation and retention processes needs to be generated. Therefore, displacement experiments were carried out for four pesticides (isoproturon, bentazone, metalaxyl, linuron) in columns containing different organic mixtures. Bromide, isoproturon and bentazone breakthrough curves (BTCs) were well described using the convection-dispersion equation (CDE) and a first-order degradation kinetic approach. Metalaxyl and linuron BTCs were well described using the CDE model expanded with Monod-type kinetics. Freundlich sorption, first-order degradation and Monod kinetics coefficients were fitted to the BTCs. Fitted values of the distribution coefficient Kf,column were much lower than those determined from batch experiments. Based on mobility, pesticides were ranked as: bentazone > metalaxyl - isoproturon > linuron. Based on degradability, pesticides were ranked as: linuron > metalaxyl - isoproturon > bentazone.  相似文献   

2.
Transport of bentazone, isoproturon, linuron, metamitron and metalaxyl were studied under three different flows in macrocosms. The aim was to verify the observations from Part I of the accompanying paper, with an increase in column volume and decrease in chemical and hydraulic load. Very limited breakthrough occurred in the macrocosms for all pesticides, except bentazone, at all flows.From batch degradation experiments, it was observed that the lag time of metamitron and linuron decreased drastically in time for all flows, indicating a growth in the pesticide degrading population. This in contrast to isoproturon and metalaxyl, where an increase in lag time could be observed in time for all flows. From the batch degradation experiments, it could be concluded that the influence of flow on the lag time was minimal and that the inoculation of the pesticide-primed soil had a little surplus value on degradation.  相似文献   

3.
The efficiency of a biopurification system, developed to treat pesticide contaminated water, is to a large extent determined by the chemical and hydraulic load. Insight into the behaviour of pesticides under different fluxes is necessary. The behaviour of metalaxyl, bentazone, linuron, isoproturon and metamitron was studied under three different fluxes with or without the presence of pesticide-primed soil in column experiments. Due to the time-dependent sorption process, retention of the pesticides with intermediate mobility was significantly influenced by the flux. The higher the flux, the slower pesticides will be sorbed, which resulted in a lower retention. Degradation of the intermediate mobile pesticides was also submissive to variations in flux. An increase in flux, led to a decrease in retention, which in turn decreased the opportunity time for biodegradation. Finally, the presence of pesticide-primed soil was only beneficial for the degradation of metalaxyl.  相似文献   

4.
A study has been made of the effect a reactive barrier made of pine (softwood) or oak (hardwood) wood intercalated in a sandy soil column has on the retention of linuron, alachlor and metalaxyl (pesticides with contrasting physicochemical characteristics). The leaching of pesticides has been carried out under a saturated flow regime and breakthrough curves (BTCs) have been obtained at flow rates of 1 mL min−1 (all pesticides) and 3 mL min−1 (linuron). The cumulative curves in the unmodified soil indicate a leaching of pesticides >80% of the total amount of compound added. After barrier intercalation, linuron leaching decreases significantly and a modification of the leaching kinetics of alachlor and metalaxyl has been observed. The theoretical R factors increased ∼2.6-3.3, 1.2-1.6-fold, and 1.4-1.7-fold and the concentration of the maximum peak decreased ∼6-12-fold, 2-4-fold and 1.2-2-fold for linuron, alachlor and metalaxyl, respectively. When considering the three pesticides, significant correlations have been found between the theoretical retardation factor (R) and the pore volume corresponding to the maximum peaks of the BTCs (r = 0.77; p < 0.05) or the total volume leached (r = −0.78; p < 0.05). The results reveal the efficacy of reactive wood barriers to decrease the leaching of pesticides from point sources of pollution depends on the type of wood, the hydrophobicity of the pesticide and the adopted water flow rate. Pine was more effective than oak in decreasing the leaching of hydrophobic pesticide linuron or in decreasing the maximum peak concentration of the less hydrophobic pesticides in soils. Efficacy of these wood barriers was limited for the least hydrophobic pesticide metalaxyl.  相似文献   

