首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organochlorine (OC) contaminants are transported to the Polar Regions, where they have the potential to bioaccumulate, presenting a threat to the health of wildlife and indigenous communities. They deposit onto snowpack during winter, and accumulate until spring, when they experience prolonged solar irradiation until snowmelt occurs. Photochemical degradation rates for aldrin and dieldrin, in frozen aqueous solution made from MilliQ water, 500 μM hydrogen peroxide solution or locally-collected melted snow were measured in a field campaign near Barrow, AK, during spring-summer 2008. Significant photoprocessing of both pesticides occurs; the reactions depend on temperature, depth within the snowpack and whether the predominant phase is ice or liquid water. The effect of species present in natural snowpack is comparable to 500 μM hydrogen peroxide, pointing to the potential significance of snowpack-mediated reactions. Aldrin samples frozen at near 0 °C were more reactive than comparable liquid samples, implying that the microenvironments experienced on frozen ice surfaces are an important consideration.  相似文献   

2.
The photodegradation and biotic transformation of the pharmaceuticals lidocaine (LDC), tramadol (TRA) and venlafaxine (VEN), and of the metabolites O-desmethyltramadol (ODT) and O-desmethylvenlafaxine (ODV) in the aquatic environmental have been investigated. Photodegradation experiments were carried out using a medium pressure Hg lamp (laboratory experiments) and natural sunlight (field experiments). Degradation of the target compounds followed a first-order kinetic model. Rates of direct photodegradation (light absorption by the compounds itself) at pH 6.9 were very low for all of the target analytes (?0.0059 h?1 using a Hg lamp and ?0.0027 h?1 using natural sunlight), while rates of indirect photodegradation (degradation of the compounds through photosensitizers) in river water at pH 7.5 were approximately 59 (LDC), 5 (TRA), 8 (VEN), 15 (ODT) and 13 times (ODV) higher than the rates obtained from the experiments in ultrapure water. The accelerated photodegradation of the target compounds in natural water is attributed mainly to the formation of hydroxyl radicals through photochemical reactions. Biotic (microbial) degradation of the target compounds in surface water has been shown to occur at very low rates (?0.00029 h?1). The half-life times determined from the field experiments were 31 (LDC), 73 (TRA), 51 (VEN), 21 (ODT) and 18 h (ODV) considering all possible mechanisms of degradation for the target compounds in river water (direct photodegradation, indirect photodegradation and biotic degradation).  相似文献   

3.
Although polycyclic aromatic hydrocarbons (PAHs) are common pollutants in snow, there is little quantitative data about their rates of photodegradation in this environment. To begin to address this gap, we have measured the degradation kinetics of phenanthrene, pyrene, and fluoranthene on ice, as these are the most abundant PAHs in arctic snow. Frozen aqueous solutions of individual PAHs, with and without added hydrogen peroxide (HOOH) as a source of hydroxyl radical (OH), were illuminated with simulated sunlight. For all three PAHs, direct photodecay is the main mechanism of degradation, while OH-initiated indirect photodegradation is a minor sink. Rate constants (±1 SE) for direct photodegradation extrapolated to midday, surface snow conditions at Summit, Greenland on the summer solstice are 3.8 (±0.8) × 10?5, 28 (±3) × 10?5, and 1.4 (±0.7) × 10?5 s?1 for phenanthrene, pyrene, and fluoranthene, respectively. Apparent quantum efficiencies for photodegradation with simulated sunlight were 3.8 (±0.8) × 10?3, 4.3 (±0.5) × 10?4, and 2 (±1) × 10?5, respectively. Calculated PAH lifetimes in surface snow under Summit conditions are 1–19 h during mid-summer, but increase to >100 days in the dark winter. While the short photodegradation lifetimes in the summer suggest that there should be no appreciable PAH levels in this season, past measurements at Summit sometimes show significant levels of these PAHs in summer surface snow. This discrepancy is likely due to differences in PAH location between lab samples (where the PAHs are probably in quasi-liquid layers) and real snow (where PAHs are likely primarily associated with particulate matter).  相似文献   

