首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
Lai HY  Chen ZS 《Chemosphere》2004,55(3):421-430
Rainbow pink (Dianthus chinensis), a potential phytoextraction plant, can accumulate high concentrations of Cd from contaminated soils. Vetiver grass (Vetiver zizanioides) has strong and long root tissues and is a potential phytostabilization plant since it can tolerate and grow well in soils contaminated with multiple heavy metals. Soil was moderately artificially contaminated by cadmium (20 mg/kg), zinc (500 mg/kg), and lead (1000 mg/kg) in pot experiments. Three concentrations of Na2-EDTA solution (0, 5, and 10 mmol/kg soil) were added to the contaminated soils to study the influence of EDTA solution on phytoextraction by rainbow pink or phytostabilization by vetiver grass. The results showed that the concentrations of Cd, Zn, and Pb in a soil solution of rainbow pink significantly increased following the addition of EDTA (p < 0.05). The concentrations of Cd and Pb in the shoots of rainbow pink also significantly increased after EDTA solution was applied (p < 0.05), but the increase for Zn was insignificant. EDTA treatment significantly increased the total uptake of Pb in the shoot, over that obtained with the control treatment (p < 0.001), but it did not significantly increase the total uptake of Cd and Zn. The concentrations of Zn and Pb in the shoots of rainbow pink are significantly correlated with those in the soil solution, but no relationship exists with concentrations in vetiver grass. The toxicity of highly contaminating metals did not affect the growth of vetiver grass, which was found to grow very well in this study. Results of this study indicate that rainbow pink can be considered to be a potential phytoextraction plant for removing Cd or Zn from metal-contaminated soils, and that vetiver grass can be regarded as a potential phytostabilization plant that can be grown in a site contaminated with multiple heavy metals.  相似文献   

2.
Bajda T 《Chemosphere》2011,83(11):1493-1501
Due to its relatively low solubility, mimetite Pb5(AsO4)3Cl may control Pb and As(V) solution levels at a low value in contaminated soils. The time-dependent dissolution of mimetite by low-molecular-weight organic acids (LMWOAs) such as acetic, lactic, citric, and ethylene diamine tetra-acetic acid (EDTA) was determined. At pH 3.5, the presence of citric acid or EDTA significantly increases the solubility of mimetite while acetic or lactic acids show little effect. The effect of all organic anions on the dissolution of mimetite increased with the increase in solution pH. The rate of mimetite dissolution depended on the kind and concentration of organic solvents in the sequence rEDTA > rlactate > racetate > rcitrate. Soluble Pb and As(V) released in LMWOAs and EDTA were higher than the WHO guideline value for these elements in drinking water (10 μg As(V) L−1, 10 μg Pb L−1). This suggests that soil organic acids in rhizosphere can potentially liberate Pb and As(V) from mimetite in contaminated soils.  相似文献   

3.
The rates of radial oxygen loss (ROL), root porosity, concentrations of arsenic (As), iron (Fe) and manganese (Mn) in shoot and root tissues and on root surfaces, As tolerances, and their relationships in different wetland plants were investigated based on a hydroponic experiment (control, 0.8, 1.6 mg As L−1) and a soil pot trail (control, 60 mg As kg−1). The results revealed that wetland plants showed great differences in root porosity (9-64%), rates of ROL (55-1750 mmo1 O2 kg−1 root d.w. d−1), As uptake (e.g., 8.8-151 mg kg−1 in shoots in 0.8 mg As L−1 treatment), translocation factor (2.1-47% in 0.8 mg As L−1) and tolerance (29-106% in 0.8 mg As L−1). Wetland plants with higher rates of ROL and root porosity tended to form more Fe/Mn plaque, possess higher As tolerance, higher concentrations of As on root surfaces and a lower As translocation factor so decreasing As toxicity.  相似文献   