5.
Sorption kinetics and its effects on retention and leaching.   总被引:1,自引:0,他引:1  
Sorption of pesticides to substrates used in biopurification systems is important as it controls the system's efficiency. Ideally, pesticide sorption should occur fast so that leaching of the pesticide in the biopurification system is minimized. Although modeling of pesticide transport commonly assumes equilibrium, this may not always be true in practice. Sorption kinetics have to be taken into account. This study investigated the batch sorption kinetics of linuron, isoproturon, metalaxyl, isoxaben and lenacil on substrates commonly used in a biopurification system, i.e. cow manure, straw, willow chopping, sandy loam soil, coconut chips, garden waste compost and peat mix. The first-order sorption kinetics model was fitted to the observed pesticide concentrations versus time resulting in an estimated kinetic rate constant alpha. Sorption appeared to be fast for the pesticides linuron and isoxaben, pesticides which were classified as immobile, while less mobile pesticides displayed an overall slower sorption. However, the substrate does not seem to be the main parameter influencing the sorption kinetics. Coconut chips, which is a substrate with a high organic matter content showed slow sorption for most of the pesticides. The effect of different estimated alpha values on the breakthrough of pesticides through a biopurification system was evaluated using the HYDRUS 1D model. Significant differences in leaching behavior were observed as a result of the obtained differences in sorption kinetics.  相似文献   

6.
Addition of pesticide-primed soil containing adapted pesticide degrading bacteria to the biofilter matrix of on farm biopurification systems (BPS) which treat pesticide contaminated wastewater, has been recommended, in order to ensure rapid establishment of a pesticide degrading microbial community in BPS. However, uncertainties exist about the minimal soil inoculum density needed for successful bioaugmentation of BPS. Therefore, in this study, BPS microcosm experiments were initiated with different linuron primed soil inoculum densities ranging from 0.5 to 50 vol.% and the evolution of the linuron mineralization capacity in the microcosms was monitored during feeding with linuron. Successful establishment of a linuron mineralization community in the BPS microcosms was achieved with all inoculum densities including the 0.5 vol.% density with only minor differences in the time needed to acquire maximum degradation capacity. Moreover, once established, the robustness of the linuron degrading microbial community towards expected stress situations proved to be independent of the initial inoculum density. This study shows that pesticide-primed soil inoculum densities as low as 0.5 vol.% can be used for bioaugmentation of a BPS matrix and further supports the use of BPS for treatment of pesticide-contaminated wastewater at farmyards.  相似文献   

7.
Batch adsorption and desorption experiments were performed using thirteen agricultural soil samples and five pesticides. Experimental data indicated a gradient in pesticide adsorption on soil: trifluralin > 2,4-D > isoproturon> atrazine > bentazone. Atrazine, isoproturon and trifluralin adsorption were correlated to soil organic matter content (r2 = 0.7, 0.82, 0.79 respectively). Conversely, bentazone adsorption was governed by soil pH (r2 = 0.68) while insignificant effect has been shown in the case of 2,4-D. Multiple linear regressions were used to combine relationships between the various soil parameters and the Freundlich adsorption coefficient (K(f)) of each pesticide. Then desorption was assessed since it may reflect some of the interactions involved between the pesticides and the soil components. Adsorbed molecules were released into aqueous solution in the following order: bentazone > atrazine> isoproturon> 2,4-D > trifluralin. The occurrence of hysteresis did not allow an accurate interpretation of the pesticide desorption data because of the possible interplay of several processes.  相似文献   

