首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Chemicals are often found in the environment as complex mixtures. There has been a large effort in the last decade to assess the combined effect of chemicals, using the conceptual models of Concentration Addition and Independent Action, but also including synergistic, antagonistic, dose-level and dose-ratio dependent deviations from these models. In the present study, single and mixture toxicity of atrazine, dimethoate, lindane, zinc and cadmium were studied in Folsomia candida, assessing survival and reproduction. Different response patterns were observed for the different endpoints and synergistic patterns were observed when pesticides were present. Compared with the previously tested Enchytraeus albidus and Porcellionides pruinosus, the mixture toxicity pattern for F. candida was species specific. The present study highlights the importance of studying toxicity of chemicals mixtures due to the observed potentiation of effects and confirms that for an adequate ecologically relevant risk assessment different organisms and endpoints should be included.  相似文献   

2.
Phyu YL  Palmer CG  Warne MS  Hose GC  Chapman JC  Lim RP 《Chemosphere》2011,85(10):1568-1573
Pesticides predominantly occur in aquatic ecosystems as mixtures of varying complexity, yet relatively few studies have examined the toxicity of pesticide mixtures. Atrazine, chlorothalonil and permethrin are widely used pesticides that have different modes of action. This study examined the chronic toxicities (7-d reproductive impairment) of these pesticides in binary and ternary mixtures to the freshwater cladoceran Ceriodaphnia cf. dubia. The toxicity of the mixtures was compared to that predicted by the independent action (IA) model for mixtures, as this is the most appropriate model for chemicals with different modes of action. Following this they were compared to the toxicity predicted by the concentration addition (CA) model for mixtures. According to the IA model, the toxicity of the chlorothalonil plus atrazine mixture conformed to antagonism, while that of chlorothalonil and permethrin conformed to synergism. The toxicity of the atrazine and permethrin mixture as well as the ternary mixture conformed to IA implying there was either no interaction between the components of these mixtures and/or in the case of the ternary mixture the interactions cancelled each other out to result in IA. The synergistic and antagonistic mixtures deviated from IA by factors greater than 3 and less than 2.5, respectively. When the toxicity of the mixtures was compared to the predictions of the CA model, the binary mixture of chlorothalonil plus atrazine, permethrin plus atrazine and the ternary mixture all conformed to antagonism, while the binary mixture of chlorothalonil plus permethrin conformed to CA. Using the CA model provided estimates of mixture toxicity that did not markedly underestimate the measured toxicity, unlike the IA model, and therefore the CA model is the most suitable to use in ecological risk assessments of these pesticides.  相似文献   

3.
Zhang J  Liu SS  Dou RN  Liu HL  Zhang J 《Chemosphere》2011,82(7):1024-1029
Ionic liquids (ILs) are a fascinating group of new chemicals with the potential to replace the classical volatile organic solvents, stimulating many applications in chemical industry. In case ILs are released to the environment, possible combined toxicity should be taken into account and it is, however, often neglected up to now. In this paper, therefore, the concentration-response curves (CRCs) of four groups of IL mixtures with various mixture ratios to Vibrio qinghaiensis sp.-Q67 were determined using the microplate toxicity analysis and were compared to the CRCs predicted by an additive reference model, the concentration addition (CA) or independent action (IA), to identify the toxicity interaction. It is showed that most of the IL mixture rays displayed the classical addition while the remaining rays exhibited antagonism or synergism. Moreover, it is found that the pEC50 values of the mixture rays exhibiting antagonism or synergism are well correlated with the mixture ratio of a certain IL therein.  相似文献   

4.
Enchytraeids are ecologically relevant soil species and are commonly used in standardized toxicity tests. Their rapid reaction to a chemical exposure can be used as a toxicological measurement endpoint that assesses the avoidance behavior. The objectives of this investigation were to determine the effects of soil properties on the avoidance behavior of Enchytraeus albidus and to optimize the duration of avoidance test. The avoidance tests included (1) exposures in OECD artificial soil with standard or modified properties (pH, clay or peat content), and (2) exposures to copper chloride, cadmium chloride, and to the organic pesticides dimethoate and phenmedipham for different time periods. Results showed that alteration of OECD soil constituents significantly affected the avoidance behavior of enchytraeids, and that the 48-h exposure was the optimal duration of the test. Consideration of soil properties is important for selecting appropriate experimental design and interpreting the results of the enchytraeid avoidance test.  相似文献   