4.
The solubility in pure and saline water at various temperatures was calculated for selected nitro compounds (nitrobenzene, 1,3,5-trinitrobenzene, 2-nitrotoluene, 3-nitrotoluene, 4-nitrotoluene, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2,3-dinitrotoluene, 3,4-dinitrotoluene, 2,4,6-trinitrotoluene) using the Conductor-like Screening model for Real Solvents (COSMO-RS). The results obtained were compared with experimental values. The COSMO-RS predictions have shown high accuracy in reproducing the trends of aqueous solubilities for both temperature and salinity. The proposed methodology was then applied to predict the aqueous solubilities of 19 nitro compounds in the temperature range of 5-50 °C in saline solutions. The salting-out parameters of the Setschenow equation were also calculated. The predicted salting-out parameters were overestimated when compared to the measured values, but these parameters can still be used for qualitative estimation of the trends.  相似文献   

5.
Ferric citrate-induced photodegradation of dyes in aqueous solutions   总被引:1,自引:0,他引:1  
Deng Nansheng  Wu Feng  Luo Fan  Xiao Mei 《Chemosphere》1998,36(15):3101-3112
The photooxidation of dye solutions containing Fe(III)-citrate complexes was studied. The photodegradation under near-UV light of the five dyes, C. I. reactive red 2, C. I. reactive blue 4, C. I. reactive black 8, C. I. basic red 13 and C. I. basic yellow 2, in aqueous solutions at pH2.0 containing Fe(III)-citrate complexes was found to follow pseudo-first order kinetics. The photodegradation rates of the dye, C. I. reactive red 2, decreased with increasing the initial dye concentration in range of 20 – 60 mg/L . A comparatively higher photodegradation efficiency of the dye was gained under the condition of pH2.0 and the Fe(III) to citrate ratio 1:2.  相似文献   

6.
Baran W  Sochacka J  Wardas W 《Chemosphere》2006,65(8):1295-1299
The photocatalytic degradation of sulfacetamide, sulfathiazole, sulfamethoxazole and sulfadiazine in water solutions during their illumination of UV radiation (lambda(max) 366 nm) with TiO2 catalyst was examined. The growth-inhibition effect of sulfonamides and intermediate products theirs photodegradation was investigated in aqueous solution with the green alga Chlorella vulgaris. The biodegradability of the investigated compounds was determined in the illuminated solutions and is expressed as Biochemical Oxygen Demand. It was found that all of the investigated sulfonamides in the initial solutions were resistant to biodegradation and were toxic relative to C. vulgaris. The toxicity (EC50 values) relative to C. vulgaris increased in the following order sulfacetamide, sulfathiazole, sulfamethoxazole, sulfadiazine. All of the investigated sulfonamides undergo photocatalytic degradation. The toxicity of intermediate products of the sulfonamides degradation was significantly lower than the toxicity of sulfonamides in the initial solutions and was dependent on illumination time and degradation rate. The intermediate products of photocatalysis in contrast to the initial sulfonamides, might be mineralized using biological methods.  相似文献   

7.
Concentrated animal feeding operations around the globe generate large amounts of nitrous oxide (N2O) in the surrounding atmosphere. Liquid animal waste systems have received little attention with respect to N2O emissions. We hypothesized that the solution chemistry of animal waste aqueous suspensions would promote conditions that lead to N2O supersaturation at the liquid/air interface. The concentration of dissolved N2O in poultry litter (PL) aqueous suspensions at 25 °C was 0.36 μg N2O mL−1, at least an order of magnitude greater than that measured in water in equilibrium with ambient air, suggesting N2O supersaturation. There was a nonlinear increase in the N2O Henry constants of PL from 2810 atm/mole fraction at 35 °C to 17 300 atm/mole fraction at 41 °C. The extremely high N2O Henry constants were partially ascribed to N2O complexation with aromatic moieties. Complexed N2O structures were unstable at temperatures > 35 °C, supplying the headspace with additional free N2O concentrations.  相似文献   