8.
Leaching of the strongly sorbing pesticides glyphosate and pendimethalin was evaluated in an 8-month field study focussing on preferential flow and particle-facilitated transport, both of which may enhance the leaching of such pesticides in structured soils. Glyphosate mainly sorbs to mineral sorption sites, while pendimethalin mainly sorbs to organic sorption sites. The two pesticides were applied in equal dosage to a structured, tile-drained soil, and the concentration of the pesticides was then measured in drainage water sampled flow-proportionally.The leaching pattern of glyphosate resembled that of pendimethalin, suggesting that the leaching potential of pesticides sorbed to either the inorganic or organic soil fractions is high in structured soils. Both glyphosate and pendimethalin leached from the root zone, with the average concentration in the drainage water being 3.5 and 2.7 μg L−1, respectively. Particle-facilitated transport (particles >0.24 μm) accounted for only a small proportion of the observed leaching (13-16% for glyphosate and 16-31% for pendimethalin). Drain-connected macropores located above or in the vicinity of the drains facilitated very rapid transport of pesticide to the drains. That the concentration of glyphosate and pendimethalin in the drainage water remained high (>0.1 μg L−1) for up to 7 d after a precipitation event indicates that macropores between the drains connected to underlying fractures were able to transport strongly sorbing pesticides in the dissolved phase. Lateral transport of dissolved pesticide via such discontinuities implies that strongly sorbing pesticides such as glyphosate and pendimethalin could potentially be present in high concentrations (>0.1 μg L−1) in both water originating from the drainage system and the shallow groundwater located at the depth of the drainage system.  相似文献   

9.
The fate of selected pesticides (bentazone, isoproturon, DNOC, MCPP, dichlorprop and 2,4-D) and a metabolite (2,6-dichlorobenzamide (BAM)) was investigated under aerobic conditions in column experiments using aquifer material and low concentrations of pesticides (approximately 25 microg/l). A solute transport model accounting for kinetic sorption and degradation was used to estimate sorption and degradation parameters. Isoproturon and DNOC were significantly retarded by sorption, whereas the retardation of the phenoxy acids (MCPP, 2,4-D and dichlorprop), BAM and bentazone was very low. After lag periods of 16-33 days for the phenoxy acids and 80 days for DNOC, these pesticides were degraded quickly with 0.-order rate constants of 1.3-2.6 microg/l/day. None of the most probable degradation products were detected.  相似文献   

10.
Different lipophilicity procedures including a newly developed (based on O?cik's equation) was applied in order to compare various urea pesticides with herbicidal and also insecticidal activity, such as monolinuron, chlorotoluron, diuron, isoproturon, linuron, dimefuron, diflubenzuron, teflubenzuron and lufenuron. Lipophilicity parameters (RMWS and RMW0) of nine examined pesticides were determined on the chromatographic plates RP-8F254 with the use of methanol–water as a mobile phase. Similarity analysis enabled to group all examined pesticides depending on their lipophilic character and allowed to perform a more objective comparison of different lipophilicity parameters obtained for investigated compounds by means of thin-layer chromatography and by the use of computational methods. It was stated that with the number of fluorine in examined pesticides, the lipophilic character of insecticides and also their tendency to bioaccumulation in the living systems increases noticeably. The results of this work confirmed that a new procedure for determining the lipophilicity parameter (RMW0) by O?cik's equation could be a suitable tool in the prediction of pesticide bioaccumulation in living system and may be used as an indicator in design of new urea pesticides, which will be safe for humans and the environment.  相似文献   

11.
Pesticide pollution is one of the main current threats on water quality. This paper presents the potential and functioning principles of a “Wet” forest buffer zone for reducing concentrations and loads of glyphosate, isoproturon, metazachlor, azoxystrobin, epoxiconazole, and cyproconazole. A tracer injection experiment was conducted in the field in a forest buffer zone at Bray (France). A fine time-scale sampling enabled to illustrate that interactions between pesticides and forest buffer substrates (soil and organic-rich litter layer), had a retarding effect on molecule transfer. Low concentrations were observed for all pesticides at the forest buffer outlet thus demonstrating the efficiency of “Wet” forest buffer zone for pesticide dissipation. Pesticide masses injected in the forest buffer inlet directly determined concentration peaks observed at the outlet. Rapid and partially reversible adsorption was likely the major process affecting pesticide transfer for short retention times (a few hours to a few days). Remobilization of metazachlor, isoproturon, desmethylisoproturon, and AMPA was observed when non-contaminated water flows passed through the forest buffer. Our data suggest that pesticide sorption properties alone could not explain the complex reaction mechanisms that affected pesticide transfer in the forest buffer. Nevertheless, the thick layer of organic matter litter on the top of the forest soil was a key parameter, which enhanced partially reversible sorption of pesticide, thus retarded their transfer, decreased concentration peaks, and likely increased degradation of the pesticides. Consequently, to limit pesticide pollution transported by surface water, the use of already existing forest areas as buffer zones should be equally considered as the most commonly implemented grass buffer strips.  相似文献   