4.
Wang C  Zhang S  Wang P  Hou J  Qian J  Ao Y  Lu J  Li L 《Chemosphere》2011,84(1):136-142
In this study, the alterations in nutrient elements content, reactive oxygen species level and antioxidant response were studied in leaves of Vallisneria natans (Lour.) Hara exposed to salicylic acid (SA, 10 or 100 μM), or Pb (50 μM) or their combinations for 4 d. No significant alterations in Mn and Ca content were observed but content of Cu, Zn, Fe and P decreased in plants exposed to SA alone. SA application inhibited the uptake of Pb and partially reversed Pb-induced the alterations in Mn, Ca and Fe content in leaves of V. natans exposed to 50 μM Pb. The decreased chlorophyll (a + b) and increased malondialdehyde and O2− and H2O2 content were detected in plants exposed to 100 μM SA, 50 μM Pb, 10 μM SA + 50 μM Pb or 100 μM SA + 50 μM Pb. Application SA partially inhibited Pb-induced the increase of malondialdehyde, O2− and H2O2 content. 100 μM SA decreased the activity of NADH oxidase and the content of non-protein thiols, carotenoids and ascorbic acid and increased the content of dehydroascorbate in plants treated with or without Pb. SA alone decreased the ascorbate peroxidase activity and increased the catalase and peroxidase activity, while SA application increased catalase activity but had no significant effect on ascorbate peroxidase and peroxidase activity in V. natans exposed to Pb. The results indicate that SA involves in the regulation of Pb uptake, nutrient balance and oxidative stress.  相似文献   

5.
Hu X  Zhang Y  Luo J  Xie M  Wang T  Lian H 《Chemosphere》2011,82(10):1351-1357
Foliar uptake of airborne lead is one of the pathways for Pb accumulation in plant organs. However, the approximate contributions of airborne Pb to plant organs are still unclear. In the present study, aerosols (nine-stage size-segregated aerosols and total suspended particulates), a wild plant species (Aster subulatus) and the corresponding soils were collected and Pb contents and isotopic ratios in these samples were analyzed. Average concentration of Pb was 96.5 ± 63.5 ng m−3 in total suspended particulates (TSP) and 20.4 ± 5.5 ng m−3 in the fine fractions of size-segregated aerosols (SSA) (<2.1 μm), higher than that in the coarser fractions (>2.1 μm) (6.38 ± 3.71 ng m−3). Enrichment factors show that aerosols and soils suffered from anthropogenic inputs and the fine fractions of the size-segregated aerosols enriched more Pb than the coarse fractions. The order of Pb contents in A. subulatus was roots > leaves > stems. The linear relationship of Pb isotope ratios (206Pb/207Pb and 208Pb/206Pb) among soil, plant and aerosol samples were found. Based on the simple binary Pb isotopic model using the mean 206Pb/207Pb ratios in TSP and in SSA, the approximate contributions of airborne Pb into plant leaves were 72.2% and 65.1%, respectively, suggesting that airborne Pb is the most important source for the Pb accumulation in leaves. So the combination of Pb isotope tracing and the simple binary Pb isotope model can assess the contribution of airborne Pb into plant leaves and may be of interest for risk assessment of the exposure to airborne Pb contamination.  相似文献   

6.
Pociecha M  Lestan D 《Chemosphere》2012,86(8):843-846
Soil washing with EDTA is known to be an effective means of removing toxic metals from contaminated soil. A practical way of recycling of used soil washing solution remains, however, an unsolved technical problem. We demonstrate here, in a laboratory scale experiment, the feasibility of using acid precipitation to recover up to 50% of EDTA from used soil washing solution obtained after extraction of Pb (5330 mg kg−1), Zn (3400 mg kg−1), Cd (35 mg kg−1) and As (279 mg kg−1) contaminated soil. Up to 100% of EDTA residual in the washing solution and 100%, 97%, 98% and 100% of initial Pb, Zn, Cd and As concentration in the solution, respectively, were removed in an electrolytic cell using a graphite anode. We employed the recovered EDTA and treated washing solution to prepare recycled soil washing solution with the same potential for extracting toxic metals from soil as the original. The efficiency of soil washing depends on the EDTA concentration. Using twice recycled 30 mmol EDTA kg−1 soil, we removed 44%, 20%, 53% and 61% of Pb, Zn, Cd and As, respectively, from contaminated soil.  相似文献   