8.
《Chemosphere》2013,90(11):1419-1425
Quinestrol is synthetic estrogen used in contraceptive and hormone replacement therapy and occasionally for treating breast cancer and prostate cancer. It can make its way into the environment through sewage discharge and waste disposal produced by human excretions. In this study, the photodegradation kinetics of quinestrol in various conditions was investigated by UV and solar irradiation. The affecting factors were studied including concentration of hydrogen peroxide, different water types, and the initial concentrations of quinestrol. Concurrently, the transformation products and presumed pathways of quinestrol in distilled water by UV irradiation were identified and proposed. The results showed that the degradation of quinestrol in both irradiation conditions followed the pseudo-first-order kinetics. More rapid degradation was observed by UV irradiation (k = 0.018 min−1) than solar irradiation (k = 0.004 h−1), and the photodegradation rate of quinestrol depended on the concentration of hydrogen peroxide, the initial concentration of quinestrol and water types. The transformation products of quinestrol in distilled water were identified by gas chromatography/mass spectrometry. When exposed to UV irradiation, quinestrol in aqueous solution was rapidly degraded, giving at least ten photodegradation products. The chemical structures of ten degradation products were identified on the basis of mass spectrum interpretation and literature data.  相似文献   

9.
Kim M  O'Keefe PW 《Chemosphere》2000,41(6):793-800
Aqueous solutions of selected polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were prepared using a generator column and exposed to UV (300 nm) light in the laboratory and to sunlight in an outdoor environment. In the laboratory, additional exposures were also carried out using 60% acetonitrile/water solutions. At 300 nm di- and tetra PCDDs had higher first-order photodegradation rate constants in 60% acetonitrile/water than in pure water. The solvent effect was reversed for PCDFs. These results may be a reflection of the higher polarity of PCDFs compared to PCDDs. In both the indoor and outdoor exposures photodegradation rates decreased with increasing concentrations of chlorination. However, OCDF exposed to 300 nm light in 60% acetonitrile/water and to sunlight in pure water photodegraded more rapidly than tetra CDF. Photolysis rates in sunlight were considerably slower (t(1/2) of 6.4-23 h) than photolysis rates at 300 nm in the laboratory (t(1/2) of 4.3-680 min), reflecting the lower intensity of sunlight in the 300 nm region of the UV/Vis spectrum. The extent of dechlorination of the PCDDs/PCDFs was less than 20% and reductive dechlorination does not appear to be a major process in the photodegradation of PCDDs/PCDFs in aqueous solutions.  相似文献   

10.
Biological air filtration for reduction of emissions of volatile sulfur compounds (e.g., hydrogen sulfide, methanethiol and dimethyl sulfide) from livestock production facilities is challenged by poor partitioning of these compounds into the aqueous biofilm or filter trickling water. In this study, Henry’s law constants of reduced volatile sulfur compounds were measured for deionized water, biotrickling filter liquids (from the first and second stages of a two-stage biotrickling filter), and NaCl solutions by a dynamic method using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) at a temperature range of 3–45 °C. NaCl solutions were used to estimate salting-out constants up to an ionic strength of 0.7 M in order to evaluate the effect of ionic strength on partitioning between air and biofilter liquids. Thermodynamic parameters (enthalpy and entropy of phase exchange) were obtained from the measured partition coefficients as a function of temperature. The results show that the partition coefficients of organic sulfur compounds in the biotrickling filter liquids were generally very close to the corresponding partition coefficients in deionized water. Based on the estimated ionic strength of biofilter liquids, it is assessed that salting-out effects are of no importance for these compounds. For H2S, a higher enthalpy of air–liquid partitioning was observed for 2nd stage filter liquid, but not for 1st stage filter liquid. In general, the results show that co-solute effects for sulfur compounds can be neglected in numerical biofilter models and that the uptake of volatile sulfur compounds in biotrickling filter liquids cannot be increased by decreasing ionic strength.  相似文献   

11.
Biochars are anthropogenic carbonaceous sorbent and their influences on the sorption of environmental contaminants need to be characterized. Here we evaluated the effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Two biochars separately produced at 350 °C and 700 °C and three soils were tested. Biochar amendment generally enhanced the soil sorption of phenanthrene. The biochar produced at 700 °C generally showed a greater ability at enhancing a soil’s sorption ability than that prepared at 350 °C. The single-step desorption measurement showed an apparent hysteresis in biochar-amended soils. After 28 d equilibration, the sorptive capacity of biochar-amended soil (with an organic carbon content of 0.16%) significantly decreased. This study clearly suggested that biochar application enhanced soil sorption of hydrophobic organic compounds, but the magnitude of enhancement depended on the preparation of biochars, the indigenous soil organic carbon levels, and the contact time between soil and biochar.  相似文献   