12.
In this study, preliminary tests were conducted aiming to validate the use of ceramic porous cup for collecting soil water samples and monitoring pesticides contents, as usually made for nitrates. Interactions between porous cup and pesticides were examined under different experimental conditions for three herbicides (atrazine, isoproturon, 2,4-D) and one insecticide (carbofuran).

The results showed that ceramic was not inert for pesticides : as much as 80% of the applied pesticide could be retained during the flowing of the first tenth milliliters of solution. Interactions were attributed to sorption and “screening” of molecules by the porous walls and were related to the ionic character of pesticides. However, retention was not irreversible, since pesticides were quickly released by rinsing with distilled water.

After these tests, porous ceramic cups could be considered as suitable samplers for pesticide determinations in soil solution, contingent on gaining further informations about soil - porous cup - pesticide interactions.  相似文献   


13.
A contamination of off-site aquatic environments with pesticides has been observed in the tropics, yet only sparse information exists about pesticide fate in such ecosystems. The objective of our semi-field study was to elucidate the fate of alachlor, atrazine, chlorpyrifos, endosulfan, metolachlor, profenofos, simazine, and trifluralin in the aqueous environment of the Pantanal wetland (MT, Brazil). To this aim, water and water/sediment microcosms of two sizes (0.78 and 202 l) were installed in the outskirts of this freshwater lagoon environment and pesticide dissipation was monitored for up to 50 d after application. The physical-chemical water conditions that developed in the microcosms were reproducible among field replicates for both system sizes. Pesticide dissipation was substantially enhanced for most pesticides in small microcosms relative to the large ones (reduced DT(50) by a factor of up to 5.3). The presence of sediment in microcosms led to increased persistence of chlorpyrifos, endosulfan, and trifluralin in the test systems, while for polar pesticides (alachlor, atrazine, metolachlor, profenofos, and simazine) a lesser persistence was observed. Atrazine, simazine, metolachlor, and alachlor were identified as the most persistent pesticides in large water microcosms (DT(50) > or = 47 d); in large water/sediment systems endosulfan beta, atrazine, metolachlor, and simazine showed the slowest dissipation (DT(50) > or = 44 d). A medium-term accumulation in the sediment of tropical ecosystems can be expected for chlorpyrifos and endosulfan isomers (11-35% of applied amount still extractable at 50 d after application). We conclude that the persistence of the studied pesticides in aquatic ecosystems of the tropics is not substantially lower than during summer in temperate regions.  相似文献   

14.
The retention values of two herbicides, chlorotoluron and isoproturon, in five Mediterranean soils were assessed by two different approaches, a dynamic method, using a batch technique (BT) and a static method, using a soil saturated paste (SP). The SP method led in all cases to lower herbicide sorption when compared with BT, although pesticide distribution constants from both methods were linearly related for the set of used soils (R2 ? 0.99) showing that both methods similarly reflected the behaviour of the different soils. Low-quality water, evaluated by employing recycled urban wastewater, did not modify herbicide sorption when compared with high quality water, in any soil and with any method.  相似文献   