5.
Compound contamination and toxicity interaction necessitate the development of models that have an insight into the combined toxicity of chemicals. In this paper, a novel and simple model dependent only on the mixture information (MIM), was developed. Firstly, the concentration-response data of seven groups of binary and multi-component (pseudo-binary) mixtures with different mixture ratios to Vibrio qinghaiensis sp.-Q67 were determined using the microplate toxicity analysis. Then, a desirable non-linear function was selected to fit the data. It was found that there are good linear correlations between the location parameter (α) and mixture ratio (p) of a component and between the steepness (β) and p. Based on the correlations, a mixture toxicity model independent of pure component toxicity profiles was built. The model can be used to accurately estimate the toxicities of the seven groups of mixtures, which greatly simplified the predictive procedure of the combined toxicity.  相似文献   

6.
This study analyzed the toxicity of three pesticides (the herbicide atrazine, the insecticide chlorpyrifos and the fungicide chlorothalonil) individually, and in two mixtures (atrazine and chlorpyrifos; atrazine and chlorothalonil) to the marine phytoplankton species Dunaliella tertiolecta (Chlorophyta). A standard 96 h static algal bioassay was used to determine pesticide effects on the population growth rate of D. tertiolecta. Mixture toxicity was assessed using the additive index approach. Atrazine and chlorothalonil concentrations > or = 25 microg/L and 33.3 microg/L, respectively, caused significant decreases in D. tertiolecta population growth rate. At much higher concentrations (> or = 400 microg/L) chlorpyrifos also elicited a significant effect on D. tertiolecta population growth rate, but toxicity would not be expected at typical environmental concentrations. The population growth rate EC50 values determined for D. tertiolecta were 64 microg/L for chlorothalonil, 69 microg/L for atrazine, and 769 microg/L for chlorpyrifos. Atrazine and chlorpyrifos in mixture displayed additive toxicity, whereas atrazine and chlorothalonil in mixture had a synergistic effect. The toxicity of atrazine and chlorothalonil combined was approximately 2 times greater than that of the individual chemicals. Therefore, decreases in phytoplankton populations resulting from pesticide exposure could occur at lower than expected concentrations in aquatic systems where atrazine and chlorothalonil are present in mixture. Detrimental effects on phytoplankton population growth rate could impact nutrient cycling rates and food availability to higher trophic levels. Characterizing the toxicity of chemical mixtures likely to be encountered in the environment may benefit the pesticide registration and regulation process.  相似文献   

7.
The determination of the hormetic effects of a mixture is quite difficult because of the moderate simulation and the complexity of measurement in low doses. In the present study, two typical models for mixture toxicity prediction, concentration additive (CA) and independent action (IA), were used to predict the hormetic effects of mixtures. The predictive power of those models was validated by the hormetic effects (24-h exposure) of antibiotic’s binary mixtures to Vibrio fischeri. The results showed that CA and IA were unable to predict the hormetic dose-response of mixture, especially those of the interactive mixtures. As an alternative, a novel model, which was named as “six-point” and developed based on the quantitative features in the determined dose-response curve and on the Quantitative Structure Activity Relationships (QSARs) approach, was proposed for predicting the hormetic effects of mixtures in low dose. The results indicated that the “six-point” model can accurately predict the mixture hormetic effects in low dose, not only for non-interactive mixtures but also for interactive mixtures. Therefore, the “six-point” model is a powerful tool to predict the mixture hormetic effects at low dose, and may offer an important approach in the environment risk assessment of mixtures.  相似文献   