7.
Phytoremediation is a promising and cost-effective strategy to manage heavy metal polluted sites. In this experiment, we compared simultaneously phytoextraction and phytostabilisation techniques on a Cd and Zn contaminated soil, through monitoring of plant accumulation and leaching. Lolium perenne plants were cultivated for 2 months under controlled environmental conditions in a 27.6 dm3-pot experiment allowing the collect of leachates. The heavy metal phytoextraction was promoted by adding Na-EDTA (0.5 g kg−1 of soil) in watering solution. Phytostabilisation was assessed by mixing soil with steel shots (1%) before L. perenne sowing. Presence of plants exacerbated heavy metal leaching, by improving soil hydraulic conductivity. Use of EDTA for phytoextraction led to higher concentration of heavy metal in shoots. However, this higher heavy metal extraction was insufficient to satisfactory reduce the heavy metal content in soil, and led to important heavy metal leaching induced by EDTA. On the other hand, addition of steel shots efficiently decreased both Cd and Zn mobility, according to 0.01 M CaCl2 extraction, and leaching. However, improvement of growth conditions by steel shots led to higher heavy metal mass in shoot tissues. Therefore, soil heavy metal mobility and plant metal uptake are not systematically positively correlated.  相似文献   

8.
This is the first test of a highly charged swelling mica's (Na-2-mica) ability to reduce the plant-absorbed Cu in Cu-contaminated soils from Chile. Perennial ryegrass (Lolium perenne L.) was grown in two acid soils (Sector 2: pH 4.2, total Cu = 172 mg Cu kg−1 and Sector 3: pH 4.2, total Cu = 112 mg Cu kg−1) amended with 0.5% and 1% (w/w) mica, and 1% (w/w) montmorillonite. At 10 weeks of growth, both mica treatments decreased the shoot Cu of ryegrass grown in Sector 2 producing shoot Cu concentrations above 21-22 mg Cu kg−1 (the phytotoxicity threshold for that species), yet the mica treatments did not reduce shoot Cu concentrations when grown in Sector 3, which were at a typical level. The mica treatments improved shoot growth in Sector 3 by reducing free and extractable Cu to low enough levels where other nutrients could compete for plant absorption and translocation. In addition, the mica treatments improved root growth in both soils, and the 1% mica treatment reduced root Cu in both soils. This swelling mica warrants further testing of its ability to assist re-vegetation and reduce Cu bioavailability in Cu-contaminated surface soils.  相似文献   

9.
Chelant-aided enhancement of lead mobilization in residential soils   总被引:3,自引:0,他引:3  
Chelation of metals is an important factor in enhancing solubility and hence, availability to plants to promote phytoremediation. We compared the effects of two chelants, namely, ethylenediaminetetraacetic acid (EDTA) and ethylenediaminedisuccinic acid (EDDS) in enhancing mobilized lead (Pb) in Pb-based paint contaminated residential soils collected from San Antonio, Texas and Baltimore, Maryland. Batch incubation studies were performed to investigate the effectiveness of the two chelants in enhancing mobilized Pb, at various concentrations and treatment durations. Over a period of 1 month, the mobilized Pb pool in the San Antonio study soils increased from 52 mg kg−1 to 287 and 114 mg kg−1 in the presence of 15 mM kg−1 EDTA and EDDS, respectively. Stepwise linear regression analysis demonstrated that pH and organic matter content significantly affected the mobilized Pb fraction. The regression models explained a large percentage, from 83 to 99%, of the total variation in mobilized Pb concentrations.  相似文献   