12.
Henry’s law constants for 12 chlorinated volatile organic compounds (CVOCs) were measured as a function of temperature ranging from 8 to 93 °C, using the modified equilibrium partitioning in closed system (EPICS) method. The chlorinated compounds include tetrachloroethylene, trichloroethylene, cis-1,2-dichloroethylene, vinyl chloride, 1,1,1-trichloroethane, 1,1-dichloroethane, 1,2-dichloroethane, chloroethane, carbon tetrachloride, chloroform, dichloromethane, and chloromethane. The variation in Henry’s constants for these compounds as a function of temperature ranged from around 3-fold (chloroethane) to 30-fold (1,2-dichloroethane). Aqueous solubilities of the pure compounds were measured over the temperature range of 8-75 °C. The temperature dependence of Henry’s constant was predicted using the ratio of pure vapor pressure to aqueous solubility, both of which are functions of temperature. The calculated Henry’s constants are in a reasonable agreement with the measured results. With the improved data on Henry’s law constants at high temperatures measured in this study, it will be possible to more accurately model subsurface remediation processes that operate near the boiling point of water.  相似文献   

13.
Increasing production and disposal of organic light-emitting diode (OLED) displays for smartphones and tablets may have impact on the environment depending on the aqueous solubility of the pertinent chemicals. Here, aqueous solubilities are presented for several compounds, mostly aromatic amines, used as hole transport materials in the OLED displays. Solute selection includes 1,4-bis(diphenylamino)benzene, tetra-N-phenylbenzidine, 4,4′-bis(N-carbazolyl)-1,1′-biphenyl, 1,3,5-tris(diphenylamino)benzene, and 9,10-bis(phenylethynyl)anthracene. The solubilities are those in pressurized hot water (PHW), i.e., measured at elevated temperature (up to 260 °C) and pressure. The semi-quantitative estimates of room-temperature solubilities of the solutes have been obtained from extrapolations of the solubilities in PHW. For the compounds studied, the estimated aqueous solubilities at room temperature do not exceed 2 × 10?11 g of the solute per 1 kg of water. Aqueous solubilities of triphenylamine have also been measured and used to upgrade a recent group-contribution model of aqueous solubilities of organic nonelectrolytes with the parameters for the nitrogen atom in aromatic amines.  相似文献   

14.
With an Xe arc lamp house as simulated sunlight, the influences of fulvic acid (FA) concentration and origins on photodegradation of acenaphthene, fluorine, phenanthrene, fluoranthene and pyrene in aqueous solution have been studied. Similar effects of FAs, collected from five places around China, on polycyclic aromatic hydrocarbon (PAH) photodegradation have been observed. Active oxygen was of significance in PAH photodegradation with the presence of FAs. For systems with 1.25 mg L−1 FAs, the contributions of OH to PAH photodegradation rates were from 33% to 69%. FAs had two opposite effects, i.e., stimulating the generation of active oxygen and advancing PAH photodegradation; competing with PAHs for energy and photons and restraining PAH photodegradation. Generally, photodegradation rates of the 5 PAHs decreased with the increase of FAs concentration; except fluoranthene and pyrene were advanced in solutions with low FA concentration. The influences of FA concentration on PAH photodegradation were more significant than FA origin.  相似文献   

15.
Irradiation of aqueous (pH = 5) mixtures containing hydrogen peroxide (1 mM) and phenolic compounds (10 mM) were found to produce visible light absorbing solutions over the course of several hours. The kinetics and products of these reactions were studied by UV–VIS absorbance, electrospray mass spectrometry, FTIR, fluorescence, and NMR and compared to humic-like substances commonly found in atmospheric particulate matter. It was determined the reactions leading to formation of color are quite general to this compound class, and the reactions proceeded more rapidly with hydroxyl or methoxy substitution ortho to the phenolic OH. However, para substitution generally slowed formation of colored compounds compared to the unsubstituted form. Mass spectrometry confirms compounds of several hundred Da formed in the reaction mixtures. The IR spectra of the reaction products bear similarity to that observed for authentic aerosol humic-like substances. The results indicate radical coupling of phenols and methoxylated phenols in tropospheric waters may contribute to humic-like particulate matter.  相似文献   