8.
This study examined the effects of three widely used pesticides that have been previously detected in aquatic systems neighbouring agricultural fields on the early-life stages of the zebrafish Danio rerio. Tests involving single exposures and binary combinations of the s-triazine herbicides (atrazine and terbuthylazine) and the organophosphate insecticide chlorpyrifos were performed. Several endpoints, such as swimming behaviour, morphological abnormalities and mortality, were studied. In addition, the inhibition of acetylcholinesterase (AChE) activity was investigated in order to evaluate the mode of action and toxicity of chlorpyrifos in the presence of these herbicides. Results indicate that both binary mixtures elicited synergistic responses on the swimming behaviour of zebrafish larvae. Moreover, although the herbicides were not effective inhibitors of the AChE on their own, a synergistic inhibition of the enzyme activity was obtained by exposure to mixtures with chlorpyrifos. We observed a correlation between impairment of swimming behaviour of the larvae and inhibition of AChE activity. This study supports previous studies concerning the risk assessment of mixtures since the toxicity may be underestimated when looking only at the single toxicants and not their mixtures.  相似文献   

9.
The concentration addition (CA) and the independent action (IA) models are widely used for predicting mixture toxicity based on its composition and individual component dose–response profiles. However, the prediction based on these models may be inaccurate due to interaction among mixture components. In this work, the nature and prevalence of non-additive effects were explored for binary, ternary and quaternary mixtures composed of hydrophobic organic compounds (HOCs). The toxicity of each individual component and mixture was determined using the Vibrio fischeri bioluminescence inhibition assay. For each combination of chemicals specified by the 2n factorial design, the percent deviation of the predicted toxic effect from the measured value was used to characterize mixtures as synergistic (positive deviation) and antagonistic (negative deviation). An arbitrary classification scheme was proposed based on the magnitude of deviation (d) as: additive (10%, class-I) and moderately (10 < d  30%, class-II), highly (30 < d  50%, class-III) and very highly (>50%, class-IV) antagonistic/synergistic. Naphthalene, n-butanol, o-xylene, catechol and p-cresol led to synergism in mixtures while 1, 2, 4-trimethylbenzene and 1, 3-dimethylnaphthalene contributed to antagonism. Most of the mixtures depicted additive or antagonistic effect. Synergism was prominent in some of the mixtures, such as, pulp and paper, textile dyes, and a mixture composed of polynuclear aromatic hydrocarbons. The organic chemical industry mixture depicted the highest abundance of antagonism and least synergism. Mixture toxicity was found to depend on partition coefficient, molecular connectivity index and relative concentration of the components.  相似文献   

10.
混合重金属对硝化颗粒污泥毒性作用的析因实验研究   总被引:3,自引:0,他引:3  
分别测定了Cu2 、Zn2 和Cd2 对硝化颗粒污泥的单一毒性,采用析因实验研究了二元和三元重金属混合体系对硝化颗粒污泥的联合毒性.结果表明,Cu2 、Zn2 和Cd2 的2 h半抑制浓度EC50分别为95.23、62.11和12.48 mg/L,由析因实验所得的响应曲面模型具有较好的优度(其R2>0.95),能够对混合体系的联合毒性很好地进行预测,析因实验可以用于环境领域混合体系联合毒性的研究.  相似文献   