10.
Particle-bound polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in ambient air were monitored together with particulate matter less than 10 μm (PM10) at three sampling sites of the Andean city of Manizales, Colombia; during September 2009 and July 2010. PCDD/Fs ambient air emissions ranged from 1 fg WHO-TEQ m−3 to 52 fg WHO-TEQ m−3 in particulate fraction. The PM10 concentrations ranged from 23 μg m−3 to 54 μg m−3. Concentrations of PM10 and PCDD/Fs in ambient air observed for Manizales - a medium sized city with a population of 380 000 - were comparable to concentrations in larger cities. The highest concentrations of PCDD/Fs and PM10 found in this study were determined at the central zone of the city, characterized by public transportation density, where diesel as principal fuel is used. In addition, hypothetical gas fractions of PCDD/Fs were calculated from theoretical Kp data. Congener profiles of PCDD/Fs exhibited ratios associated with different combustion sources at the different sampling locations, ranging from steel recycling to gasoline and diesel engines. Taking into account particle and gas hypothetical fraction of PCDD/Fs, Manizales exhibited values of PCDD/Fs equivalent to rural and urban-industrial sites in the southeast and center of the city respectively. Poor correlation of PCDDs with PM10 (r = −0.55 and r = 0.52) suggests ambient air PCDDs were derived from various combustion sources. Stronger correlation was observed of PCDFs with PM10. Poor correlation between precipitation and reduced PM10 concentration in ambient air (r = −0.45) suggested low PM10 removal by rainfall.  相似文献   

11.
Li X  Li Y  Zhang Q  Wang P  Yang H  Jiang G  Wei F 《Chemosphere》2011,84(7):957-963
The concern about emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) from steel industrial parks has increased in the past decades. In this study, polyurethane foam (PUF)-disk based passive air samples were collected in and around a big steel industrial park of Anshan, Northeast China from June 2008 to March 2009. The levels, seasonal variations and potential sources of PCDD/Fs, PCBs and PBDEs in the atmosphere around the steel industrial complex were investigated, and potential contribution of these three groups of persistent organic pollutants (POPs) from iron and steel production was also assessed. The air concentrations of ∑17PCDD/Fs (summer: 0.02-2.77 pg m−3; winter: 0.20-9.79 pg m−3), ∑19PCBs (summer: 23.5-155.8 pg m−3; winter: 14.6-81.3 pg m−3) and ∑13PBDEs (summer: 2.91-10.7 pg m−3; winter: 1.10-3.89 pg m−3) in this targeted industrial park were relatively low in comparison to other studies, which implied that the industrial activities of iron and steel had not resulted in serious contamination to the ambient air in this area. On the whole, the air concentrations of PCDD/Fs in winter were higher than those of summer, whereas the concentrations of PCBs and PBDEs showed opposite trends. The result from principal component analysis indicated that coal combustion might be the main contributor of PCDD/F sources in this area.  相似文献   

12.
Parameters that influence the zero valent iron mediated degradation of the pharmaceutical diazepam (DZP) were evaluated including the iron concentration and its pre-treatment, the effect of complexation with EDTA and oxic versus anoxic condition. It was observed that acid pre-treatment of iron particles is important for degradation efficiency and that H2SO4 is a better choice than HCl, resulting in higher degradation of DZP. Under oxic conditions, the degradation of DZP achieved 96% after 60 min using Fe0 (25 g L−1) pre-treated with H2SO4 in the presence of EDTA (119 mg L−1), while mineralization achieved around 60% after the same time. Under anoxic conditions, degradation occurred, however at lower extent, achieving 67% after 120 min. The addition of EDTA improved the treatment efficiency in 20% leading to 99% DZP degradation after 120 min. The first intermediates formed during DZP degradation were identified using LC/MS analysis and revealed the formation of mono- and di-hydroxylated products from DZP during Fe0/EDTA/O2 degradation, which evidences that OH was the main oxidizing species formed in this process.  相似文献   