15.
This paper presents first results of Phyt’Eaux Cités, a program put in place by the local water supply agency, the SEDIF (Syndicat des Eaux d’Ile-de-France), in collaboration with 73 local authorities, private societies and institutional offices (365 km2). The challenges included: measurement of the previous surface water contamination, control of urban pesticide applications, prevention of pesticide hazard on users and finally a overall reduction of surface water contamination. An inquiry on urban total pesticide amount was coupled with a surface water bi-weekly monitoring to establish the impact of more than 200 molecules upon the Orge River. For 2007, at least 4400 kg and 92 type of pesticides (essentially herbicides) were quantified for all urban users in the Phyt’Eaux Cités perimeter. At the outlet of the Orge River (bi-weekly sampling in 2007), 11 molecules were always detected above 0.1 μg L−1. They displayed the mainly urban origin of pesticide surface water contamination. Amitrole, AMPA (Aminomethyl Phosphonic Acid), demethyldiuron, diuron, glyphosate and atrazine were quantified with a 100% of frequency in 2007 and 2008 at the Orge River outlet. During the year, peaks of contamination were also registered for MCCP, 2,4 MCPA, 2,4 D, triclopyr, dichlorprop, diflufènican, active substances used in large amount in the urban area. However, some other urban molecules, such as isoxaben or flazasulfuron, were detected with low frequency. During late spring and summer, contamination patterns and load were dominated by glyphosate, amitrole and diuron, essentially applied by cities and urban users. Both isoproturon and chlortoluron were quantified during autumn and winter months according to upstream agricultural practices. In conclusion, 3 years after the beginning of this programme, the cities reduced the use of 68% of the total pesticide amount. An improvement on surface water quality was found from 2008 and during 2009 for all pesticides. In particular, glyphosate showed a decrease of the load above 60% in 2008, partly related to the Phyt’Eaux Cités action.  相似文献   

16.
Buffer zones such as ponds and ditches are used to reduce field-scale losses of pesticides from subsurface drainage waters to surface waters. The objective of this study was to assess the efficiency of these buffer zones, in particular constructed wetlands, focusing specifically on sorption processes. We modelled the sorption processes of three herbicides [2-methyl-4-chlorophenoxyacetic acid (2,4-MCPA), isoproturon and napropamide] and three fungicides (boscalid, prochloraz and tebuconazole) on four substrates (two soils, sediment and straw) commonly found in a pond and ditch in Lorraine (France). A wide range of Freundlich coefficient (K fads) values was obtained, from 0.74 to 442.63 mg1???n ?L n ?kg?1, and the corresponding K foc values ranged from 56 to 3,725 mg1???n ?L n ?kg?1. Based on potential retention, the substrates may be classified as straw >> sediments > soils. These results show the importance of organic carbon content and nature in the process of sorption. Similarly, the studied pesticides could be classified according to their adsorption capacity as follows: prochloraz >> tebuconazole–boscalid > napropamide >> MCPA–isoproturon. This classification is strongly influenced by the physico-chemical properties of pesticides, especially solubility and K oc. Straw exhibited the largest quantity of non-desorbable pesticide residues, from 12.1 to 224.2 mg/L for all pesticides. The presence of plants could increase soil–sediment sorption capacity. Thus, establishment and maintenance of plants and straw filters should be promoted to optimise sorption processes and the efficiency of ponds and ditches in reducing surface water pollution.  相似文献   

17.
Environmental Science and Pollution Research - In this study, we examined the dose-dependent effects of an environmentally relevant pesticide cocktail (metalachlor, linuron, isoproturon,...  相似文献   