11.
To date, toxicological studies of endocrine disrupting chemicals (EDCs) have typically focused on single chemical exposures and associated effects. However, exposure to EDCs mixtures in the environment is common. Antiandrogens represent a group of EDCs, which draw increasing attention due to their resultant demasculinization and sexual disruption of aquatic organisms. Although there are a number of in vivo and in vitro studies investigating the combined effects of antiandrogen mixtures, these studies are mainly on selected model compounds such as flutamide, procymidone, and vinclozolin. The aim of the present study is to investigate the combined antiandrogenic effects of parabens, which are widely used antiandrogens in industrial and domestic commodities. A yeast-based human androgen receptor (hAR) assay (YAS) was applied to assess the antiandrogenic activities of n-propylparaben (nPrP), iso-propylparaben (iPrP), methylparaben (MeP), and 4-n-pentylphenol (PeP), as well as the binary mixtures of nPrP with each of the other three antiandrogens. All of the four compounds could exhibit antiandrogenic activity via the hAR. A linear interaction model was applied to quantitatively analyze the interaction between nPrP and each of the other three antiandrogens. The isoboles method was modified to show the variation of combined effects as the concentrations of mixed antiandrogens were changed. Graphs were constructed to show isoeffective curves of three binary mixtures based on the fitted linear interaction model and to evaluate the interaction of the mixed antiandrogens (synergism or antagonism). The combined effect of equimolar combinations of the three mixtures was also considered with the nonlinear isoboles method. The main effect parameters and interaction effect parameters in the linear interaction models of the three mixtures were different from zero. The results showed that any two antiandrogens in their binary mixtures tended to exert equal antiandrogenic activity in the linear concentration ranges. The antiandrogenicity of the binary mixture and the concentration of nPrP were fitted to a sigmoidal model if the concentrations of the other antiandrogens (iPrP, MeP, and PeP) in the mixture were lower than the AR saturation concentrations. Some concave isoboles above the additivity line appeared in all the three mixtures. There were some synergistic effects of the binary mixture of nPrP and MeP at low concentrations in the linear concentration ranges. Interesting, when the antiandrogens concentrations approached the saturation, the interaction between chemicals were antagonistic for all the three mixtures tested. When the toxicity of the three mixtures was assessed using nonlinear isoboles, only antagonism was observed for equimolar combinations of nPrP and iPrP as the concentrations were increased from the no-observed-effect-concentration (NOEC) to effective concentration of 80 %. In addition, the interactions were changed from synergistic to antagonistic as effective concentrations were increased in the equimolar combinations of nPrP and MeP, as well as nPrP and PeP. The combined effects of three binary antiandrogens mixtures in the linear ranges were successfully evaluated by curve fitting and isoboles. The combined effects of specific binary mixtures varied depending on the concentrations of the chemicals in the mixtures. At low concentrations in the linear concentration ranges, there was synergistic interaction existing in the binary mixture of nPrP and MeP. The interaction tended to be antagonistic as the antiandrogens approached saturation concentrations in mixtures of nPrP with each of the other three antiandrogens. The synergistic interaction was also found in the equimolar combinations of nPrP and MeP, as well as nPrP and PeP, at low concentrations with another method of nonlinear isoboles. The mixture activities of binary antiandrogens had a tendency towards antagonism at high concentrations and synergism at low concentrations.  相似文献   

12.
Displacement of lindane presorbed on the pristine and OH-functionalized multiwalled carbon nanotubes (MWCNTs) by phenanthrene, naphthalene, and atrazine, and competition of these compounds with lindane on the aforementioned sorbents were investigated. Displacement of lindane presorbed on MWCNTs by atrazine, naphthalene, and phenanthrene, and competitive sorption effect of these chemicals with lindane on MWCNTs followed the same order: atrazine > naphthalene > phenanthrene. The lowest competition and displacement of lindane by phenanthrene were mainly because of the strong interactions between these two chemicals, whereas interaction of lindane with atrazine and naphthalene was quite low. The more pronounced displacement of lindane by atrazine than naphthalene and higher competitive sorption of lindane with atrazine than with naphthalene can be ascribed to the larger molecular volume of atrazine; thus, the steric hindrance effect is higher relative to naphthalene. This study is valuable for evaluating influence of the coexisting organic compounds on sorption of primary solute towards MWCNTs in the environment.  相似文献   

13.
EC50s for cadmium, copper, lead and zinc were determined for juvenile production of Folsomia candida at pH6.0, 5.0 and 4.5 in a standard laboratory test system. In contrast to most previous studies where metal toxicity was increased at low pHs, in our experiments there was no clear relationship between soil acidity and EC50-reproduction in this species. The EC50-reproduction values (μg g−1) for cadmium and zinc were similar at all three pHs (pH6.0: Cd 590, Zn 900; pH5.0: Cd 780, Zn 600; pH4.5: Cd 480, Zn 590). In contaminated field sites adjacent to primary zinc smelters, zinc is invariably present in soils at concentrations of at least 50 times that of cadmium Thus deleterious effects of mixtures of these metals on populations of Collembola in such sites can be attributed to zinc rather than cadmium.  相似文献   