13.
The aim of this study was to investigate the effects of metal mobilizing plant-growth beneficial bacterium Phyllobacterium myrsinacearum RC6b on plant growth and Cd, Zn and Pb uptake by Sedum plumbizincicola under laboratory conditions. Among a collection of metal-resistant bacteria, P. myrsinacearum RC6b was specifically chosen as a most favorable metal mobilizer based on its capability of mobilizing high concentrations of Cd, Zn and Pb in soils. P. myrsinacearum RC6b exhibited a high degree of resistance to Cd (350 mg L−1), Zn (1000 mg L−1) and Pb (1200 mg L−1). Furthermore, P. myrsinacearum RC6b showed multiple plant growth beneficial features including the production of 1-aminocyclopropane-1-carboxylic acid deaminase, indole-3-acetic acid, siderophore and solubilization of insoluble phosphate. Inoculation of P. myrsinacearum RC6b significantly increased S. plumbizincicola growth and organ metal concentrations except Pb, which concentration was lower in root and stem of inoculated plants. The results suggest that the metal mobilizing P. myrsinacearum RC6b could be used as an effective inoculant for the improvement of phytoremediation in multi-metal polluted soils.  相似文献   

14.
Toxicity studies tend to use pure pesticides with single organisms. However, natural systems are complex and biological communities diverse. The organophosphate pesticide propetamphos (PPT) has been found exceeding regulatory limits (100 ng L−1) in rivers. We address whether solution properties affect the fate of Analar (Analar-PPT) or industrial PPT (PPT-Ind) propetamphos formulations and whether propetamphos and metal toxicant effects are additive, antagonistic or synergistic? The sorption, desorption, biodegradation and microbial toxicology of Analar-PPT and PPT-Ind were investigated in Conwy River and estuary sediment. Results showed elevated salinity enhanced PPT sorption, while higher salinities increased PPT-Ind retention. Higher dissolved organic matter (DOM) and low salinity slowed Analar-PPT biodegradation (1.9 × 10−3 h−1). Analar-PPT and PPT-Ind biodegradation was further reduced by low salinity, high DOM and dissolved Zn and Pb (6.3 × 10−4 h−1, 1100 h t½ for Analar-PPT; 7.5 × 10−4 h−1, 924 h t½ for PPT-Ind). Toxicity effects of PPT, Zn and Pb in equitoxic ratio were higher for PPT-Ind (4.7 μg PPT-Ind g−1; 581 μg Zn g−1; 395 μg Pb g−1) than for Analar-PPT (34.6 μg PPT g−1; 312 μg Zn g−1; 212 μg Pb g−1) whilst a toxicant ratio 1:100:10 suggested small quantities of Analar-PPT (EC10 = 0.06 μg g−1) affected microbial communities. The combined toxicity effect was more than additive. Thus, industrial formulations and pollutant mixtures should be considered when assessing environmental toxicity.  相似文献   

15.
Root and shoot lead concentrations and the impact of chelating agents on these were investigated in two populations of the novel metallophyte Matthiola flavida. Plants were exposed in hydroponics to Pb(NO3)2, supplied alone, or in combination with citric acid, or EDDS. When supplied at concentrations expected to bind about 95% of the Pb in a solution containing 1-μM Pb (1000 μM citrate or 3.1 μM EDDS, respectively), the root and shoot Pb concentrations were dramatically lowered, in comparison with a 1-μM free ionic Pb control exposure. A 1-mM EDDS + 1-μM Pb treatment decreased the plants’ Pb concentrations further, even to undetectable levels in one population. At 100 μM Pb in a 1-mM EDDS-amended solution the Pb concentration increased strongly in shoots, but barely in roots, in comparison with the 1-μM Pb + 1-mM EDDS treatment, without causing toxicity symptoms. Further increments of the Pb concentration in the 1-mM EDDS-amended solution, i.e. to 800 and 990 μM, caused Pb hyperaccumulation, both in roots and in shoots, associated with a complete arrest of root growth and foliar necrosis. M. flavida seemed to be devoid of constitutive mechanisms for uptake of Pb-citrate or Pb-EDDS complexes. Hyperaccumulation of Pb-EDDS occurred only at high exposure levels. Pb-EDDS was toxic, but is much less so than free Pb. Free EDDS did not seem to be toxic at the concentrations tested.  相似文献   