16.
Water extracts of atmospheric particulate matter (PM2.5) collected at the Storm Peak Laboratory (SPL) (3210 MSL, 40.45° N, 106.74° W) were analyzed for a wide variety of polar organic compounds. The unique geographical character of SPL allows for extended observations/sampling of the free tropospheric interface. Under variable meteorological conditions between January 9th and January14th 2007, the most abundant compounds were levoglucosan (9–72 ng m?3), palmitic acid (10–40 ng m?3) and succinic acid (18–27 ng m?3). Of 84 analytes included in the GC–MS method, over 50 individual water extractable polar organic compounds (POC) were present at concentrations greater than 0.1 ng m?3. During a snow event (Jan. 11th–13th), the concentrations of several presumed atmospheric transformation compounds (dicarboxylic acids) were reduced. Lower actinic flux, reduced transport distance, and ice crystal scavenging may explain this variability. Diurnal averages over the sampling period revealed a higher total concentration of water extractable POC at night, 211 ng m?3 (105–265 ng m?3), versus day, 160 ng m?3 (137–205 ng m?3), which suggests a more aged nighttime aerosol character. This may be due to the increased daytime convective mixing of local primary emissions from the Yampa Valley. XAD resin extracts revealed a gas-phase partitioning of several compounds, and analysis of cloud water collected at this site in 2002 revealed a similar compound abundance trend. Levoglucosan, a wood smoke tracer was generally found to be the most abundant compound in both aerosol and cloud water samples. Variations in meteorological parameters and local/regional transport analysis play an important interpretive role in understanding these results.  相似文献   

17.
The UV (254 nm) and UV/VUV (254/185 nm) photolysis of two anti-inflammatory drugs, ibuprofen and ketoprofen, have been studied in aqueous solutions as a possible process for the removal of non-biodegradable compounds.We have examined the effects of dissolved oxygen and initial target concentration. Upon irradiation at 254 nm, the decomposition rate of ketoprofen is almost forty times higher as it of ibuprofen whilst VUV irradiation only increased the ibuprofen decomposition rate. The presence of dissolved oxygen accelerated the photodegradation of ibuprofen, whereas no effect was observed on the degradation of ketoprofen. The maximum quantum yield for the phototransformation was 0.2. The rate of mineralization in both cases was ∼60%, even after 1 h of treatment and this suggests the formation of stable by-products which were identified using GC-MS and HPLC-MS, respectively.  相似文献   

18.
In this paper, we present the effect of inorganic cations such as Na+, K+, Ca2+, Mg2+ on the salting-out phenomenon of metalaxyl from pure water to aqueous salt solutions. Moreover the 1-octanol/water partition coefficient in pure water is presented. To accomplish this, aqueous solubility of metalaxyl was determined in pure water, in different salt solution (NaCl, KCl, CaCl2 and MgCl2), and at different concentration level ranging from 0.01 to 1.5 M. The 1-octanol/water partition coefficient was determined using the static shake-flask method. Solubility was determined using dynamic saturation method for pure water in the range of 298.15-325.15 K and at 298.15 K for different salt solutions. The solubility value in pure water for studied interval was found constant (= 3.118 × 10−2 mol kg−1).Solubility values were used to calculate the standard molar Gibbs free energy of dissolution (ΔsolG°) and transfer (ΔtrG°) at 298.15 K. The values of ΔtrG° from pure to all studied aqueous salt solutions did not exceed 2 kJ mol−1, the value of ΔsolG° of dissolution is 18.5 ±0.72 kJ mol−1. The 1-octanol/water partition coefficient in pure water log Ko/w is equal to 1.69. The obtained results confirm the classification of the neutral metalaxyl as a slightly hydrophobic molecule.  相似文献   