14.
To assess soil quality and risk assessment, bioassays can be useful tools to gauge the potential toxicity of contaminants focusing on their bioavailable fraction. A rapid and sublethal avoidance behaviour test was used as a screening tool with the earthworm Eisenia andrei and the isopod Porcellionides pruinosus, where organisms were exposed during 48 h to several chemicals (lindane, dimethoate and copper sulphate, for isopods and carbendazim, benomyl, dimethoate and copper sulphate for earthworms). Both species were also exposed to soils from an abandoned mine. For all bioassays a statistical approach was used to derive EC50 values. Isopods and earthworms were able to perceive the presence of toxic compounds and escaping from contaminated to clean soil. Furthermore the behaviour parameter was equally or more sensitive then other sublethal parameters (e.g. reproduction or growth), expressing the advantages of Avoidance Behaviour Tests as screening tools in ERA.  相似文献   

15.
This study examined the toxicity of irgarol, individually and in binary mixtures with three other pesticides (the fungicide chlorothalonil, and the herbicides atrazine and 2,4-D), to the marine phytoplankton species Dunaliella tertiolecta. Standard 96-h static algal bioassays were used to determine pesticide effects on population growth rate. Irgarol significantly inhibited D. tertiolecta growth rate at concentrations > or = 0.27 micro g/L. Irgarol was significantly more toxic to D. tertiolecta than the other pesticides tested (irgarol 96 h EC50 = 0.7 micro g/L; chlorothalonil 96 h EC50 = 64 micro g/L; atrazine 96 h EC50 = 69 micro g/L; 2,4-D 96 h EC50 = 45,000 micro g/L). Irgarol in mixture with chlorothalonil exhibited synergistic toxicity to D. tertiolecta, with the mixture being approximately 1.5 times more toxic than the individual compounds. Irgarol and atrazine, both triazine herbicides, were additive in mixture. The toxicity threshold of 2,4-D was much greater than typical environmental levels and would not be expected to influence irgarol toxicity. Based on these interactions, overlap of certain pesticide applications in the coastal zone may increase the toxicological risk to resident phytoplankton populations.  相似文献   

16.
Effects of chronic application of a mixture of the herbicide atrazine and the insecticide lindane were studied in indoor freshwater plankton-dominated microcosms. The macroinvertebrate community was seriously affected at all but the lowest treatment levels, the zooplankton community at the three highest treatment levels, with crustaceans, caddisflies and dipterans being the most sensitive groups. Increased abundance of the phytoplankton taxa Cyclotella sp. was found at the highest treatment level. Threshold levels for lindane, both at population and community level, corresponded well with those reported in the literature. Atrazine produced fewer effects than expected, probably due to decreased grazer stress on the algae as a result of the lindane application. The safety factors set by the Uniform Principles for individual compounds were also found to ensure protection against chronic exposure to a mixture of a herbicide and insecticide at community level, though not always at the population level.  相似文献   

17.
To document the toxicity of copper and nickel in binary mixtures, freshwater amphipods Gammarus pulex were exposed to the metals given independently or as mixtures. Toxicity to Cu alone was relatively high: 96-h LC10 and LC50 were found at 91 and 196 μg L?1, respectively. Toxicity to Ni alone was very low, with 96-h LC10 and LC50 of 44,900 and 79,200 μg L?1, respectively. Mixture toxicities were calculated from single toxicity data using conventional models. Modeled toxicity was then compared with the measured toxicity of the binary mixture. Two kinds of mixtures were tested. Type I mixtures were designed as combinations of Cu and Ni given at the same effect concentrations, when taken independently, to identify possible interactions between copper and nickel. In type II mixtures, Cu concentrations varied from 0 to 600 μg L?1 while the nickel concentration was kept constant at 500 μg L?1 to mimic conditions of industrial wastewater discharges. Ni and Cu showed synergic effects in type I mixtures while type II mixtures revealed antagonistic effects. Low doses of Ni reduced Cu toxicity towards G. pulex. These results show that even for simple binary mixtures of contaminants with known chemistry and toxicity, unexpected interactions between the contaminants may occur. This reduces the reliability of conventional additivity models.  相似文献   