16.
The study was prompted to characterize the B-type esterase activities in the terrestrial snail Xeropicta derbentina and to evaluate its sensitivity to organophosphorus and carbamate pesticides. Specific cholinesterase and carboxylesterase activities were mainly obtained with acetylthiocholine (Km = 77.2 mM; Vmax = 38.2 mU/mg protein) and 1-naphthyl acetate (Km = 222 mM, Vmax = 1095 mU/mg protein) substrates, respectively. Acetylcholinesterase activity was concentration-dependently inhibited by chlorpyrifos-oxon, dichlorvos, carbaryl and carbofuran (IC50 = 1.35 × 10−5-3.80 × 10−8 M). The organophosphate-inhibited acetylcholinesterase activity was reactivated in the presence of pyridine-2-aldoxime methochloride. Carboxylesterase activity was inhibited by organophosphorus insecticides (IC50 = 1.20 × 10−5-2.98 × 10−8 M) but not by carbamates. B-esterase-specific differences in the inhibition by organophosphates and carbamates are discussed with respect to the buffering capacity of the carboxylesterase to reduce pesticide toxicity. These results suggest that B-type esterases in X. derbentina are suitable biomarkers of pesticide exposure and that this snail could be used as sentinel species in field monitoring of Mediterranean climate regions.  相似文献   

17.
Ambient air and dry deposition, and soil samples were collected at the Aliaga industrial site in Izmir, Turkey. Atmospheric total (particle + gas) ∑41-PCB concentrations were higher in summer (3370 ± 1617 pg m−3, average + SD) than in winter (1164 ± 618 pg m−3), probably due to increased volatilization with temperature. Average particulate ∑41-PCBs dry deposition fluxes were 349 ± 183 and 469 ± 328 ng m−2 day−1 in summer and winter, respectively. Overall average particulate deposition velocity was 5.5 ± 3.5 cm s−1. The spatial distribution of ∑41-PCB soil concentrations (n = 48) showed that the iron-steel plants, ship dismantling facilities, refinery and petrochemicals complex are the major sources in the area. Calculated air-soil exchange fluxes indicated that the contaminated soil is a secondary source to the atmosphere for lighter PCBs and as a sink for heavier ones. Comparable magnitude of gas exchange and dry particle deposition fluxes indicated that both mechanisms are equally important for PCB movement between air and soil in Aliaga.  相似文献   

18.
Mercury pollution is caused by artisanal and small-scale gold mining (ASGM) operations along the Cikaniki River (West Java, Indonesia). The atmosphere is one of the primary media through which mercury can disperse. In this study, atmospheric mercury levels are estimated using the native epiphytic fern Asplenium nidus complex (A. nidus) as a biomonitor; these estimates shed light on the atmospheric dispersion of mercury released during mining.Samples were collected from 8 sites along the Cikaniki Basin during September-November, 2008 and September-November, 2009.The A. nidus fronds that were attached to tree trunks 1-3 m above the ground were collected and measured for total mercury concentration using cold vapor atomic absorption spectrometry (CVAAS) after acid-digestion. The atmospheric mercury was collected using porous gold collectors, and the concentrations were determined using double-amalgam CVAAS.The highest atmospheric mercury concentration, 1.8 × 103 ± 1.6 × 103 ng m−3, was observed at the mining hot spot, and the lowest concentration of mercury, 5.6 ± 2.0 ng m−3, was observed at the remote site from the Cikaniki River in 2009. The mercury concentrations in A. nidus were higher at the mining village (5.4 × 103 ± 1.6 × 103 ng g−1) than at the remote site (70 ± 30 ng g−1). The distribution of mercury in A. nidus was similar to that in the atmosphere; a significant correlation was observed between the mercury concentrations in the air and in A. nidus (r = 0.895, P < 0.001, n = 14). The mercury levels in the atmosphere can be estimated from the mercury concentration in A. nidus using a regression equation: log (HgA.nidu/ng g−1) = 0.740 log (HgAir/ng m−3) − 1.324.  相似文献   