18.
Water quality monitoring programs rely on residue data that are frequently left censored, due to some observations occurring below the Method Detection Limit (MDL). Our objective was to determine the influence the MDL has on the interpretation of pesticide residues in surface waters. Water samples from tributaries in southern and central Ontario were collected by Environment Canada from 2003 to 2008 and were analyzed for 27 pesticides, with MDLs that averaged 7.02 ng−1 L (range 0.39-25.1 ng−1 L). We then simulated MDLs ranging from 25 to 1700 ng−1 L, to determine the impact this would have on the reporting of pesticide concentrations and detections. The mean number of pesticides detected simultaneously declined with increasing, i.e. less sensitive MDLs, from 5.02 pesticides (native MDL) to 0.08 pesticides detected (MDL < 1700 ng−1 L). We compared the proportion of sites where pesticides were detected in surface waters under five MDL scenarios for 13 selected pesticides. The proportions decreased sharply with increasing MDLs. We calculated detection probabilities in an effort to compensate for higher MDLs using maximum likelihood; while adjusting for detection probabilities generally improved estimates of the presence of pesticides, as the MDLs increased the ability to compensate for detection probabilities deteriorated and became unviable at high MDLs. Depending on the method of substitution for observations below MDL (replacement with ½ × or 0 × MDL), the mean and median pesticide residues became increasingly over- and underestimated, respectively, at higher MDLs. Although monitoring programs that are focused on exceedences of water quality guidelines may not require low MDLs, the achievable goals of monitoring programs oriented towards other ecological and toxicological objectives may be limited by higher MDLs.  相似文献   

19.
Abstract

Aqueous tank mixes of permethrin, fenitrothion, Bacillus thuringiensis (B.t.), diflubenzuron (DFB), and glyphosate containing different amounts of Triton® X‐114, a nonionic surfactant, were prepared. Glyphosate formed clear solutions, permethrin and fenitrothion formed emulsions, DFB and B.t provided suspensions. Emulsion stability of permethrin and fenitrothion increased with increasing surfactant level, while the emulsion drop size decreased.

Foliage of white oak, trembling aspen, white spruce and balsam fir were dipped in tank mixes of pesticides (except B.t.) labelled with 14carbon. The amount of pesticide retained on foliage was determined by liquid scintillation counting. Foliage was also dipped in non‐radioactive B.t. tank mixes, and the protein retained was determined colorimetrically. With all tank mixes, a direct relationship was observed between the mass of liquids retained on foliage and liquid viscosity. In contrast, the amount of pesticide retained was unaffected by viscosity, but was influenced by emulsion drop size. Initially, the amount of pesticide retained on foliage increased with increasing surfactant concentration. Beyond an optimum surfactant level, the emulsion drop sizes were too small and the emulsions became too stable to allow maximum retention of pesticides on foliage. With the glyphosate solutions, however, no optimum surfactant level was indicated because foliar concentrations continued to increase with increasing surfactant levels.  相似文献   

20.
Wang N  Shi L  Kong D  Cai D  Cao Y  Liu Y  Pang G  Yu R 《Chemosphere》2011,84(7):964-971
This paper presents a comprehensive study of pesticide levels and bio-accumulation characteristics in human adipose tissues among residents of Southeast China. A large number of adipose samples (n = 633) were selected for 58 pesticides and were analyzed by high sensitive Gas Chromatography-Tandem Mass Spectrometry (GC-MS/MS). The results showed that POPs pesticides were frequently detected, including 2,4′-DDD, 2,4′-DDE, 2,4′-DDT, 4,4′-DDD, 4,4′-DDE, 4,4′-DDT, α-HCH, β-HCH, γ-HCH, δ-HCH, hexachlorobenzene (HCB), and mirex. Other detected pesticide species were dicofol, methamidophos and chlordimeform, which have rarely been reported. Comparing to different countries, the concentrations of total DDT and HCH in these three Chinese southeastern sites were in the middle range, whereas the HCB and mirex were in the lower end. A significant correlation was observed between region as well as age and POPs pesticide levels. Some pesticide residue levels were also found significantly correlated to occupation. However, there was no significant correlation between gender and pesticides. Meanwhile, it is interesting to find that mortality of malignant tumors tends to associate with the pesticides levels in human adipose tissue. More importantly, the measured data presented in this study provide realistic information which is useful for assessing human exposure to pesticides in the general population of Southeast China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号