19.
Photolysis of 14C-sulfadiazine in aqueous solution under simulated sunlight followed first-order kinetics. The impact of H2O2, humic acid, fulvic acid and acetone to enhance the photodegradation of sulfadiazine (SDZ) was studied. Six photoproducts, 4-OH-SDZ, 5-OH-SDZ, N-formyl-SDZ, 4-[2-iminopyrimidine-1(2H)-yl] aniline, 2-aminopyrimidine, and aniline were identified. Extrusion of SO2 was found to be the main degradation process during irradiation. These photoproducts can occur in water and soil upon sunlight exposure, when soil is treated with SDZ contained in manure. Due to photodegradation the experimental half-life of the SDZ in water was 32h and in the presence of photosensitizers the half-life values were 19.3-31.4h, 17.2-31.4h, 12.6-29.8h, and 3.8-30.7h for H2O2, humic acid, fulvic acid, and acetone, respectively depending on the concentration of the photosensitizers. The presence of photosensitizers markedly reduced SDZ persistence, indicating that indirect photolytic processes are important factors governing the photodegradation of SDZ in aqueous environments. Investigation revealed further persistence behavior of SDZ in manure. The half-life value of SDZ in manure was 158h.  相似文献   

20.
BACKGROUND: Synthetic musk compounds are widely used as additives in personal care and household products. The photochemical degradation of musk tibetene in aqueous solutions or in acetonitrile/water mixtures under different conditions was studied in order to assess its environmental fate. METHODS: Musk tibetene dissolved (or suspended) in water and/or acetonitrile/water mixtures was irradiated at different times by UV-light and by solar light. The irradiation mixtures were analyzed by NMR and TLC. The photoproducts formed were identified by GC-MS and NMR data. RESULTS: The experimental results indicated that musk tibetene was photodegradable in water or acetonitrile/water mixtures with half-life reaction times close to 20 minutes. The irradiation mixtures were separated by chromatographic techniques yielding three photoproducts (3,3,5,6,7-pentamethyl-4-nitro-3H-indole, 3,3,5,6,7-pentamethyl-4-nitro-1H-indoline and 3,3,5,6,7-pentamethyl-4-nitro-3H-indolinone) identified by means of spectroscopic analysis. DISCUSSION: The numerical modelling of the photodegradation concentration-time profiles gave (8.13 +/- 0.15) x 10(-2) and (1.34 +/- 0.04) x 10(-2) mol/E for the overall primary quantum yield of direct photolysis for musk tibetene and the major intermediate (3,3,5,6,7-pentamethyl-4-nitro-3H-indolinone), respectively, in the wavelength range 305-366 nm. The half-life times of photodegradation of the both substances varied from 1-1.5 hours at 20 degrees N during the summer season to 6-10 hours for highest latitudes in winter. CONCLUSIONS: Under solar light, musk tibetene was photolabile in acetonitrile and acetonitrile/water 1/1, while it was slowly degraded when suspended in water. In all media, musk tibetene was photodegraded into three photoproducts. By using a kinetic model, the overall primary quantum yields of direct photolysis of musk tibetene and its main photoproduct, in the wavelength range 305-366 nm, were estimated, indicating that the photodegradation rate for musk tibetene is faster than the photolysis rate of the major by-product. RECOMMENDATIONS AND PERSPECTIVES: The results indicate that, in order to assess the environmental impact of musk tibetene on the aquatic ecosystem, great attention should be focused on the major photoproduct which is proved to be more persistent than the parent compound under light irradiation. The predicted half-life times of direct photolysis for both substances ranged from 1-1.5 hours at 20 degrees N during the summer season to about 6-10 hours for highest latitudes in winter, indicating that, from a photochemical point of view, the environmental persistence of these substances increases by increasing the latitudes and during the cold seasons, making more realistic an intake of these xenobiotic molecules into the food chain of aquatic living organisms. Tanabe reports in his Editorial (Tanabe 2005) that "It is necessary to have knowledge of the global picture of synthetic musk pathways. So, it is conceivable that now is the time to study the transport, persistency, distribution, bioaccumulation and toxic potential of this new environmental menace on a global scale, especially in developing countries". Therefore, the future environmental analysis and investigations on the eco-toxicity of nitro musk compounds should take into account not only the presence of the parent compounds but also their photochemical intermediates or end-by-products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号