19.
Okorie A  Entwistle J  Dean JR 《Chemosphere》2012,86(5):460-467
The pseudo-total and oral bioaccessible concentration of six potentially toxic elements (PTEs) in urban street dust was investigated. Typical pseudo-total concentrations across the sampling sites ranged from 4.4 to 8.6 mg kg−1 for As, 0.2-3.6 mg kg−1 for Cd, 25-217 mg kg−1 for Cu, 14-46 mg kg−1 for Ni, 70-4261 mg kg−1 for Pb, and, 111-652 mg kg−1 for Zn. This data compared favourably with other urban street dust samples collected and analysed in a variety of cities globally; the exception was the high level of Pb determined in a specific sample in this study. The oral bioaccessibility of PTEs in street dust is also assessed using in vitro gastrointestinal extraction (Unified Bioaccessibility Method, UBM). Based on a worst case scenario the oral bioaccessibility data estimated that Cd and Zn had the highest % bioaccessible fractions (median >45%) while the other PTEs i.e. As, Cu, Ni and Pb had lower % bioaccessible fractions (median <35%). The pseudo-total and bioaccessible concentrations of PTEs in the samples has been compared to estimated tolerable daily intake values based on unintentional soil/dust consumption. Cadmium, Cu and Ni are well within the oral tolerable daily intake rates. With respect to As and Pb, only the latter exceeds the TDIoral if we model ingestion rate based on atmospheric ‘dustiness’ rather than the US EPA (2008) unintentional soil/dust consumption rate of 100 mg d−1. We consider it unlikely that even a child with pica tendencies would ingest as much as 100 mg soil/dust during a daily visit to the city centre, and in particular to the sites with elevated Pb concentrations observed in this study.  相似文献   

20.
Chen JW  Chen HY  Li WF  Liou SH  Chen CJ  Wu JH  Wang SL 《Chemosphere》2011,84(1):17-24
Arsenic (As) is an important environmental toxicant that can cause cancer and cardiovascular disease, but the relationship between As exposure and renal dysfunction is not clear. The aim of this study is to examine the association between As exposure and renal dysfunction in a community-based population in central Taiwan. One thousand and forty-three subjects were recruited between 2002 and 2005. The risk for type 2 diabetes was increased by 2-fold (p < 0.05) in subjects with total urinary As (U-As) > 75 μg g−1 creatinine as compared with subjects whose U-As was ?35 μg g−1 creatinine after the adjustment for potential confounders. The adjusted odds ratio for an abnormal β2 microglobulin (B2MG > 0.154 mg L−1) was significantly higher in subjects with U-As > 35 μg g−1 creatinine as compared with the reference group adjusted for age, sex, living area, cigarette smoking, diabetes, and hypertension. The risk for abnormal B2MG and estimated glomerular filtration rate (eGFR < 90 mL min−1 (1.73 m2)−1) was both increased around 2-fold (p < 0.05) in subjects with U-As > 75 μg g−1 creatinine as compared with those with U-As ? 35 μg g−1 creatinine adjusted for all the risk factors plus lead (Pb), cadmium and nickel. The prevalence of abnormal B2MG was 4.82 times higher in subjects with both over the median levels of U-As (85.1 μg L−1) and urinary Pb (18.9 μg L−1) as compared to both lower than the median (p < 0.001). These results indicate that U-As might relate to renal dysfunction even other important risk factors were taken into account. Follow-up studies for causal inference are warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号