18.
The United States Environmental Protection Agency (USEPA) has pursued the estimation of risk of adverse health effects from exposure to chemical mixtures since the early 1980s. Methods used to calculate risk estimates of mixtures were often based on single chemical information that required assumptions of dose-addition or response-addition and did not consider possible changes in response due to interaction effects among chemicals. Full factorial designs for laboratory studies can produce interactions information, but these are expensive to perform and may not provide the information needed to evaluate specific environmentally relevant mixtures. In this research, groups of Japanese medaka (Oryzias latipes) embryos were exposed to binary mixtures of benzene and toluene as well as to each of these chemicals alone. Endpoint specific dose-response models were built for the hydrocarbon mixture under an assumption of dose-additivity, using the single chemical dose-response information on benzene and toluene. The endpoints included heart rate, heart rate progression, and lethality. Results included a synergistic response for heart rate at 72 h of development, and either additivity or antagonism for all other endpoints at 96 h of development. This work uses an established statistical method to evaluate the toxicity of an environmentally relevant mixture to ascertain whether interaction effects are occurring, thus providing additional information on toxicity.  相似文献   

19.
The Agency for Toxic Substances and Disease Registry (ATSDR) has a program for chemical mixtures that encompasses research on chemical mixtures toxicity, health risk assessment, and development of innovative computational methods. ATSDR prepared a guidance document that instructs users on how to conduct health risk assessment on chemical mixtures (Guidance Manual for the Assessment of Joint Toxic Action of Chemical Mixtures). ATSDR also developed six interaction profiles for chemical mixtures. Two profiles were developed for persistent environmental chemicals that are often found in contaminated fish and also can be detected in human breast milk. The mixture included chlorinated dibenzo-p-dioxins, hexachlorobenzene, dichlorodiphenyl dichloroethane, methyl mercury, and polychlorinated biphenyls. Two profiles each were developed for mixtures of metals and mixtures of volatile organic chemicals (VOCs) that are frequently found at hazardous waste sites. The two metal profiles dealt with (a) lead, manganese, zinc, and copper; and (b) arsenic, cadmium, chromium, and lead; the two VOCs mixtures dealt with (a) 1,1,1-trichloroethane, 1,1-dichloroethane, trichloroethylene, and tetrachloroethylene; and (b) benzene, ethylbenzene, toluene, and xylenes (BTEX). Weight-of-evidence methodology was used to assess the joint toxic action for most of the mixtures. Physiologically based pharmacokinetic modeling was used for BTEX. In most cases, a target-organ toxicity dose modification of the hazard index approach is recommended for conducting exposure-based assessments of noncancer health hazards.  相似文献   

20.
The toxicological interaction of perfluorooctane sulphonic acid (PFOS) with the chlorinated pollutants triclosan and 2,4,6-trichlorophenol and the lipid regulators gemfibrozil and bezafibrate was evaluated using the combination index-isobologram equation. The endpoint for bioassays was the growth rate inhibition of the green alga Pseudokirchneriella subcapitata. The results showed that most of the binary combinations assayed exhibited antagonism at all effect levels. The addition of a third component induced a less antagonistic or even synergistic behaviour. This was particularly marked for the ternary mixture of triclosan and 2,4,6-trichlorophenol with PFOS, for which synergism was very strong at all effect levels, with a combination index as low as 0.034 ± 0.002 at EC50 for the mixture. The results obtained indicate that the evaluation of mixture toxicity from single component data using the concentration addition approach could severely underestimate combined toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号